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Abstract 
An improved method for speculative reduction is 

proposed and applied to (suspected) hard verification 

problems. Several variations of the algorithm were tested: 

(a) applying speculation initially to the original problem; 

(b) applying speculation after simplification, before our 

regular model checker, super_prove is applied, as well as 

(c) using different filters to reduce the number of 

speculated equivalences tried. On the benchmarks coming 

from sequential equivalence checking, the speculation-

first strategy with filtering proved to be faster than 

super_prove. On other benchmarks that may have come 

from property checking, super_prove is found superior. 

1 Introduction 

The application of formal verification in industry has 

increased substantially in the last decade. Formal 

verification can be classified as a) property checking or 

b) sequential equivalence checking (SEC). 

Property checking has been more of a research focus 

and its use has increased significantly. However, SEC is 

probably still the main challenge for applying formal 

verification to sequential circuits. 

In the last decade, state-of-the-art property and 

equivalence checking methods have become increasingly 

similar, with verification engines such as synthesis, 

induction, interpolation, BDD and property-directed 

reachability applied to both classes of problems. In most 

of the publicly available verification benchmarks, it is 

usually not known whether the source is property 

checking or SEC. Thus the advanced present-day software 

uses a common approach for both types of problem. 

This paper focuses on SEC to try to take advantage of 

the special characteristics of such problems. 

In sequential equivalence checking (SEC), two 

sequential circuits are compared. Typically, one is derived 

from the other by logic synthesis or manual intervention. 

SEC problems can be specified in two ways: 

• A single circuit is given wherein the two original 

circuits have been mitered together by forming XORs 

of pairs of related POs. 

• Two circuits are given separately, or in the form of a 

dual-output miter, which lists pairs of related outputs 

in the same file. 

In general, the second representation is preferred 

because the clean separation between the two circuits that 

are being checked for equivalence can be exploited by a 

SEC engine. Moreover, given the second representation, it 

is trivial to derive the first, but not vice versa. 

In this paper, however, we focus on the first 

representation since most of the available benchmarks 

have already been mitered.  

The SEC problem has an advantage over property 

checking because it is expected that there are many pairs 

of equivalent signals, where one signal of the pair is in the 

first copy and another is in the second copy. Although, 

there may be equivalent pairs where both signals are in the 

same copy, these are typically not useful in proving SEC.  

Our main approach to SEC is through the use of 

speculative reduction [2][3]. In this, the circuit is 

simulated on the reachable state set until the equivalence 

classes of signals generated are no longer being refined. 

For this simulation, the notion of rarity simulation is used, 

which is explained in Section 3. 

After simulation, the remaining equivalence classes are 

used to form a speculatively reduced model (SRM), in 

which all fanouts of signals in an equivalence class are 

transferred to a representative signal of that class. Then 

XORed pairs of signals in the class are formed in a round-

robin fashion. These are made (pseudo) POs of the SRM, 

and serve as additional proof obligations. 

If, in subsequent solving of the SRM, any the pseudo-

POs is disproved, the SRM is invalid, and the cex found is 

used to further refine the equivalence classes, leading to a 

new SRM. If a counterexample (cex) has been found to an 

original PO, the equivalence is disproved and SEC 

terminates. However, if all POs are proved, then the 

original SEC problem is proved UNSAT, because the 

original POs are proved to be part of the class of signals 

equivalent to the constant 0.  

The SRM circuit produced as shown above has several 

characteristics. Typically, it has many outputs, and it is 

expected that all are UNSAT, so finding a cex is given 

higher priority in the ensuing algorithms. Second, the SEC 

problem is not proved UNSAT unless all speculated 

equivalences are valid. This means that even if there exist 

only one invalid equivalence, the SEC problem is not 

solved. Therefore, we should try to speculate only on 

those equivalences which are ‘relevant’ to proving SEC. 



These characteristics dictate a different orchestration 

that can be done to speed up solving SEC. 

The contributions of this paper are as follows. 

1. Our implementation of speculative refinement is 

described. 

2. Rarity simulation used to quickly refine equivalence 

classes is presented. 

3. Methods to reduce the number of proof obligations 

are discussed: 

- isomorphic ones are detected and removed; 

- sequentially constrained limited resource 

induction is used to remove others; 

- an optional filter is used to limit equivalences to 

those containing a FF. 

4. A two-phase method is used to prove or disprove the 

remaining equivalence classes. 

This paper is organized as follows. Section 2 reviews 

speculative reduction. Section 3 describes rarity 

simulation. Section 4 gives an overview of a general proof 

engine, super_prove. Section 5 outlines our verification 

flow for SEC, and Section 6 provides some experimental 

results. Section 7 concludes with future work that may 

help further improve the SEC engine. 

2 Improved Speculative Reduction 
Our method of speculative reduction proceeds in the 

following sequence. It has several enhancements, which 

we comment on later. 

1. Rarity simulation (discussed in Section 3) is done 

until satuation, to create a set of candidate 

equivalence classes, i.e classes of signals speculated 

to be equivalent on the set of reachable states. 

2. These are filtered optionally according to several 

criteria, none, f, g, and ab. 

3. The speculated miter (SRM) AIG is created. This 

has multiple POs which are proof obligations 

stating that the speculated equivalences are valid. 

The main body of the sequential AIG is reduced by 

assuming that the equivalences are valid. 

4. Proof obligations are reduced by fast induction and 

isomorpism detection. 

5. Proof of the resulting multi-output SRM is 

attempted. 

- If a counter-example (cex) is found to any of the 

speculated outputs, it is used to refine the 

equivalence classes and a new SRM is created.   

- If a cex is found to an original output, the SEC 

problem is declared SAT. 

6. The remaining outputs are lumped together and 

attempted all at once using super-prove.  

7. If this times out, then the outputs are attempted 

individually in two stages using super_prove. 

Below we comment on the steps that differ from the 

standard implementation of speculation.  

Filters. There are three types of filters defined and used 

optionally to reduce the number of equivalence classes: 

none, g, f, ab. Filter none refers to not eliminating any 

classes. Filter g refers to eliminating any class that does 

not have at least one FF. Filter f refers to eliminating any 

class that does not have at least two FFs, and filter ab is 

used when the ‘A’ side and the ‘B’ side of the SEC 

problem are known. Then any class is eliminated which 

has signals in one side only. The idea of using filters on 

the equivalence classes generated is to cut on the number 

of proof obligations because the SRM cannot be proved 

valid until all speculated equivalences are proved. The 

filters are used to focus on ‘relevant’ equivalences. 

Fast induction. This is motivated by the characteristic 

of a SEC problem: it is expected that each PO is UNSAT. 

Thus it is reasonable to try to prove one PO, assuming that 

all the rest are UNSAT. This sets up a constrained 

verification problem, where we try to prove the designated 

PO using induction while using the other POs as 

constraints. If the induction proof succeeds in proving the 

PO UNSAT, then we eliminate the designated PO and 

proceed to the next PO. If the proof leads to SAT (which 

is very rare), then we use the generated cex to refine the 

equivalences and derive a new SRM. If the proof times 

out, then the designated PO is marked, but left on the list, 

and the next PO is attempted. By eliminating proved POs, 

we do not get into a cyclical argument where we assume 

one thing to prove another and then assume the other to 

prove the first. Experiments show that this fast induction 

can quickly eliminate a substantial percentage of Pos 

created during speculation. 

Using isomorphism. If a group of outputs are detected 

to be structurally isomorphic, then it is enough to prove 

one of them [23].  

Proving all outputs at once versus attempting each 

output separately. Several problems can be proved quite 

easily once the speculated outputs are valid. In trying to 

prove all outputs at once, we may be able to eliminate bad 

outputs, by looking for a cex on any of the outputs. On the 

other hand, having to deal with all outputs at once may 

obscure a cex for a particular output, which can be 

disproved easily if the logic for just that output is kept and 

the other logic is eliminated. For example, if one output 

has a hard cex at cycle 50 and another one has an easy cex 

at cycle 75, then BMC would timeout at 50 and it would 

not be known that the SRM is invalid. On the other hand, 

dealing with all outputs at once allows us to find an easy 

cex more quickly. 

Two-stage proof step. The idea of proving the set of 

remaining outputs individually in two stages is to look for 

a cex first. If one is found, then time is not wasted in 

proving other outputs. We tried using different time-outs 

for this but eventually settled on a 10-second  and 100-

second two-phase approach as the most practical. One 

strategy that works well is, if a cex is found when trying to 

prove Output k, then after a new SRM is produced, the 

next proof attempt starts at Output k (even though the 

number of outputs might have changed). 



3 Rarity Simulation 
It has been found to be extremely important to have a 

simulation method that is fast but capable of creating a set 

of equivalences that is closer to a valid set. Experience 

with random simulation and constrained simulation was 

that the first saturated too fast leaving many invalid 

speculations, and the second was too slow. This led us to 

believe that speculative reduction was not applicable to 

large industrial problems. 

However, it was suggested by the SixthSense team at 

IBM that we should do something like the rarity 

simulation, which we describe below. This made 

speculative reduction a significant contributor to our 

formal verification approach and probably was the most 

significant factor in ABC’s super_prove [14][8] winning 

the latest hardware model checking competition [10].  

Sequential simulation begins in the initial state and 

proceeds computing states reachable from the initial one, 

by applying sequences of primary input values in the 

subsequent time steps. Random simulation generates 

random values at the primary inputs and applies them for 

a varying number of cycles. It is repeated for a fixed 

number of rounds, or until some other criterion is reached 

(e.g., there is no more refinement of equivalence classes).  

Random simulation is simple and easy to implement, but 

saturates quickly because the random stimulus does not 

take into account properties of the sequential circuit. 

Constrained random simulation is used to augment 

random simulation when it saturates too quickly or when 

simulation under user-specified constraints is required.  

Constrained random simulation can find input sequences 

that visit some special states (states where constraints hold 

or states where interesting events happen, for example, 

states where hard-to-refine equivalence classes are 

refined), but it mandates the use of a SAT solver or an 

ATPG engine, and therefore is more elaborate to 

implement and slower than random simulation. 

We propose a variation of guided random simulation, 

which uses heuristics to guide selection of states, from 

which simulation is allowed to continue. The primary 

input values are still selected randomly, as in the case of 

regular random simulation, but the new current states are 

selected among the next states using a criterion called 

rarity.  Rarity of a state is a measure showing how often 

this state, or flop values appearing in this state, appears 

during random simulation.  To facilitate collecting the 

required rarity information, we split the state vector into 

groups of flops of a fixed length, in the natural order of 

the flops' appearance in the design.  The default parameter 

used in our implementation is 8 flops per group, beginning 

from the first flop till the last. If there are any left-over 

flops not included in the last group, they are ignored. 

For each group of flops, the rarity-based simulator 

collects statistics showing how many times a specific 

value of these flops has appeared in the next states 

reached by simulation so far.  The statistics are 

represented as integer counters, one per each value of 

each group. For example, if we have N flops and use K-

flop groups, we need 2 /
K
N K  counters. Now each next 

state reached can be characterized by a weight equal to the 

sum of inverse values of the counters corresponding to 

specific flop group values appearing in this state. The 

weight is greater for those reached states whose flop 

group values appear less frequently. 

Now the reached states are sorted by their weight, and 

only a fixed number of states with the highest weight 

values are used for simulation in the next iteration. The 

default parameters used in our implementation are: the 

simulation begins from the initial state and proceeds with 

50 64-bit machine words of random primary input data 

(3200 patterns are simulated in bit-parallel fashion); the 

weights are recomputed after 20 timeframes. Then 50 

states with the highest weight are selected among 3200 

resulting patterns, and simulation is repeated from these 

states for another 20 timeframes. 

Experimental results have shown that this works well for 

refining candidate equivalence classes of sequentially 

equivalent nodes. We speculate that this is because the 

rarity-based simulation navigates nicely through the 

complex state spaces and selects rare states to be used as 

simulation seeds. This allows for interesting sequential 

behavior to manifest. Moreover, this rarity-based 

simulation may natively handle the reset phenomenon 

which plagues regular random simulation. Indeed, if a 

reset  signal is part of the design, random simulation will 

force half of the states seen in the next cycle to differ from 

the initial state, so that after 50 cycles we will have only 

seen 25 non-initial states, and among those most will be 

states that can be reached in depth 1 from the initial state. 

The rarity-directed heuristic will pick deeper states, as the 

new initial states for future simulation rounds. 

4 Overview of super_prove 
The name super_prove is given to our model checker, 

which entered HWMCC’11 and won the first place in the 

combined and UNSAT categories. 

The algorithm implemented in super_prove uses a 

hybrid concurrent approach where several model checking 

(MC) engines are run concurrently. 

In ABC, the following MC engines are available: 

1. Random or rarity simulation 

2. Semi-formal simulation 

3. Bounded model checking (BMC) [13]  

4. BDD-based reachability [6][19]  

5. Property directed reachability (PDR) [4]  

6. Interpolation [12][9]  

7. Synthesis: 

a. rewriting [9]  

b. retiming [11]  

c. sequential signal correspondence [20]  

d. phase abstraction [21]  

e. temporal decomposition [18]  



8. Abstraction: [7]  

a. counterexample-based (CB) [15]  

b. proof-based (PB) [16] [17]  

9. Speculation [2][3]  

An engine can be classified as a (i) verification engine, 

that either finds a bug-trace or proves the property 

(engines 1-6), or a (ii) transformation engine, which 

attempts to reshape or decompose the problem into one or 

more simpler problems (engines 7-9). 

Verification engines can be classified further into 

complete (“proof-producing/bug-finding”, Engines 4-6) 

and incomplete (“bug-hunting only”, Engines 1-3). 

Transformation engines can be either equivalence 

preserving (engine 7) or abstracting (8 and 9). 

Once abstraction has been applied, bug-traces may be 

spurious and only proofs of unsatisfiability are conclusive. 

However, spurious traces can be used to refine the current 

abstraction until the property, if true, can be proved. 

In super_prove, shown in Figure 1, a number of MC 

engines are used concurrently to prove of disprove a 

miter, which is denoted by the term c-verify. Methods 

separated by || in boxes are run concurrently; a solid arrow 

means the result is passed on from a terminating engine; 

a dotted arrow means that c_verify from the upper level 

continues in parallel with other engines that are started 

later. Terms c_abstract, and c_speculate are labeled with 

‘c’ because the refinements in them are done concurrently. 

In practice, the number of cores is limited, so as soon as a 

new box starts, the previous computation is terminated. 

 

 
 

Figure 1. An outline of the hybrid concurrent MC 

algorithm, super_prove. 

If at any time an engine produces a definitive result, all 

processes are terminated and the proof is complete. 

The idea of doing speculation first on the original 

problem is motivated by wanting to find as many useful 

equivalences as possible, because any synthesis destroys 

equivalences that may be useful.  

5 Other Methods 
The method ss differs from super_prove only in that 

speculation is applied initially to the original AIG 

followed by super_prove. Method ssm differs from ss in 

that simplification is done first on the file followed by 

speculation and then super_prove. Variations using 

filtering on ss and ssm allow filtering using the ‘’, ‘g’ or 

‘f’ options. These are referred to in Section 5 as ss(‘’), 

ss(‘g’) ss(‘f’), ssm(‘’), ssm(‘g’),  and ssm(‘f’) 

6 Experimental Results 
We compared the new verification flow ss described 

above with super_prove on hard MC benchmarks. 

The first part of the table contains selected IBM 

benchmarks. The last part contains benchmarks from the 

model checking competition HWMCC’11 [10], which 

were either not solved or uniquely solved by super_prove 

in the 900 seconds allocated for each problem (i.e. no 

other entrant solved the problem).  

The results are shown in Table 1. In this experiment, we 

are only run examples where we suspect that the problem 

is a SEC problem, since otherwise we do not expect that 

trying speculation first to be superior to super_prove, 

which tries abstraction first after simplification. The idea 

is that for a user, who might know what kind of problem is 

being solved, the speculation-first methods can be chosen 

for SEC problems and the super_prove method can be 

chosen otherwise. The following speculation-first methods 

were tried, ss, ssm(‘’), ssm(‘g’) and ssm(‘f’) 

The ss method was run mainly with the null filter option 

(‘’) being given, but the ‘g’ option ss(‘g’) was compared 

with this on 4 examples. Since the ‘g’ option proved to be 

marginal at best, we did not experiment further with 

ss(‘g’) as well as ss(‘f’). Also, since we did not have 

access to reasonably hard SEC problems where the two 

circuits are given separately, the ‘ab’ option has not been 

tested yet. 

Other methods were based on ss(‘’), where 

simplification was done first before ss was called. These 

were ssm(‘’), ssm(‘g’) and ssm(‘f’). where various filter 

options were given.  

Table 1 shows the results on 23 benchmarks selected 

from the HWMCC11 benchmark set. These were chosen 

to be reasonably hard where there was a possibility that 

they might be SEC problems. We know that the problems 

beginning with ‘bob’ are indeed SEC problems. On those 

we expected the SEC oriented approach would bear fruit. 

The first 3 of these were solved already by simplify, so 

only ss(‘’) suffered and the others got the same run-times. 

On the remaining ‘bob’ examples, the method ssm(‘g’) 

seems to be a good option and demonstrated that doing 

c_verify || simplify 

c_verify || c_abstract 

c_verify || c_speculate 

super_prove  
all outputs 

super_prove 



speculation before abstraction was a good strategy. That 

‘g’ seemed better that ‘’ might be explained by the fact 

that there were many speculated equivalences and filtering 

out some was effective. However, filtering out too many 

like ‘f’ does can be detrimental.  

On the next 3 examples only ss(‘’) and sp were 

compared. Since ss(‘’) did not provide any advantage, it 

was not run on the remaining examples, because we 

concluded that initial simplification was the method of 

choice. On the remaining 11 examples, it might be that 

none of them were SEC problems, and this might be 

showing up in the fact that sp was basically the better 

method although on a few examples, doing speculation 

first reduced the runtime. 

7 Conclusions and Future Research 
A key ingredient of model checking is the use of 

speculation. All the methods tried in this paper used the 

same implementation of speculation based on the 

advanced features such as rarity simulation and improved 

in other ways as described in Section 2. 

We postulated that doing speculation first on SEC 

problems might be a good strategy. We have described a 

limited set of experiments comparing variations of this 

idea against super_prove which uses the strategy of first 

simplifying and then doing abstraction followed by 

speculation. Various filters were tried to trim down the 

redundant speculated equivalences and working only on 

the “relevant” ones .  

We described an improved version of speculation which 

was used in the model checker super_prove.   

The experimental results indicate the following: 

1. Even if a problem is known to be SEC problem, it is 

still a good idea to simplify the problem first before 

trying either abstraction or speculation. 

2. The filter option, ‘g’, is indicated to be a good 

strategy on SEC problems while ‘f’ seems to filter 

out too many useful equivalences.  

These are only impressions after a limited number of 

experiments, and a more definitive set of experiments 

should be done when we assemble a larger suite of hard 

SEC problems. Also the ‘ab’ strategy described in this 

paper remains to be experimented with. 

An interesting strategy for the future might be to initially 

estimate or even compute how many initial equivalence 

classes are found by rarity simulation. This can be 

reasonably fast because rarity simulation converges 

quickly. For examples with many classes, one could try a 

speculation-first strategy, like ssm(‘g’). On the other hand, 

we could just try sp and ssm in parallel if there are many 

processors available. 
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Table 1. Comparing solve times for methods with different options. 

 

NAME ss(‘’) sp ssm(‘’) ssm(‘g’) ssm(‘f’) 

*bobsm38584 timeout 10.04 9.92 - - 

*bobsmfpu 1225.14 27.37 27.59 - - 

*bobsmmips timeout 168.82 169.35 172.78 172.03 

bobsmhdlc 336.26 ** 227.41 46.63 117.77 

bobsmhdlc1 35.40 362.77 30.35 39.70 56.38 

bobsmhdlc2 117.23 248.92 93.74 35.13 71.65 

bobsmhdlc3 45.45 * 97.44 63.96 1103.94 

bobsmminiuart timeout timeout timeout - - 

bobsmoci 36.12 60.68 13.36 25.22 52.00 

pdt_qis10x6p1 151.00 28.00 - - - 

pdt_qis8x8p1 66.00 12.00 - - - 

pdt_qis8x8p1 582.00 568.00 - - - 

6s0 - timeout 895.98 timeout timeout 

6s21 - 405.66 timeout timeout timeout 

6s51 - 135.07 138.80 166.81 137.99 

6s9 - 143.78 timeout timeout 264.24 

*bjrb07amba9andenv - 72.19 67.51 71.84 70.36 

pdtfifo1to0 - 917.85 881.22 429.29 timeout 

pdtswvsam4x8p4 - 41.20 29.89 209.37 93.72 

pdtswvsam6x8p4 - timeout timeout timeout timeout 

pdtswvtma6x6p2 - 172.39 244.46 267.90 268.94 

pj2017 - 116.98 318.81 229.91 234.46 

tp_pib_w_0 timeout 39.79 99.55 56.00 312.17 

 

All times are reported in seconds. Bold shows the method with the least time among those tried. 

Dash (-) means that it was not tried. 

*   sm38584, smfpu, and smmips  all  solved by initial simplify. 

** smhdlc2 while executing ‘sp’, an error occurred. It is being investigated. 

timeout indicates that a time-out of 1000 sec occurred. 

 

 


