
Using Speculation for Sequential Equivalence Checking

Robert Brayton Niklas Een Alan Mishchenko

Department of EECS, University of California, Berkeley

brayton@eecs.berkeley.edu niklas@een.se alanmi@eecs.berkeley.edu

Abstract
An improved method for speculative reduction is

proposed and applied to (suspected) hard verification

problems. Several variations of the algorithm were tested:

(a) applying speculation initially to the original problem;

(b) applying speculation after simplification, before our

regular model checker, super_prove is applied, as well as

(c) using different filters to reduce the number of

speculated equivalences tried. On the benchmarks coming

from sequential equivalence checking, the speculation-

first strategy with filtering proved to be faster than

super_prove. On other benchmarks that may have come

from property checking, super_prove is found superior.

1 Introduction

The application of formal verification in industry has

increased substantially in the last decade. Formal

verification can be classified as a) property checking or

b) sequential equivalence checking (SEC).

Property checking has been more of a research focus

and its use has increased significantly. However, SEC is

probably still the main challenge for applying formal

verification to sequential circuits.

In the last decade, state-of-the-art property and

equivalence checking methods have become increasingly

similar, with verification engines such as synthesis,

induction, interpolation, BDD and property-directed

reachability applied to both classes of problems. In most

of the publicly available verification benchmarks, it is

usually not known whether the source is property

checking or SEC. Thus the advanced present-day software

uses a common approach for both types of problem.

This paper focuses on SEC to try to take advantage of

the special characteristics of such problems.

In sequential equivalence checking (SEC), two

sequential circuits are compared. Typically, one is derived

from the other by logic synthesis or manual intervention.

SEC problems can be specified in two ways:

• A single circuit is given wherein the two original

circuits have been mitered together by forming XORs

of pairs of related POs.

• Two circuits are given separately, or in the form of a

dual-output miter, which lists pairs of related outputs

in the same file.

In general, the second representation is preferred

because the clean separation between the two circuits that

are being checked for equivalence can be exploited by a

SEC engine. Moreover, given the second representation, it

is trivial to derive the first, but not vice versa.

In this paper, however, we focus on the first

representation since most of the available benchmarks

have already been mitered.

The SEC problem has an advantage over property

checking because it is expected that there are many pairs

of equivalent signals, where one signal of the pair is in the

first copy and another is in the second copy. Although,

there may be equivalent pairs where both signals are in the

same copy, these are typically not useful in proving SEC.

Our main approach to SEC is through the use of

speculative reduction [2][3]. In this, the circuit is

simulated on the reachable state set until the equivalence

classes of signals generated are no longer being refined.

For this simulation, the notion of rarity simulation is used,

which is explained in Section 3.

After simulation, the remaining equivalence classes are

used to form a speculatively reduced model (SRM), in

which all fanouts of signals in an equivalence class are

transferred to a representative signal of that class. Then

XORed pairs of signals in the class are formed in a round-

robin fashion. These are made (pseudo) POs of the SRM,

and serve as additional proof obligations.

If, in subsequent solving of the SRM, any the pseudo-

POs is disproved, the SRM is invalid, and the cex found is

used to further refine the equivalence classes, leading to a

new SRM. If a counterexample (cex) has been found to an

original PO, the equivalence is disproved and SEC

terminates. However, if all POs are proved, then the

original SEC problem is proved UNSAT, because the

original POs are proved to be part of the class of signals

equivalent to the constant 0.

The SRM circuit produced as shown above has several

characteristics. Typically, it has many outputs, and it is

expected that all are UNSAT, so finding a cex is given

higher priority in the ensuing algorithms. Second, the SEC

problem is not proved UNSAT unless all speculated

equivalences are valid. This means that even if there exist

only one invalid equivalence, the SEC problem is not

solved. Therefore, we should try to speculate only on

those equivalences which are ‘relevant’ to proving SEC.

These characteristics dictate a different orchestration

that can be done to speed up solving SEC.

The contributions of this paper are as follows.

1. Our implementation of speculative refinement is

described.

2. Rarity simulation used to quickly refine equivalence

classes is presented.

3. Methods to reduce the number of proof obligations

are discussed:

- isomorphic ones are detected and removed;

- sequentially constrained limited resource

induction is used to remove others;

- an optional filter is used to limit equivalences to

those containing a FF.

4. A two-phase method is used to prove or disprove the

remaining equivalence classes.

This paper is organized as follows. Section 2 reviews

speculative reduction. Section 3 describes rarity

simulation. Section 4 gives an overview of a general proof

engine, super_prove. Section 5 outlines our verification

flow for SEC, and Section 6 provides some experimental

results. Section 7 concludes with future work that may

help further improve the SEC engine.

2 Improved Speculative Reduction
Our method of speculative reduction proceeds in the

following sequence. It has several enhancements, which

we comment on later.

1. Rarity simulation (discussed in Section 3) is done

until satuation, to create a set of candidate

equivalence classes, i.e classes of signals speculated

to be equivalent on the set of reachable states.

2. These are filtered optionally according to several

criteria, none, f, g, and ab.

3. The speculated miter (SRM) AIG is created. This

has multiple POs which are proof obligations

stating that the speculated equivalences are valid.

The main body of the sequential AIG is reduced by

assuming that the equivalences are valid.

4. Proof obligations are reduced by fast induction and

isomorpism detection.

5. Proof of the resulting multi-output SRM is

attempted.

- If a counter-example (cex) is found to any of the

speculated outputs, it is used to refine the

equivalence classes and a new SRM is created.

- If a cex is found to an original output, the SEC

problem is declared SAT.

6. The remaining outputs are lumped together and

attempted all at once using super-prove.

7. If this times out, then the outputs are attempted

individually in two stages using super_prove.

Below we comment on the steps that differ from the

standard implementation of speculation.

Filters. There are three types of filters defined and used

optionally to reduce the number of equivalence classes:

none, g, f, ab. Filter none refers to not eliminating any

classes. Filter g refers to eliminating any class that does

not have at least one FF. Filter f refers to eliminating any

class that does not have at least two FFs, and filter ab is

used when the ‘A’ side and the ‘B’ side of the SEC

problem are known. Then any class is eliminated which

has signals in one side only. The idea of using filters on

the equivalence classes generated is to cut on the number

of proof obligations because the SRM cannot be proved

valid until all speculated equivalences are proved. The

filters are used to focus on ‘relevant’ equivalences.

Fast induction. This is motivated by the characteristic

of a SEC problem: it is expected that each PO is UNSAT.

Thus it is reasonable to try to prove one PO, assuming that

all the rest are UNSAT. This sets up a constrained

verification problem, where we try to prove the designated

PO using induction while using the other POs as

constraints. If the induction proof succeeds in proving the

PO UNSAT, then we eliminate the designated PO and

proceed to the next PO. If the proof leads to SAT (which

is very rare), then we use the generated cex to refine the

equivalences and derive a new SRM. If the proof times

out, then the designated PO is marked, but left on the list,

and the next PO is attempted. By eliminating proved POs,

we do not get into a cyclical argument where we assume

one thing to prove another and then assume the other to

prove the first. Experiments show that this fast induction

can quickly eliminate a substantial percentage of Pos

created during speculation.

Using isomorphism. If a group of outputs are detected

to be structurally isomorphic, then it is enough to prove

one of them [23].

Proving all outputs at once versus attempting each

output separately. Several problems can be proved quite

easily once the speculated outputs are valid. In trying to

prove all outputs at once, we may be able to eliminate bad

outputs, by looking for a cex on any of the outputs. On the

other hand, having to deal with all outputs at once may

obscure a cex for a particular output, which can be

disproved easily if the logic for just that output is kept and

the other logic is eliminated. For example, if one output

has a hard cex at cycle 50 and another one has an easy cex

at cycle 75, then BMC would timeout at 50 and it would

not be known that the SRM is invalid. On the other hand,

dealing with all outputs at once allows us to find an easy

cex more quickly.

Two-stage proof step. The idea of proving the set of

remaining outputs individually in two stages is to look for

a cex first. If one is found, then time is not wasted in

proving other outputs. We tried using different time-outs

for this but eventually settled on a 10-second and 100-

second two-phase approach as the most practical. One

strategy that works well is, if a cex is found when trying to

prove Output k, then after a new SRM is produced, the

next proof attempt starts at Output k (even though the

number of outputs might have changed).

3 Rarity Simulation
It has been found to be extremely important to have a

simulation method that is fast but capable of creating a set

of equivalences that is closer to a valid set. Experience

with random simulation and constrained simulation was

that the first saturated too fast leaving many invalid

speculations, and the second was too slow. This led us to

believe that speculative reduction was not applicable to

large industrial problems.

However, it was suggested by the SixthSense team at

IBM that we should do something like the rarity

simulation, which we describe below. This made

speculative reduction a significant contributor to our

formal verification approach and probably was the most

significant factor in ABC’s super_prove [14][8] winning

the latest hardware model checking competition [10].

Sequential simulation begins in the initial state and

proceeds computing states reachable from the initial one,

by applying sequences of primary input values in the

subsequent time steps. Random simulation generates

random values at the primary inputs and applies them for

a varying number of cycles. It is repeated for a fixed

number of rounds, or until some other criterion is reached

(e.g., there is no more refinement of equivalence classes).

Random simulation is simple and easy to implement, but

saturates quickly because the random stimulus does not

take into account properties of the sequential circuit.

Constrained random simulation is used to augment

random simulation when it saturates too quickly or when

simulation under user-specified constraints is required.

Constrained random simulation can find input sequences

that visit some special states (states where constraints hold

or states where interesting events happen, for example,

states where hard-to-refine equivalence classes are

refined), but it mandates the use of a SAT solver or an

ATPG engine, and therefore is more elaborate to

implement and slower than random simulation.

We propose a variation of guided random simulation,

which uses heuristics to guide selection of states, from

which simulation is allowed to continue. The primary

input values are still selected randomly, as in the case of

regular random simulation, but the new current states are

selected among the next states using a criterion called

rarity. Rarity of a state is a measure showing how often

this state, or flop values appearing in this state, appears

during random simulation. To facilitate collecting the

required rarity information, we split the state vector into

groups of flops of a fixed length, in the natural order of

the flops' appearance in the design. The default parameter

used in our implementation is 8 flops per group, beginning

from the first flop till the last. If there are any left-over

flops not included in the last group, they are ignored.

For each group of flops, the rarity-based simulator

collects statistics showing how many times a specific

value of these flops has appeared in the next states

reached by simulation so far. The statistics are

represented as integer counters, one per each value of

each group. For example, if we have N flops and use K-

flop groups, we need 2 /
K
N K counters. Now each next

state reached can be characterized by a weight equal to the

sum of inverse values of the counters corresponding to

specific flop group values appearing in this state. The

weight is greater for those reached states whose flop

group values appear less frequently.

Now the reached states are sorted by their weight, and

only a fixed number of states with the highest weight

values are used for simulation in the next iteration. The

default parameters used in our implementation are: the

simulation begins from the initial state and proceeds with

50 64-bit machine words of random primary input data

(3200 patterns are simulated in bit-parallel fashion); the

weights are recomputed after 20 timeframes. Then 50

states with the highest weight are selected among 3200

resulting patterns, and simulation is repeated from these

states for another 20 timeframes.

Experimental results have shown that this works well for

refining candidate equivalence classes of sequentially

equivalent nodes. We speculate that this is because the

rarity-based simulation navigates nicely through the

complex state spaces and selects rare states to be used as

simulation seeds. This allows for interesting sequential

behavior to manifest. Moreover, this rarity-based

simulation may natively handle the reset phenomenon

which plagues regular random simulation. Indeed, if a

reset signal is part of the design, random simulation will

force half of the states seen in the next cycle to differ from

the initial state, so that after 50 cycles we will have only

seen 25 non-initial states, and among those most will be

states that can be reached in depth 1 from the initial state.

The rarity-directed heuristic will pick deeper states, as the

new initial states for future simulation rounds.

4 Overview of super_prove
The name super_prove is given to our model checker,

which entered HWMCC’11 and won the first place in the

combined and UNSAT categories.

The algorithm implemented in super_prove uses a

hybrid concurrent approach where several model checking

(MC) engines are run concurrently.

In ABC, the following MC engines are available:

1. Random or rarity simulation

2. Semi-formal simulation

3. Bounded model checking (BMC) [13]

4. BDD-based reachability [6][19]

5. Property directed reachability (PDR) [4]

6. Interpolation [12][9]

7. Synthesis:

a. rewriting [9]

b. retiming [11]

c. sequential signal correspondence [20]

d. phase abstraction [21]

e. temporal decomposition [18]

8. Abstraction: [7]

a. counterexample-based (CB) [15]

b. proof-based (PB) [16] [17]

9. Speculation [2][3]

An engine can be classified as a (i) verification engine,

that either finds a bug-trace or proves the property

(engines 1-6), or a (ii) transformation engine, which

attempts to reshape or decompose the problem into one or

more simpler problems (engines 7-9).

Verification engines can be classified further into

complete (“proof-producing/bug-finding”, Engines 4-6)

and incomplete (“bug-hunting only”, Engines 1-3).

Transformation engines can be either equivalence

preserving (engine 7) or abstracting (8 and 9).

Once abstraction has been applied, bug-traces may be

spurious and only proofs of unsatisfiability are conclusive.

However, spurious traces can be used to refine the current

abstraction until the property, if true, can be proved.

In super_prove, shown in Figure 1, a number of MC

engines are used concurrently to prove of disprove a

miter, which is denoted by the term c-verify. Methods

separated by || in boxes are run concurrently; a solid arrow

means the result is passed on from a terminating engine;

a dotted arrow means that c_verify from the upper level

continues in parallel with other engines that are started

later. Terms c_abstract, and c_speculate are labeled with

‘c’ because the refinements in them are done concurrently.

In practice, the number of cores is limited, so as soon as a

new box starts, the previous computation is terminated.

Figure 1. An outline of the hybrid concurrent MC

algorithm, super_prove.

If at any time an engine produces a definitive result, all

processes are terminated and the proof is complete.

The idea of doing speculation first on the original

problem is motivated by wanting to find as many useful

equivalences as possible, because any synthesis destroys

equivalences that may be useful.

5 Other Methods
The method ss differs from super_prove only in that

speculation is applied initially to the original AIG

followed by super_prove. Method ssm differs from ss in

that simplification is done first on the file followed by

speculation and then super_prove. Variations using

filtering on ss and ssm allow filtering using the ‘’, ‘g’ or

‘f’ options. These are referred to in Section 5 as ss(‘’),

ss(‘g’) ss(‘f’), ssm(‘’), ssm(‘g’), and ssm(‘f’)

6 Experimental Results
We compared the new verification flow ss described

above with super_prove on hard MC benchmarks.

The first part of the table contains selected IBM

benchmarks. The last part contains benchmarks from the

model checking competition HWMCC’11 [10], which

were either not solved or uniquely solved by super_prove

in the 900 seconds allocated for each problem (i.e. no

other entrant solved the problem).

The results are shown in Table 1. In this experiment, we

are only run examples where we suspect that the problem

is a SEC problem, since otherwise we do not expect that

trying speculation first to be superior to super_prove,

which tries abstraction first after simplification. The idea

is that for a user, who might know what kind of problem is

being solved, the speculation-first methods can be chosen

for SEC problems and the super_prove method can be

chosen otherwise. The following speculation-first methods

were tried, ss, ssm(‘’), ssm(‘g’) and ssm(‘f’)

The ss method was run mainly with the null filter option

(‘’) being given, but the ‘g’ option ss(‘g’) was compared

with this on 4 examples. Since the ‘g’ option proved to be

marginal at best, we did not experiment further with

ss(‘g’) as well as ss(‘f’). Also, since we did not have

access to reasonably hard SEC problems where the two

circuits are given separately, the ‘ab’ option has not been

tested yet.

Other methods were based on ss(‘’), where

simplification was done first before ss was called. These

were ssm(‘’), ssm(‘g’) and ssm(‘f’). where various filter

options were given.

Table 1 shows the results on 23 benchmarks selected

from the HWMCC11 benchmark set. These were chosen

to be reasonably hard where there was a possibility that

they might be SEC problems. We know that the problems

beginning with ‘bob’ are indeed SEC problems. On those

we expected the SEC oriented approach would bear fruit.

The first 3 of these were solved already by simplify, so

only ss(‘’) suffered and the others got the same run-times.

On the remaining ‘bob’ examples, the method ssm(‘g’)

seems to be a good option and demonstrated that doing

c_verify || simplify

c_verify || c_abstract

c_verify || c_speculate

super_prove
all outputs

super_prove

speculation before abstraction was a good strategy. That

‘g’ seemed better that ‘’ might be explained by the fact

that there were many speculated equivalences and filtering

out some was effective. However, filtering out too many

like ‘f’ does can be detrimental.

On the next 3 examples only ss(‘’) and sp were

compared. Since ss(‘’) did not provide any advantage, it

was not run on the remaining examples, because we

concluded that initial simplification was the method of

choice. On the remaining 11 examples, it might be that

none of them were SEC problems, and this might be

showing up in the fact that sp was basically the better

method although on a few examples, doing speculation

first reduced the runtime.

7 Conclusions and Future Research
A key ingredient of model checking is the use of

speculation. All the methods tried in this paper used the

same implementation of speculation based on the

advanced features such as rarity simulation and improved

in other ways as described in Section 2.

We postulated that doing speculation first on SEC

problems might be a good strategy. We have described a

limited set of experiments comparing variations of this

idea against super_prove which uses the strategy of first

simplifying and then doing abstraction followed by

speculation. Various filters were tried to trim down the

redundant speculated equivalences and working only on

the “relevant” ones .

We described an improved version of speculation which

was used in the model checker super_prove.

The experimental results indicate the following:

1. Even if a problem is known to be SEC problem, it is

still a good idea to simplify the problem first before

trying either abstraction or speculation.

2. The filter option, ‘g’, is indicated to be a good

strategy on SEC problems while ‘f’ seems to filter

out too many useful equivalences.

These are only impressions after a limited number of

experiments, and a more definitive set of experiments

should be done when we assemble a larger suite of hard

SEC problems. Also the ‘ab’ strategy described in this

paper remains to be experimented with.

An interesting strategy for the future might be to initially

estimate or even compute how many initial equivalence

classes are found by rarity simulation. This can be

reasonably fast because rarity simulation converges

quickly. For examples with many classes, one could try a

speculation-first strategy, like ssm(‘g’). On the other hand,

we could just try sp and ssm in parallel if there are many

processors available.

Acknowledgements
This work was partly supported initially by SRC

contract 1875.001, NSA grant ”Enhanced equivalence

checking in crypto-analytic applications”. We thank

industrial sponsors of BVSRC: Altera, Atrenta, Cadence,

Calypto, IBM, Intel, Jasper, Microsemi, Real Intent,

Synopsys, Tabula, and Verific, for their support. The

authors acknowledge stimulating discussions with IBM’s

SixthSense team, which led to developing rarity

simulation and other methods presented in this paper.

References
[1] J. Baumgartner, H. Mony, V. Paruthi, R. Kanzelman, and

G. Janssen, “Scalable sequential equivalence checking

across arbitrary design transformations”, Proc. ICCD’07,

pp. 259-266.

[2] H. Mony, J. Baumgartner, V. Paruthi, and R. Kanzelman.

”Exploiting suspected redundancy without proving it”.

Proc. DAC’05, pp. 463-466.

[3] H. Mony, J. Baumgartner, A. Mishchenko, and R. Brayton,

"Speculative reduction-based scalable redundancy

identification", Proc. DATE'09, pp. 1674-1679.

[4] A. R. Bradley, “k-step relative inductive generalization”,

http://arxiv.org/abs/1003.3649

[5] A. R. Bradley and Z. Manna, “Checking safety by inductive

generalization of counterexamples to induction”, Proc.

FMCAD’07.

[6] F. Somenzi, BDD package CUDD. http://vlsi.colorado.edu/

~fabio/CUDD/cuddIntro.html

[7] N. Een, A. Mishchenko, and N. Amla, "A single-instance

incremental SAT formulation of proof- and

counterexample-based abstraction". Proc. FMCAD’10.

[8] R. Brayton and A. Mishchenko, "ABC: An academic

industrial-strength verification tool", Proc. CAV'10,

Springer, LNCS 6174, pp. 24-40.

[9] A. Mishchenko, S. Chatterjee, and R. Brayton, "DAG-

aware AIG rewriting: A fresh look at combinational logic

synthesis", Proc. DAC '06, pp. 532-536.

[10] http://fmv.jku.at/hwmcc11/

[11] A. P. Hurst, A. Mishchenko, and R. K. Brayton, "Fast

minimum-register retiming via binary maximum-flow",

Proc. FMCAD '07.

[12] K. L. McMillan, “Interpolation and SAT-based model

checking”. Proc. CAV’03, pp. 1-13.

[13] E. Clarke, A. Biere, R. Raimi, and Y. Zhu. “Bounded

model checking using satisfiability solving”, Proc. Formal

Methods in System Design (FMSD), vol. 19(1), Kluwer

2001

[14] Berkeley Verification and Synthesis Research Center.

ABC: A System for Sequential Synthesis and Verification.

http://www.eecs.berkeley.edu/˜alanmi/abc/

[15] R. P. Kurshan, Computer-Aided-Verification of

Coordinating Processes. Princeton Univ. Press, 1994.

[16] K. McMillan and N. Amla, “Automatic abstraction without

counterexamples”. Proc. TACAS’03.

[17] A. Gupta, M. Ganai, Z. Yang, and P. Ashar. “Iterative

abstraction using SAT-based BMC with proof analysis”.

Proc. ICCAD’03.

[18] M. L. Case, H. Mony, J. Baumgartner, R. Kanzelman.

“Enhanced verification by temporal decomposition”. Proc.

FMCAD'09, pp.17~24

[19] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan and

D. L. Dill, “Symbolic model checking for sequential circuit

verification”, IEEE TCAD, vol. 13(4), 1994, pp. 401-424.

[20] A. Mishchenko, M. L. Case, R. K. Brayton, and S. Jang,

"Scalable and scalably-verifiable sequential synthesis",

Proc. ICCAD'08, pp. 234-241.

[21] P. Bjesse and J. Kukula, “Automatic generalized phase

abstraction for formal verification”, Proc. ICCAD '05.

[22] P.-H. Ho, T. Shiple, K. Harer, J. Kukula, R. Damiano, V.

Bertacco, J. Taylor, J. Long, "Smart Simulation Using

Collaborative Formal and Simulation Engines," Proc.

ICCAD’00.

[23] A. Mishchenko, N. Een, R. Brayton, M. Case, P. Chauhan,

and N. Sharma, "A semi-canonical form for sequential

AIGs", Submitted to IWLS'12.

Table 1. Comparing solve times for methods with different options.

NAME ss(‘’) sp ssm(‘’) ssm(‘g’) ssm(‘f’)

*bobsm38584 timeout 10.04 9.92 - -

*bobsmfpu 1225.14 27.37 27.59 - -

*bobsmmips timeout 168.82 169.35 172.78 172.03

bobsmhdlc 336.26 ** 227.41 46.63 117.77

bobsmhdlc1 35.40 362.77 30.35 39.70 56.38

bobsmhdlc2 117.23 248.92 93.74 35.13 71.65

bobsmhdlc3 45.45 * 97.44 63.96 1103.94

bobsmminiuart timeout timeout timeout - -

bobsmoci 36.12 60.68 13.36 25.22 52.00

pdt_qis10x6p1 151.00 28.00 - - -

pdt_qis8x8p1 66.00 12.00 - - -

pdt_qis8x8p1 582.00 568.00 - - -

6s0 - timeout 895.98 timeout timeout

6s21 - 405.66 timeout timeout timeout

6s51 - 135.07 138.80 166.81 137.99

6s9 - 143.78 timeout timeout 264.24

*bjrb07amba9andenv - 72.19 67.51 71.84 70.36

pdtfifo1to0 - 917.85 881.22 429.29 timeout

pdtswvsam4x8p4 - 41.20 29.89 209.37 93.72

pdtswvsam6x8p4 - timeout timeout timeout timeout

pdtswvtma6x6p2 - 172.39 244.46 267.90 268.94

pj2017 - 116.98 318.81 229.91 234.46

tp_pib_w_0 timeout 39.79 99.55 56.00 312.17

All times are reported in seconds. Bold shows the method with the least time among those tried.

Dash (-) means that it was not tried.

* sm38584, smfpu, and smmips all solved by initial simplify.

** smhdlc2 while executing ‘sp’, an error occurred. It is being investigated.

timeout indicates that a time-out of 1000 sec occurred.

