
CS276: Cryptography October 1, 2015

Message Authentication Codes and CCA2

Instructor: Alessandro Chiesa Scribe: David Fi�eld

1 Previous lecture

Last time we:

• Constructed a CPA-secure encryption scheme from PRFs.

• Introduced cipher modes of operation and found quibbles (malleability attacks) that caused
us seek more than �just� CPA security.

• De�ned a security hierarchy for encryption schemes: CPA, CCA1, and CCA2.

• Wanted to patch our CPA-secure scheme to also be secure against an active attacker: prevent
the attacker from monkeying with ciphertext.

This last desire takes us on a detour through message authentication codes (MACs).

2 Message authentication codes (MACs)

In brief, a message authentication code guarantees both the integrity of a message and the identity
of the sender. We are in this scenario: Alice and Bob share a secret key sk. Eve is an active attacker
capable not only of eavesdropping, but also of modifying messages.

Alice (sk) Bob (sk)

Eve

m, t

The idea is to attach a tag to the message with the property that Eve cannot generate a tag for any
message that Alice did not previously send. The tagging scheme needs to satisfy two properties:

Completeness Alice can tag any message m to get a tag t that Bob can verify (together with m
and the shared secret key).

Security Eve cannot forge tags for messages she has not already seen tagged.

Informally, a MAC is a pair of algorithms T (for �tag�) and V (for �verify�). T outputs a tag given
a secret key and a message. V outputs a bit indicating whether a given tag is valid for a secret key
and message.

T (1k, sk,m)→ t

V (1k, sk,m, t)→ {0, 1}
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Note that Alice and Bob share a secret key sk. This is di�erent from the asymmetric (digital
signature) setting.

Formally, a MAC is de�ned as follows:

De�nition 1 A message authentication code (MAC) is a pair (T, V ) of e�cient algorithms such
that:

1. (Completeness) ∀k ∈ N,∀sk ∈ {0, 1}r(k),∀m ∈ {0, 1}n(k),

Pr
[
V (1k, sk,m, T (1k, sk,m)) = 1

]
= 1

2. (Security) ∀ ppt A,

Pr
sk

[
AT (1k,sk,·)(1k)→ (m, t) s.t.

{
V (1k, sk,m, t) = 1

T was never queried on m

]
is negligible in k.

The �completeness� property says that a tag produced by T must be veri�able by V . The equality
holds with probability 1 to allow for some nondeterminism in the algorithms.

The �security� property means that the adversary A gets oracle access to T (1k, sk, ·); i.e., it can get
a tag for any message it likes but does not know sk directly. The adversary wins if it can produce a
message and a valid tag for the message, as long as the message is not one that it previously asked the
tagging oracle to tag. Note that m is unquanti�ed. A wins if it can produce a tag for any message;
the message could even depend on the results to its queries to the tagging oracle. This di�ers from
the notion of CPA-security; here we are not looking for indistinguishability, but unforgeability. This
is a strong notion of security: the adversary only has to produce a tag for any message at all, not
necessarily a meaningful one. This de�nition is known as �existential unforgeability under a chosen
message attack (CMA).�

A cannot simply hard-code a message and tag because the probability is taken over the secret key
as well as any random coins used by the algorithms.

Remark 2 The adversary wins this game if it somehow learns a valid tag for a message without
having to consult the oracle. Imagine, for example, that the adversary observes and records a tagged
message from Alice to Bob �before� undergoing the oracle experiment. This kind of replay attack is
out of scope for this de�nition. In a real system, ideas of message freshness or non-repetition need
to be handled by some other layer.

Remark 3 One could also imagine giving the adversary oracle access to a veri�er, in addition
to a tagger. Is this de�nition equivalent? We were not sure in class. After class, we consulted
section 6.1.5.1 of Goldreich's book, which says that any MAC can be transformed into one where
tagging is deterministic and there is only one valid tag per message; with such a MAC a veri�cation
oracle does not give any extra power.

3 MACs for short messages

We want to construct a MAC for messages whose length is �xed. Some ideas thaat were suggested
in class and turn out not to work:
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• Run m through a one-way function with a hardcore predicate. But the tag would be only a
single bit and would be forgeable half the time just by guessing.

• Let the tag be the output of a PRG seeded with sk|m: G(sk|m). Doesn't work because a PRG
doesn't work if its input is not random.

• Seed a PRG with sk and XOR it with m: G(sk) ⊕ m. This is malleable: one could �ip
corresponding bits in (m, t) to produce another valid (m′, t′).

We will use a PRF-based construction. Think of it this way: A PRF is a large table of pseudo-
randomness. The message m is an index into this table. The adversary cannot predict the table
because it does not known the secret key sk.

Theorem 4 Let f be a PRF. De�ne algorithms T and V as:

T (1k, sk,m) = fsk(m)

V (1k, sk,m, t) = t
?
= fsk(m)

Then (T, V ) is a message authentication code.

Proof: Consider algorithms (T , V ) that use a true random function U in place of the PRF f :

T (1k,U ,m) = U(m)

V (1k,U ,m, t) = U(m)
?
= t

We need to show:

(1) (T , V ) is a MAC.

(2) (T , V ) looks like (T, V ).

For part (1), the completeness property of (T , V ) is clear. It remains to show the security property.
First note that giving an adversary oracle access to T (1k,U , ·) is the same as giving it oracle access
to U(·) because T in the construction simply calls U . Its success probability is simply the probability
of guessing a random string:

Pr
U

[
AT (1k,U,·)(1k) forges

]
= Pr
U

[
AU(·)(1k) forges

]
= 2−k ≤ negl(k)

A can forge only by guessing the output of U , which it can do with negligible probability.

For part (2), we need to show that∣∣∣∣PrU [AT (1k,U,·)(1k) forges
]
− Pr

sk

[
AT (1k,sk,·)(1k) forges

]∣∣∣∣ (*)

is negligible. We will use A to build an adversary B that attacks the PRF f . B will be successful
whenever A is successful. Recall that the PRF adversary is trying to distinguish between a PRF
oracle and a truly random oracle.

BO(1k) = 1. (m, t)← AO(1k)
2. Check if (m, t) is a forgery; output 1 if so, 0 if not.
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Use a hybrid argument to show that the quantity in (*) is negligible. Add and subtract quantities

involving BU(·) and BT (1k,sk,·). Details are omitted. �

A technical note about part (2) of the proof: In BO, how do you check whether (m, t) is a forgery?
In the PRF-based MAC construction, you can do it by querying O and seeing that its output is the
same as t. In fact, you can do that in general using reasoning along the lines of Remark 3.

4 MACs for long messages

Now we look at the construction of a MAC for long messages. �Long� means that it scales to
a message length chosen after the PRF is already �xed. (The previous construction requires an
n(k)-bit PRF for an n(k)-bit message.)

In class, several ideas were suggested that do not work:

• Split the message into pieces m1, . . . ,m`; MAC each piece individually; and concatenate:
T = fsk(m1), . . . , fsk(m`). Doesn't work because an adversary can omit, repeat, or rearrange
pieces and still have a valid tag.

• Do the same, but include the message index in each MAC: T = fsk(1,m1), . . . , fsk(`,m`).
Doesn't work because you can swap corresponding pieces of two di�erent messages.

• XOR all tags together: T = fsk(m1)⊕· · ·⊕ fsk(m`). Doesn't work because you could concate-
nate two messages and XOR their tags to get a new valid message�tag pair.

• Do something chained like the CBC mode of operation? We'll get to that idea later.

We will use a construction that is along the lines of the �rst two ideas. The problem with them is
that they allow the adversary to rearrange pieces of a single message, mix and match pieces of two
separate messages, or extend messages. To thwart that, we will include the message length ` and a
random number r in each call to the PRF. Think of r as a �session ID� that is generated fresh on
each call to T ; it prevents the outputs of di�erent calls to T from being swapped around.

Theorem 5 Let f be a PRF, ~m = m1, . . . ,m` be a message vector, and ~t = t1, . . . , t` be a tag
vector. Then

T (1k, sk, ~m) = r, fsk(1, `, r,m1), . . . , fsk(`, `, r,m`)

V (1k, sk, ~m,~t) =
∧̀
i=1

fsk(i, `, r,mi)
?
= ti

where r is chosen randomly, is a message authentication code.

Proof: Consider algorithms that use a random function U in place of the PRF f :

T (1k,U , ~m) = r,U(1, `, r,m1), . . . ,U(`, `, r,m`)

V (1k,U , ~m,~t) =
∧̀
i=1

U(i, `, r,mi)
?
= ti

We need to show:
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(1) (T , V ) is a MAC.

(2) (T , V ) looks like (T, V ).

For part (1) ((T , V ) is a MAC), the completeness of the construction is clear. For security, there is
now a new degree of freedom, the random value r; we want to live in a world where all r have been
picked and none collide. De�ne the events:

EFORGE = AT (1k,U,·)(1k) forges

EREP = AT (1k,U,·) receives some r more than once

We want to show that Pr[EFORGE] is negligible. We start by bounding Pr[EREP]:

Pr[EREP] ≤
time(A)2

2k

(The probability that any single pair of r's collides is 1
2k
; A can see no more than time(A)2 pairs;

use the union bound.)

We use this to bound Pr[EFORGE ∧ EREP].

Pr[EFORGE ∧ EREP] ≤ Pr[EREP] ≤
time(A)2

2k
≤ negl(k)

We will now bound Pr[EFORGE ∧ EREP]. We have this scenario:

q queries


~m1 → (r1, . . .

~m2 → (r2, . . .
...

~mq → (rq, . . .

output
{
~m → (r, . . .

Because we have that EREP, we know that i 6= j =⇒ ri 6= rj . There are three cases to consider:

(i) ∀i, ri 6= r (r not seen). Then the probability of forgery is 2−k, �just luck.�

(ii) ∃i, ri = r and `i 6= ` (r seen, di�erent lengths). Then the probability of forgery is 2−k.

(iii) ∃i, ri = r and `i = ` (r seen, same lengths). Then there must exist a j such that mi,j 6= mj

(there is some component where ~mi and ~m di�er). Then the probability of forgery is 2−k.

In all cases the probability of forgery is 2−k, so Pr[EFORGE ∧ EREP] = 2−k.

Now, by the law of total probability,

Pr
U
[EFORGE] = Pr

U
[EFORGE ∧ EREP] + Pr

U
[EFORGE ∧ EREP].

Both terms in the right-hand side are negligible, so their sum is negligible.

For part (2) ((T , V ) looks like (T, V )), use a hybrid argument as in the previous section. �
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4.1 CBC-MAC

A disadvantage of the previous construction is that the tag vector is as long as the input message
vector. One way to achieve shorter tags is to use a construction similar to the CBC mode of
operation, called CBC-MAC:

t← fsk(m` ⊕ fsk(· · · ⊕ fsk(m2 ⊕ fsk(m1 ⊕ fsk(`)))))

Perhaps better explained in a diagram:

` fsk

m1

+ fsk

m2

+ · · ·

m`

+ fsk t

5 From CPA to CCA2

We detoured into MACs in order to strengthen CPA security against active attackers. The intuition
is that a MAC prevents an attacker from creating its own ciphertexts. It can only get decryptions
of messages it has asked the oracle to encrypt.

CCA2 has both E and D oracles. (CPA has only E.) We would like to make the D oracle useless,
so that the CCA2 adversary has no advantage over the CPA adversary. The intuition is that when
the adversary queries the D oracle on a ciphertext protected by a MAC, either:

(i) the ciphertext is something it already got from the E oracle; or

(ii) it can predict the output of D (i.e., ⊥) with high probability.

We started, but did not �nish, the proof of the next theorem.

Theorem 6 Let (E,D) be a CPA-secure encryption scheme and (T, V ) be a message authentication
code. Then there is a construction of algorithms (E′, D′) that is a CCA2-secure encryption scheme.

Proof: Break sk into two pieces, sk1 and sk2. Let

E′(1k, sk,m) = 1. c← E(1k, sk1,m)

2. t← T (1k, sk2, c)

3. output (c, t)

D′(1k, sk, (c, t)) = 1. check if V (1k, sk2, c, t) = 1

2. if so output D(1k, sk1, c); else output ⊥

Suppose for contradiction that (E′, D′) is not CCA2-secure. Then there exists a ppt A and

{m(0)
k }k, {m

(1)
k }k such that∣∣∣Pr [AE′(1k,sk,·),D′(1k,sk,·)(E′(1k, sk,m

(0)
k )) = 1

]
− Pr

[
AE′(1k,sk,·),D′(1k,sk,·)(E′(1k, sk,m

(1)
k )) = 1

]∣∣∣
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(where in both cases the D′ oracle is forbidden from answering the speci�c challenge given to the
adversary) is not negligible.

We are going to have to construct two adversaries, one for CPA and one for MAC. We begin with
the CPA adversary. What's di�erent about this reduction is there's this other oracle, the decryption
oracle, that we must somehow simulate.

BE(sk1,·)(c) = 1. sample sk2 randomly

2. t← T (1k, sk2, c)

3. output AO1,O2(c, t), with O1 and O2 as de�ned below

O1 is the encryption oracle that we will simulate by calling the E oracle and then manually computing
a tag using our own sk2. O2 is the decryption oracle that we will simulate by always outputting ⊥.
We are assuming that A never queries O2 on encryptions that it previously received from O1; this
is without loss of generality because we can always wrap the oracles in a cache that remembers the
answers to previous queries.

O1(mi)→ ci = E(1k, sk1,mi) (query the oracle)

ti = T (1k, sk2, ci) (compute yourself)

O2(·)→ ⊥

We want to show that∣∣∣Pr [AE′(1k,sk,·),D′(1k,sk,·)(E′(1k, sk,m
(0)
k )) = 1

]
− Pr

[
AE′(1k,sk,·),D′(1k,sk,·)(E′(1k, sk,m

(1)
k )) = 1

]∣∣∣
is negligible. We will use a hybrid argument involving the B adversary. Below we abbreviate the
oracles and challenges:∣∣∣Pr [AE′,D′

(0) = 1
]
− Pr

[
AE′,D′

(1) = 1
]∣∣∣ ≤ ∣∣∣Pr [AE′,D′

(0) = 1
]
− Pr

[
BE(0) = 1

]∣∣∣
+
∣∣Pr [BE(0) = 1

]
− Pr

[
BE(1) = 1

]∣∣
+
∣∣∣Pr [BE(1) = 1

]
− Pr

[
AE′,D′

(1) = 1
]∣∣∣

We need to show that all three terms on the right-hand side are negligible. The second term, if
negligible, contradicts the CPA-security of (E,D). Proofs for the �rst and third terms will come
later. �
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