
Quick Look under the Hood of ABC

A Programmer’s Manual

December 25, 2006

Network

ABC is similar to SIS/MVSIS in that it processes the design by applying a sequence of
transformations to the current network, which is stored in memory during the runtime.
Initially, the current network is created by reading the design specification from file. The
current network is modified step by step by applying individual synthesis commands and
can be written out in the end for future use. (There is an option of making ABC work
with several synthesis snapshots of the same design but we are not discussing it this short
tutorial.) (There is also an option of compiling ABC as a static library and directly calling
individual network transformation routines from the user’s software.)

This paper introduces the ABC internal data representation and clarifies its differences
compared to those of SIS/MVSIS. An ABC network can be characterized by specifying
its type and its functionality representation. The following types of the network are
supported: a netlist, a logic network, and an AIG. The functions of nodes in the network
can be represented using SOPs, BDDs, two-input AND-gates, and gates from a standard-
cell library.

Table 1 summarizes the currently supported combinations of types and functionality of
networks in ABC.

Type \ Functionality SOP BDD AND2 Gates
Netlist x x x
Logic network x x x x
AIG x

Table 1. Supported type/functionality combinations.

Netlist

The programmer who intends to use ABC for programming logic synthesis application
may skip the description of the netlist and concentrate on using logic networks and AIGs.
However, the programmer who intends to build a parser for a new type of input file may
need to learn about the netlist representation because the netlist has to be constructed
while parsing the input file. (There is an exception to this rule. If the goal is to integrate
ABC with another tool, such as SIS, which does not represent nets explicitly, the
programmer can bypass construction of the netlist and directly construct a logic network
in ABC.)

Netlist is the basic “raw” network representation, which is in one-to-one correspondence
with the design specification in the input file. Netlist is composed of nets, logic nodes,
latches, and PI/PO terminals. Each net (as well as PI/PO terminal) has a unique name.
The nodes and latches are identifiable by the names of the nets they are driving. Only
single-output nodes and latches are currently supported. Each PI terminal, node, and latch
drives a net. Each latch, PO terminal, and non-constant node (node with one fanin or
more) is driven by a net. A net can be simultaneously driving a latch, a node, and a PO
terminal but it cannot be driven by more one object. For example, a net cannot be driven
by a node and a latch. In a netlist, nets cannot be connected to other nets. Nets should
always be connected to other objects (nodes, latches, and PI/PO terminals). The non-net
objects cannot be connected to other non-net objects, but only to nets.

The local functions of the nodes is represented using SOPs or AIGs, in the case of a
technology independent netlist, or using gates from a standard cell library, in the case of
the mapped netlist. The netlist is currently used only for reading/writing designs from the
input file while the majority of logic optimizations is performed more efficiently using a
representation called a logic network. In the current release, the input file is always
parsed into a netlist, which is then automatically converted into a logic network.
Similarly, the output file is created from a netlist, which is derived on-the-fly from the
current network represented using a logic network or an AIG. The procedures applied to
the currently network on the command line assume a logic network or an AIG.

A netlist is constructed using APIs of src/base/abc package. A new netlist is started by
making a call to Abc_NtkAlloc. The PI/PO terminals are created by calling
Abc_NtkCreatePi and Abc_NtkCreatePo. Nets are created or retrieved using their name
by calling Abc_NtkFindOrCreateNet. The nodes and latches are created by
Abc_NtkCreateNode and Abc_NtkCreateLatch, respectively. All components of the
network (nodes/nets/latches/terminals) are called objects. The API used to interconnect
objects is Abc_ObjAddFanin, which takes two objects and establishes the fanin/fanout
relationship between them. The objects can be added to the network in any order. The
fanin/fanout relationship can be also established in any order. In the end, the procedure
Abc_NtkFinalizeRead should be called, which finalizes the netlist. The constructed netlist
should be checked using Abc_NtkCheck, which makes sure that a valid netlist is created
and reports the mismatches, if any.

Logic network

A logic network is essentially a netlist, from which the nets have been removed. This is
the way the current network is represented in SIS/MVSIS. In ABC, the default
representation is an AIG, but a logic network is one of the valid intermediate network
representations. Duplication of logic networks in ABC is similar to that in SIS. Objects
(nodes, latches, PI/PO terminals) can be added in any order. When duplicating a network
or creating a network similar to the already existent one, it is convenient to call procedure
Abc_NtkStartFrom.

It should be noted that only the PI/PO/latch/latch-input/latch-output names are saved in
the logic network data structure, while all the internal node names are discarded. The
reason for disposing of the internal node names is that ABC is meant for deep-synthesis
using AIGs, and it is hard to preserve AIG node names while they are transformed during
AIG manipulations, such as rewriting. Even though the internal names are currently not
stored, command dress can recover some of them after synthesis. This command is based
on equivalence checking of the final and the original network, and transferring the names
from the original network to the functionally identical nodes in the final network.

In a logic network, nodes can directly point to other nodes. Iterators over the
fanins/fanouts of a node are available: Abc_ObjForEachFanin and
Abc_ObjForEachFanout. The PI/PO terminals are connected directly to the nodes. A PO
terminal can connect directly to a PI terminal, if they have the same name and
functionality. The PI terminal may have many fanouts but cannot have fanins. A PO
terminal has only one fanin and cannot have fanouts. A terminal is not a logic node and it
does not have a logic function. The iterator through the nodes Abc_NtkForEachNode
does not iterate over the terminals. By default, the pointers to the terminals are not
collected along with the pointers to the internal nodes by DFS traversal procedures. In a
logic network, the pointers to the PI/PO terminals are stored in the corresponding arrays.
The iterators Abc_NtkForEachPi and Abc_NtkForEachPo iterate over these nodes. The
iterators Abc_NtkForEachCi and Abc_NtkForEachCo iterate over PIs and latch outputs,
and POs and latch inputs, respectively.

The functionality of nodes in the logic network can be represented using SOPs, BDDs, or
AIGs. Only one type of representation can be used for all nodes of the network.
Converting between the representation can be done simultaneously for all nodes of the
network by calling APIs, such as Abc_NtkLogicToSop. The manager used to represent the
functionality of the nodes are stored in the data member of the network pNtk->pManFunc.
Additionally, a logic network can be mapped. In this case, each node is annotated with a
matching gate from a standard cell library stored at pNtk->pManFunc. The LUTs after
FPGA mapping of the current network is represented using logic nodes whose functions
are BDDs. The procedure for making the nodes minimum base Abc_NtkMinimumBase,
which removes duplicated fanins if present, can be called after constructing a new
network. This procedure uses BDDs for minimizing the support set of the functions of the
nodes.

Adding, removing, and duplicating nodes in a logic network in ABC is similar to how
these operations work in SIS. Procedures Abc_ObjPatchFanin and
Abc_ObjTransferFanout are analogous to their counterparts in SIS. Procedures for
collapsing several nodes in the logic networks are currently not available. The reason
why logic network procedures are not fully developed in ABC is because the old-
fashioned SIS-like manipulation of logic networks in ABC has been to some extent
replaced by the manipulation of AIGs, which makes these operations unnecessary.

Visualization of small networks (up to 100 nodes) can be performed using command
show, or by calling the corresponding internal procedure.

AIG

And-Inverter Graph (AIG) is the primary internal representation of the current network in
ABC. It is the only network type that is accepted by the technology mappers and the
majority of other commands, such as balance, collapse, renode, rewrite, refactor, retime.

AIG is a specialized type of the ABC network, in which each node is a two-input AND
gate and each fanin/fanout edge has an optional complemented attribute indicating the
inverter on that edge. Because the local function is the same for all nodes, it is not
represented in the node data structure (pNode->pData is NULL for AIGs without choice
nodes). During construction AIG is compacted on-the-fly using one-level structural
hashing, which requires that, for each ordered pair of edges (possibly with complemented
attributes), there is at most one node having these edges as fanins. The structural hashing
ensures that
• for each AND node, there are no other ANDs with the same children
• the constants are propagated (and can appear as fanins of the COs only)
• there is no single-input nodes (inverters/buffers)

In addition to these requirements, several other properties are kept invariant during AIG
manipulation in order to speed up fast processing of AIGs:
• there are no dangling nodes (the nodes without fanout)
• the AND nodes are stored in the topological order in the array of objects
• the constant 1 node has always number 0 in the array of objects

(nodes/PIs/POs/latches)
• the level of each AND gate reflects the levels of its fanins
• the EXOR-status of all nodes is up-to-date (the status bit is set to 1, if the AND is the

root of an EXOR of two other nodes)

Because of the above restrictions on the AIGs, manipulating them directly is trickier than
manipulating logic networks. For example, it is not possible to duplicate the node
because two nodes with the same fanins are not allowed by structural hashing. It is not
possible to collapse the nodes because the only node type allows is a two-input AND. It
is not possible to add explicit buffers or inverters. The following operations, which can be
performed on an AIG, ensure that the AIGs remains structurally hashed with other
invariants preserved:
• building new nodes (Abc_AigAnd)
• performing elementary Boolean operations (Abc_AigOr, Abc_AigXor, etc)
• replacing one node by another (Abc_AigReplace)
• propagating constants (Abc_AigReplace called with one of the argument being the

constant)

AIGs used in the lossless synthesis procedures may contain choice nodes. This happens,
for example, during lossless logic synthesis when several network snapshots are
FRAIGed together. This is done to mitigate structural bias present in any particular logic

structure and thereby increase the quality of technology mapping. A choice node is an
equivalence class of AIG nodes belonging to the same network and having the same
Boolean function up to complementation. The choices are represented by linking together
the AIG nodes belonging to the same equivalence class using pNode->pData pointer of
the node data structure, and setting the phase bit in each node, which can be used to
check phase difference between the nodes in the equivalence class.

The transformation from an AIG into a logic network involves a non-trivial step
performed by Abc_NtkLogicMakeSimpleCos. This procedure ensures that each CO is
driven by a unique internal node and that the CO-to-driver edge does not have a
complemented attribute. Ensuring this property is important for efficient processing of
large designs.

Visualization of small AIGs (up to 100 nodes) can be performed using command show,
or by calling the corresponding internal procedure.

Nodes

Internal components of networks of all types are represented using one data structure,
called object. An object has a type field indicating whether it is a net, a logic node, a latch,
or a PI/PO terminal. All objects in a network have unique object IDs, 32-bit integer
identifiers assigned during construction of the network. The actual value of the ID
assigned to an object is not important as long as the ID is unique. The object ID can be
used to retrieve the pointer to the object.

Nodes can have zero or more fanouts, such as another node, a latch, or a PO terminal. A
node may have zero or more fanins. Constant nodes have zero fanins. Inverters and buffer
have one fanin. In general, there is no limit on the number of fanins and fanouts of a node.
The fanins can be duplicated. Duplicated fanins can be removed using procedure
Abc_NtkSweep, which can also be invoked on the command line as sweep. Programmably,
duplicated fanins can be removed by calling Abc_NtkMinimumBase.

In an AIG, there is exactly one constant node (this constant 1 object has ID = 0 and is not
considered a node) with no fanins and all other nodes have the functionality of two-input
AND gate and exactly two fanins. Inverters and buffers are not allowed as separate
single-input nodes in an AIG. These rules are enforced by structural hashing, which is
always performed when adding new nodes to an AIG, or replacing an existent node.

A node in a logic network always has a logic function assigned to pNode->pData field of
the node. The node function is a completely specified Boolean function. Incomplete
specification and non-determinism are not allowed in the current version of ABC. The
function of a node can be represented in a number of ways: as an SOP, as a BDD, and as
a gate from a library. The network has a functionality manager, whose type depends on
the functionality representation of the nodes.

In an AIG, the logic function of a node is not represented because, by default, any non-
constant node has a function of a two-input AND gate. Instead, when the network is an
AIG with choices, the data pointer used for storing the logic function of a node, pData, is
reused for representing choice nodes (it stores the pointer to the next entry in the linked
list of functionally equivalent nodes).

When the functionality of a logic network is represented using SOPs, the network
representation is similar to the one used in SIS. The difference is that SOP representation
in ABC is simpler: it is a zero-terminated C-string specifying the SOP as it would appear
in a BLIF file. For example, an SOP of a three-input AND is “111 1\n”, while an SOP of
a MUX is “11- 1\n0-1 1\n”, where ‘\n’ is single new line character with integer code 10,
as in the C programming language. This simple SOP representation is adopted because it
is works well in most cases and easy to follow when working with the code. For
operations, such as factoring, whose performance critically depends on the efficiency of
the SOP representation, the SOPs are converted into bit-strings, similar to the
ESPRESSO pset_family data structure.

When the functionality of a logic network is represented using BDDs, the network is
similar to that in BDS. In this case, each node has a pointer to its local BDD expressed
using the topmost k variables of the local BDD manager, where k is the number of fanins
of the node. The i-th variable of the BDD manager corresponds to the i-th fanin. If the
local function does not depend on the i-th fanin, the i-th variable is not used in the local
BDDs. The removal of duplicated fanins and inessential variables, which reduces the
fanin space and remaps the BDD variables to the top of the local BDD manager to form a
contiguous range, is performed by the procedure Abc_NtkMakeMinBase. The local BDD
manager is never reordered.

Similar rules hold for representing local functions using AIGs.

Some operations performed on the network require a particular functionality
representation of the nodes. For example, disjoint-support decomposition requires the
BDD representation of the node functions, while extracting common logic using
fast_extract requires that the nodes have SOPs. The transformation between the
functional representations is performed by a procedure applied to all nodes in the network.
(This procedure can be called on the command line using commands sop, bdd, or aig).
The functionality changing procedures do not modify the network structure. They replace
the functionality manager of the network and update the pointers to the functionality
representation of the nodes.

Latches

The latches currently supported are generic D-latches with one input, one output, and no
reset signal, which belong to the same clock domain. After power-up each latch is

assumed to be in its initial state, which is 0, 1, or unknown. Support of different
latch/flip-flop types and memory elements belonging to multiple clock domains may be
added in the future releases.

Each time a latch is created in ABC, two single-input single-output nodes are created.
They belong to the types “block input” and “block output”. These nodes are called a latch
input and a latch output. The latch input/output is added to the array of CIs/COs. The
iterators over CIs/COs iterate through these additional nodes but do not iterate through
the latches. This design allow for a clean separation of logic into combinational part
(contained between CIs and COs) and latches.

Edges

An edge in a logic network is a connection between two objects (for example, two nodes,
or a node and a latch). The nodes connected by an edge are in the fanin/fanout
relationship. In the case of a netlist or a logic network represented using SOPs, an edge
contains only the ID of a fanin object. In an AIG, the edge contains an optional
complemented attribute. In a sequential AIG, an edge contains additional information
about the number of latches and their initial values. In all cases, the ID of a node is a 32-
bit integer number.

Iterators

Iterators through different types of objects belonging to the same network are provided.
The iterator through nodes iterates through the logic nodes, and does not iterate through
latches and PI/PO terminals. Iterators through PIs/POs and CIs/COs are also available. A
CI/CO iterator goes first through the PIs/POs, then through the LOs/LIs.

Abbreviations and glossary

ABC – The name of a new logic synthesis system
AIG – And-Inverter Graph, a Boolean network composed of two-input ANDs and
inverters
BLIF – Berkeley Logic Interchange Format, a format traditionally used by SIS, VIS, and
MVSIS to represent logic networks
BDD – Binary Decision Diagram, a canonical graph-based representation of Boolean
functions
CI – Primary Input and Latch Outputs

CO – Primary Output and Latch Inputs
FPGA – Field Programmable Gate Array
FRAIG – (a) Functionally Reduced AIG and (b) AIG package with on-the-fly detection
of functionally equivalent AIG nodes
FRAIGing – Transforming an AIG into a Functionally Reduced AIG
LI – Latch Input
LO – Latch Output
LUT – Look-Up Table, a programmable logic component that can implement an
arbitrary Boolean function up to a fixed number of inputs
PI – Primary Input
PO – Primary Output
SAT – Boolean satisfiability
SOP – Sum-Of-Products, a non-canonical representation of Boolean functions
TFI – Transitive Fanin
TFO – Transitive Fanout

