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1 Digital Signatures

We have seen that message-authentication codes (MACs) provide a way for two parties to com-
municate via a shared secret key. However, this scheme requires a different key for each pair of
communicating parties. In addition, there is no way for a third party to verify that a given MAC
originated from a sender, rather than the receiver. This lecture studies digital signatures which use
public and private keys to remedy both of these problems.

Definition 1 A digital signature scheme is a triple (G,S, V ), containing a generator G, a signer
S, and a verifier V . It must satisfy the following properties, where p() is some polynomial.

1. Completeness: 8k8(pk, sk) G(1k)8m 2 {0, 1}p(k)Pr[V (1k, pk,m, S(1k, sk,m)) = 1] = 1

2. Security: 8ppt A Pr[AS(1k,sk,·)(pk, 1k)forges] < negl(k)

We say that A forges if it outputs a pair (m,↵) such that m was not queried to the oracle and
V (1k, pk,m,↵) = 1.

Definition 2 A one-time digital signature scheme (OTDS) satisfies the above definition when ppt
A are only allowed to ask a single query to the oracle.

Theorem 3 (Lamport) OWF ! OTDS (with large public keys).

Proof: Let f : {0, 1}⇤ ! {0, 1}⇤ be a one-way function. Fix some message length n and security
parameter k. The signature scheme is defined as follows:

1. For each pair (i, b) for i 2 {1, . . . , n} and b 2 {0, 1}, sample a value xi,b from G(1k).

2. Set yi,b = f(xi,b).

3. Set pk = y1,0y1,1y2,0...yn,0yn,1 and sk = x1,0x1,1x2,0...xn,0xn,1.

4. For each message m = m1m2 . . .mn 2 {0, 1}n, let S(1k, sk,m) = x1,m1x2,m2 ...xn,mn .

5. To verify a signature �, V (1k, pk,m,�) = 1 if and only if f(�i,mi) = yi,m for all i.

To see that this is scheme is OTDS, suppose there is a ppt A such that Pr[A(1k,sk,·)(1k, pk)forges]
with non-negligible probability. We will construct a ppt B such that B[1k, y] finds x such that
f(x) = y with non-negligible probability.

1. Sample random xi,b values
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2. Compute yi,b = f(xi,b) for all xi,b

3. For some random i0 and b0, replace yi0,b0 with y and replace xi0,b0 with ?.

4. Set pk = y1,0y1,1y2,0 . . . yn,0yn,1 and simulate AS(1k,sk,·) and answer query m only if m does
not contain yi0,b0 (this only happens with probability 1/2).

5. A outputs message m̃ and signature �̃.

6. If m̃i0 6= mi0 , then output �̃i0 , since f(�̃i0) = y.

A must forge one of n possible bits. Therefore if the probability that A forges is �(k), then B inverts
with probability �(k)

2n . ⇤

The public keys used in the above proof are very large. As we will see, we can use collision resistant
hash functions (CRF) to achieve the same result with small public keys. This is called the hash-then
sign paradigm.

Theorem 4 OTDS + CRF ! OTDS (with small public keys)

Proof: Let (G,S, V ) be a OTDS and F = {Fk}k be a collision resistant function ensemble whose
output length is the input length of the signature scheme. We will construct OTDS (G0, S0, V 0) with
small public keys.

G0(1k) is defined by:

1. f  Fk

2. Get (pk, sk) from G(1k) (these are the small public keys)

3. Set pk0 = (pk, f) and sk0 = (sk, f)

S0(1k, sk0,m) is defined by:

1. h f(m)

2. �  S(1k, sk, h)

V 0(1k, pk0,m,�) is defined by:

1. h f(m)

2. b V (1k, pk, h,�)

Now suppose there is a ppt A such that Pr[A] is non-negligible, where A is the event that AS0(1k,sk0,·)(1k, pk)forges.
Assume A queries message m and returns message m̃ (along with signature �̃). Let E be the event
that f(m) = f(m̃). We can see that Pr[A] = Pr[A & E ] + Pr[A & Ē ], so one of these probabilities
must be non-negligible. We will consider both cases.

1) Assume Pr[A & E ] is non-negligible. We will construct a ppt B such that B[1k, f ] yields a
collision. B[1k, f ] runs as follows:
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1. Get (pk, sk) G(1k)

2. Set pk0 = (pk, f) and sk0 = (sk, f)

3. Run AS0(1k,sk0,·)(1k, pk0) to get potential forgery m̃ and �̃

4. Return m and m̃ as possible collisions

2) Assume Pr[A & Ē ] is non-negligible and Pr[E ] is negligible. We will define a ppt C which breaks
the OTDS property for (G,S, V ). CS(1k,sk,·)(1k,pk) runs as follows:

1. Get f  F 0
k

2. Set pk0 = (pk, f)

3. Run AS0(1k,sk0,·)(1k, pk0) and answer query m with S(1k, sk, f(m)).

4. A outputs m̃ and �̃ as a possible forgery on keys (pk0, sk0)

5. Output f(m̃) and �̃ as a possible forgery on keys (pk, sk)

In this case, since Pr[E ] is negligible, we know that f(m) 6= f(m̃). Therefore, the forgery on the
larger messages m and m̃ acts as a forgery of the smaller keys f(m) and f(m̃).

Since both cases yield a contradiction, no such forger A can exist. So (G0, S0, V 0) is OTDS. ⇤

Note that although the above signature scheme is safe under a single query, it can easily be broken
if a forger can make the two queries 1n and 0n. We will see that is is possible to create a digital
signature scheme that is safe under polynomially many oracle queries (i.e., CMA-secure). In this
lecture, we will accomplish this using exponential generators and signers, but we will later use these
ideas to find quicker schemes.

We will define the new signature scheme, (Ḡ, S̄, V̄ ), as follows:

1. Ḡ(1k) samples 2n+1 � 1 public/private key pairs (one for each string in {0, 1}⇤ of length at
most n). (pk✏, sk✏) represent the key pair for the empty string.

2. Set p̄k = pk✏ and s̄k = ((pkm, skm))m2{0,1}n .

3. For a given message m = m[0] . . .m[n] 2 {0, 1}n, S̄(1k, s̄k,m) = �̄ = ((pkj ,mj ,�j))j=0···n,
where:

(a) pkj = pkm[0]...m[j]

(b) mj = pkm[0]...m[j]0||pkm[0]...m[j]1

(c) �j = S(1k, skm[0]...m[j],mj)

4. V̄ [1k, pk,m, �̄] runs as follows:

(a) Parse �̄ into ((pk,mj ,�j))j=0...n

(b) For j = 0, . . . , n, check that V (1k, pk,mj ,�j) = 1

(c) Check that pk0 = pk✏ and mn = m

(d) For j = 0, . . . , n,
i. if m[j] = 0 check that pkj is the left-hand-side of mj�1.
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ii. if m[j] = 1, check that pkj is the right-hand size of mj�1.
(e) Return 1 if and only if all checks pass.

By this construction, we can now state the following theorem.

Theorem 5 OTDA! CMA_DS
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