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Abstract

Classifiers are often used to detect miscreant activities. We study how an adversary can
systematically query a classifier to elicit information that allows the adversary to evade
detection while incurring a near-minimal cost of modifying their intended malfeasance. We
generalize the theory of Lowd and Meek (2005) to the family of convex-inducing classifiers
that partition input space into two sets one of which is convex. We present query algorithms
for this family that construct undetected instances of approximately minimal cost using only
polynomially-many queries in the dimension of the space and in the level of approximation.
Our results demonstrate that near-optimal evasion can be accomplished without reverse-
engineering the classifier’s decision boundary. We also consider general ℓp costs and show
that near-optimal evasion on the family of convex-inducing classifiers is generally efficient
for both positive and negative convexity for all levels of approximation if p = 1.

Keywords: Query Algorithms, Evasion, Reverse Engineering, Adversarial Learning

1. Introduction

A number of systems and security engineers have proposed the use of machine learning
techniques to filter or detect miscreant activities in a variety of applications; e.g., spam,
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intrusion, virus, and fraud detection. All known detection techniques have blind spots:
classes of miscreant activity that fail to be detected. While learning algorithms allow the
detection algorithm to adapt over time, real-world constraints on the learner typically allow
an adversary to programmatically find vulnerabilities. We consider how an adversary can
systematically discover blind spots by querying a fixed or learning-based detector to find a
low cost (for some cost function) instance that the detector does not filter. As a motivating
example, consider a spammer who wishes to minimally modify a spam message so it is not
classified as a spam (here cost is a measure of how much the spam must be modified). There
are a variety of domain specific mechanisms an adversary can use to observe the classifier’s
response to a query; e.g., the spam filter of a public email system can be observed by creating
a dummy account on that system and sending the queries to that account. We assume the
attacker has access to a membership oracle for the filter. By observing the responses of
the spam detector, the spammer can search for a modification while using as few queries as
possible.

The problem of near-optimal evasion (i.e., finding a low cost negative instance with
few queries) was first posed by Lowd and Meek (2005). We continue their investigation
by generalizing their results to the family of convex-inducing classifiers—classifiers that
partition their instance space into two sets one of which is convex. The family of convex-
inducing classifiers is a particularly important and natural class to examine, as it includes
the family of linear classifiers studied by Lowd and Meek as well as anomaly detection
classifiers using bounded PCA (Lakhina et al., 2004), anomaly detection algorithms that
use hyper-sphere boundaries (Bishop, 2006), one-class classifiers that predict anomalies
by thresholding the log-likelihood of a log-concave (or uni-modal) density function, and
quadratic classifiers of the form x⊤Ax + b⊤x + c ≥ 0 if A is semidefinite, to name a few.
Furthermore, the family of convex-inducing classifiers also includes more complicated bodies
such as the countable intersection of halfspaces, cones, or balls.

We also show that near-optimal evasion does not require reverse engineering the classi-
fier’s decision boundary, which is the approach taken by Lowd and Meek (2005) for evading
linear classifiers. Our algorithms for evading convex-inducing classifiers do not require
fully estimating the classifier’s boundary (which is hard in the general convex case; see
Rademacher and Goyal, 2009) or otherwise reverse-engineering the classifier’s state. In-
stead, we directly search for a minimal-cost evading instance. Our algorithms require only
polynomial-many queries, with one algorithm solving the linear case with better query
complexity than the previously-published reverse-engineering technique.

This paper is organized as follows. We overview past work related to near-optimal
evasion in the remainder of this section. In Section 2 we formalize the near-optimal evasion
problem, and review Lowd and Meek’s definitions and results. We present algorithms for
evasion that are near-optimal under ℓ1 cost in Section 3 and we consider minimizing general
ℓp costs in Section 4. We conclude the paper by discussing future directions for near-optimal
evasion of classifiers in Section 5.
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1.1 Related Work

Lowd and Meek (2005) first explored near-optimal evasion, and developed a method that
reverse-engineered linear classifiers. Our approach generalizes their result and improves
upon it in three significant ways.

• We consider a more general family of classifiers: the family of convex-inducing classi-
fiers that partition the space of instances into two sets one of which is convex. This
family subsumes the family of linear classifiers considered by Lowd and Meek.

• Our approach does not fully estimate the classifier’s decision boundary (which is gen-
erally hard; see Rademacher and Goyal 2009) or reverse-engineer the classifier’s state;
instead, we directly search for an instance that the classifier recognizes as negative
that is close to the desired attack instance (an evading instance of near-minimal cost).

• Even though our algorithms find solutions for a more general family of classifiers, our
algorithms still only use a limited number of queries: they require only a number of
queries polynomial in the dimension of the instance space. Moreover, our K-step

MultiLineSearch (Algorithm 4) solves the linear case with fewer queries than the
previously-published reverse-engineering technique.

Dalvi et al. (2004) use a cost-sensitive game theoretic approach to preemptively patch a
classifier’s blind spots (Dalvi et al., 2004). They construct a modified classifier designed to
detect optimally modified instances. This work is complementary to our own; we examine
optimal evasion strategies while they have studied mechanisms for adapting the classifier.
In this paper we assume the classifier is not adapting during evasion.

A number of authors have studied evading sequence-based intrusion detector systems
(IDSs) (Tan et al., 2002; Wagner and Soto, 2002). In exploring mimicry attacks these au-
thors demonstrated that real IDSs can be fooled by modifying exploits to mimic normal
behaviors. These authors used offline analysis of the IDSs to construct their modifications;
by contrast, our modifications are optimized by querying the classifier.

The field of active learning also studies a form of query-based optimization (Schohn and Cohn,
2000). While active learning and near-optimal evasion are similar in their exploration of
querying strategies, the objectives for these two settings are quite different (see Section 2.3).

2. Problem Setup

We begin by introducing our notation and our assumptions. First, we assume that instances
are represented in a feature space X which is D-dimensional Euclidean space1 X = RD.
Each component of an instance x ∈ X is a feature which we denote as xd. We denote each
coordinate vector of the form (0, . . . , 1, . . . , 0) with a 1 only at the dth feature as δd. We
assume that the feature space representation is known to the adversary and there are no
restrictions on the adversary’s queries; i.e., any point in feature space X can be queried by
the adversary. These assumptions may not be true in every real-world setting, but they

1. Lowd and Meek also consider integer and Boolean-valued instance spaces and derive results for several
classes of Boolean-valued learners.
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allow us to investigate strategies taken by a worst-case adversary. We revisit this assumption
in Section 5.

We further assume the target classifier f belongs to a family of classifiers F . Any
classifier f ∈ F is a mapping from feature space X to its response space Y; i.e., f : X → Y.
We assume the adversary’s attack will be against a fixed f so the learning method and
the training data used to select f are irrelevant. We assume the adversary does not know
f but knows its family F . We also restrict our attention to binary classifiers and use
Y = {'−', '+'}.

We assume f ∈ F is deterministic and so it partitions X into 2 sets—the positive class
X+
f = {x ∈ X | f (x) = '+'} and the negative class X−

f = {x ∈ X | f (x) = '−'}. We take
the negative set to be normal instances. We assume that the adversary is aware of at least
one instance in each class, x− ∈ X−

f and xA ∈ X+
f , and can observe f (x) for any x by issuing

a membership query (see Section ?? for a more detailed discussion of this assumption).

2.1 Adversarial Cost

We assume the adversary has a notion of utility over the instance space which we quantify
with a cost function A : X → R0+; e.g., for a spammer this could be edit distance on
email messages. The adversary wishes to optimize A over the negative class, X−

f ; e.g., the
spammer wants to send spam that will be classified as normal email ('−') rather than as
spam ('+'). We assume this cost function is a distance to some instance xA ∈ X+

f that is
most desirable to the adversary. We focus on the general class of weighted ℓp (0 < p ≤ ∞)
cost functions:

A(c)
p (x) =

(
D∑

d=1

cd
∣
∣xd − xAd

∣
∣
p

)1/p

, (1)

where 0 < cd < ∞ is the relative cost the adversary associates with the dth feature. We
also consider the cases when some features have cd = 0 (adversary doesn’t care about the
dth feature) or cd =∞ (adversary requires the dth feature to match xAd ). Weighted ℓ1 costs
are particularly appropriate for many adversarial problems since costs are assessed based
on the degree to which a feature is altered and the adversary typically is interested in some
features more than others. Unless stated otherwise, we take “ℓ1 cost” to mean a weighted ℓ1
cost in the sequel. The ℓ1-norm is a natural measure of edit distance for email spam, while
larger weights can model tokens that are more costly to remove (e.g., a payload URL). As
with Lowd and Meek, we focus primarily on ℓ1 costs in Section 3 before exploring general
ℓp costs in Section 4. We use BC (A) = {x ∈ X | A (x) ≤ C} to denote the cost-ball (or
sublevel set) with cost no more than C. For instance, BC (A1) is the set of instances that
do not exceed an ℓ1 cost of C from the target xA.

Lowd and Meek (2005) define minimal adversarial cost (MAC) of a classifier f to be
the value

MAC (f ,A) , inf
x∈X−

f

[A (x)] ;

i.e., the greatest lower bound on the cost obtained by any negative instance. They further
define a data point to be an ǫ-approximate instance of minimal adversarial cost (ǫ-IMAC)
if it is a negative instance with a cost no more than a factor (1+ ǫ) of the MAC ; i.e., every

4
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ǫ-IMAC is a member of the set2

ǫ-IMAC (f ,A) ,
{

x ∈ X−
f

∣
∣
∣ A (x) ≤ (1 + ǫ) ·MAC (f ,A)

}

. (2)

The adversary’s goal is to find an ǫ-IMAC efficiently, while issuing as few queries as possible.

2.2 Search Terminology

The notion of near-optimality introduced in Eq. (2) is that of multiplicative optimality ; i.e.,
an ǫ-IMAC must have a cost within a factor of (1 + ǫ) of the MAC . However, the results
of this paper can also be immediately adopted for additive optimality in which we seek
instances with cost no more than η > 0 greater than the MAC . To differentiate between
these notions of optimality, we will use the notation ǫ-IMAC (∗) to refer to the set in Eq. (2)
and define an analagous set η-IMAC (+) for addative optimality as

η-IMAC (+) (f ,A) ,
{

x ∈ X−
f

∣
∣
∣ A (x) ≤ η +MAC (f ,A)

}

. (3)

We use the terms ǫ-IMAC (∗) and η-IMAC (+) to refer both to the sets defined in Eq. (2)
and (3) as well as the members of them—the usage will be clear from the context.

Either notion of optimality allows us to efficiently use bounds on the MAC to find
an ǫ-IMAC (∗) or an η-IMAC (+). Suppose there is a negative instance, x, with cost C−

and all instances with cost no more than C+ are positive; i.e., C− is an upper bound
and C+ is a lower bound on the MAC : C+ ≤ MAC (f ,A) ≤ C−. Then the negative
instance x is ǫ-multiplicatively optimal if C−

0 /C+
0 ≤ (1 + ǫ) whereas it is η-additively

optimal if C−
0 −C+

0 ≤ η. In the sequel, we will consider algorithms that can achieve either
additive or multiplicative optimality. These algorithms employ binary search strategies to
iteratively reduce the gap between any C− and C+. Namely, if we can determine whether
an intermediate cost establishes a new upper or lower bound on MAC , then our binary
search strategies can iteratively reduce the tth gap between C−

t and C+
t . We now provide

common terminology for the binary search and in Section 3 we use convexity to establish a
new bound at each iteration.

Lemma 1 If an algorithm can provide bounds C+ ≤ MAC (f ,A) ≤ C−, then this algorithm

has achieved (1) (C−−C+)-additive optimality and (2) (C
−

C+ − 1)-multiplicative optimality.

In the tth iteration of an additive binary search, the additive gap between the tth bounds

is given by G
(+)
t = C−

t − C+
t with G

(+)
0 defined accordingly by the initial bounds C−

0 and

C+
0 . The search uses a proposal step of Ct = (C−

t +C+
t )/2, a stopping criterion of G

(+)
t ≤ η

and achieves η-additive optimality in

L(+)
η =

⌈

log2

[

G
(+)
0

η

]⌉

(4)

steps. Binary search has the best worst-case query complexity for achieving η-additive
optimality.

2. We use ‘ǫ-IMAC ’ to refer both to this set and its members. The meaning will be clear from the context.
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Binary search can also be used for multiplicative optimality by searching in exponential
space. By rewriting our upper and lower bounds as C− = 2a and C+ = 2b, the multiplicative
optimality condition becomes a− b ≤ log2(1 + ǫ), an additive optimality condition. Thus,
binary search on the exponent achieves ǫ-multiplicative optimality and does so with the

fewest queries. The multiplicative gap of the tth iteration is G
(∗)
t = C−

t /C+
t with G

(∗)
0

defined accordingly by the initial bounds C−
0 and C+

0 . The tth query is Ct =
√

C−
t · C+

t ,

the stopping criterion is G
(∗)
t ≤ 1 + ǫ and achieves ǫ-multiplicative optimality in

L(∗)
ǫ =







log2




log2

(

G
(∗)
0

)

log2(1 + ǫ)











(5)

steps. Multiplicative optimality only makes sense when both C−
0 and C+

0 are strictly posi-
tive.

Binary searches for additive and multiplicative optimality differ in their proposal step
and their stopping criterion. For additive optimality, the proposal is the arithmetic mean

Ct = (C−
t + C+

t )/2 and search stops when G
(+)
t ≤ η, whereas for multiplicative optimality,

the proposal is the geometric mean Ct =
√

C−
t · C+

t and search stops when G
(∗)
t ≤ 1 + ǫ.

For the remainder of this paper, we will address ǫ-multiplicative optimality for an ǫ-IMAC

(except where explicitly noted) and define Lǫ = L
(∗)
ǫ and Gt = G

(∗)
t . Nonetheless, our

algorithms are immediately adapted to additive optimality by simply changing the proposal

step, stopping condition, and the definitions of L
(∗)
ǫ and Gt.

2.3 Near-Optimal Evasion

Lowd and Meek (2005) introduce the concept of adversarial classifier reverse engineering
(ACRE) learnability to quantify the difficulty of finding an ǫ-IMAC instance for a particular
family of classifiers F , and a family of adversarial costs A. Using our notation, their
definition of ACRE ǫ-learnable is

A set of classifiers F is ACRE ǫ-learnable under a set of cost functions A if
an algorithm exists such that for all f ∈ F and A ∈ A, it can find a x ∈
ǫ-IMAC (f ,A) using only polynomially many membership queries in D, the
encoded size of f , and the encoded size of x+ and x−.

In generalizing their result, we slightly alter their definition of query complexity. First,

to quantify query complexity we only use the dimension D and the number of steps L
(∗)
ǫ

required by a univariate binary search to narrow the gap between initial bounds C+
0 and C−

0

to less than (1+ ǫ).3 Second, we assume the adversary only has two initial points x− ∈ X−
f

and xA ∈ X+
f (the original setting required a third x+ ∈ X+

f ): we restrict our setting to

3. Using the encoded sizes of f , x+, and x
− in defining ǫ-IMAC searchable is problematic. For our purposes,

it is clear that the encoded size of both x
+ and x

− is D so it is unnecessary to include additional terms
for their size. Further we allow for families of non-parametric classifiers for which the notion of encoding
size is ill-defined but is also unnecessary for the algorithms we present. In extending beyond linear and
parametric family of classifiers, it is not straightforward to define the encoding size of our classifier f .
One could use notions such as the VC-dimension of F or its covering number (Anthony and Bartlett,
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the case of xA ∈ X+
f , yielding simpler search procedures.4 Finally, our algorithms do not

reverse engineer the decision boundary, so “ACRE” would be a misnomer here. Instead we
refer to the overall problem as Near-Optimal Evasion and replace ACRE ǫ-learnable with
the following definition of ǫ-IMAC searchable.

A family of classifiers F is ǫ-IMAC searchable under a family of cost functions
A if for all f ∈ F and A ∈ A, there is an algorithm that finds x ∈ ǫ-IMAC (f ,A)
using polynomially many membership queries in D and Lǫ. We will refer to such
an algorithm as efficient.

Unlike Lowd and Meek’s approach, our algorithms construct queries to provably find
an ǫ-IMAC without reverse engineering the classifier’s decision boundary. Efficient query-
based reverse engineering for f ∈ F is sufficient for minimizing A over the estimated negative
space. However, generally reverse engineering (active learning) is an expensive approach for
near-optimal evasion, requiring query complexity that is exponential in the feature space
dimension for general convex classes (Rademacher and Goyal, 2009), while finding an ǫ-
IMAC need not be—the requirements for finding an ǫ-IMAC differ significantly from the
objectives of reverse engineering approaches such as active learning. Both approaches use
queries to reduce the size of version space F̂ ⊂ F , the set of classifiers consistent with
the adversary’s membership queries. However reverse engineering approaches minimize the
expected number of disagreements between members of F̂ . In contrast, to find an ǫ-IMAC ,
we only need to provide a single instance x† ∈ ǫ-IMAC (f ,A) for all f ∈ F̂ , while leaving
the classifier largely unspecified; i.e.,

⋂

f ∈F̂

ǫ-IMAC (f ,A) 6= ∅ .

This objective allows the classifier to be unspecified in much of X . We present algorithms
for ǫ-IMAC search on a family of classifiers that generally cannot be efficiently reverse
engineered—the queries we construct necessarily elicit an ǫ-IMAC only; the classifier itself
will be underspecified in large regions of X so our techniques do not reverse engineer the
classifier.

2.4 Multiplicative vs. Additive Optimality

Additive and multiplicative optimality are intrinsically related by the fact that the opti-
mality condition for multiplicative optimality C−

t /C
+
t ≤ 1 + ǫ can be rewritten as additive

optimality condition log2 C
−
t − log2 C

+
t ≤ log2(1 + ǫ). From this equilence we can take

η = log2(1 + ǫ) and use the additive optimality criterion on the logarithm of the cost.
However, this equivalence also leads to two differnces between these notions of optimality.

1999) but it is unclear why size of the classifier is important in quantifying the complexity of ǫ-IMAC

search. Moreover, as we demonstrate in this paper, there are non-parametric families of classifiers for
which ǫ-IMAC search is polynomial in D alone.

4. However, as is apparent in the algorithms we demonstrate, using x
+ = x

A makes the attacker less covert
since it is significantly easier to infer the attacker’s intentions based on their queries. (Covertness is not
an explicit goal in ǫ-IMAC search but it would be a requirement of many real-world attackers.) However,
since our goal is not to design real attacks but rather analyze the best possible attack so as to understand
our classifier’s vulnerabilities, covertness can be ignored.

7
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First, multiplicative optimality only makes sense when C+
0 is strictly positive (we will

need this assumption for our algorithms) whereas additive optimality can still be achieved
if C+

0 = 0. In this special case, xA is on the boundary of X+
f and there is no ǫ-IMAC (∗)

for any ǫ > 0. Practically speaking though, this is a minor hinderance—as we demonstrate
in Section 3.1.3, there is an algorithm that can efficiently establish any lower bound C+

0 if
such a lower bound exists.

Second, the additive optimality criterion is not scale invariant (i.e., any instance x† that
satisfies the optimality criterion for cost A also satisfies it for A′ (x) = s·A (x) for any s > 0)
whereas multiplictative optimality is scale invariant. Additive optimility is, however, shift
invariant (i.e., any instance x† that satisfies the optimality criterion for cost A also satisfies
it for A′ (x) = s + A (x) for any s ≥ 0) whereas multiplicative optimality is not. Scale
invariance is typically more salient because if the cost function is also scale invariant (all
proper norms are) then the optimality condition is invariant to a rescaling of the underlying
feature space; e.g., a change in units for all features. Thus, multiplicative optimality is a
unitless notion of optimality whereas additive optimality is not. The following result is a
consequence of additive optimality’s lack of scale invariance.

Theorem 2 If for some hypothesis space F , cost function A, and any initial bounds 0 <
C+
0 < C−

0 on the MAC (f ,A) for some f ∈ F , there exists some ǭ > 0 such that no efficient
query-based algorithm can find an ǫ-IMAC (∗) for any 0 < ǫ ≤ ǭ, then there is no efficient
query-based algorithm that can find a η-IMAC (+) for any 0 < η ≤ ǭ · C−

0 .

Proof We will proceed by contraposition. If there is an efficient query-based algo-
rithm that can find a x ∈ η-IMAC (+) for some 0 < η ≤ ǭ · C−

0 , then, by definition of
η-IMAC (+), A (x) ≤ η +MAC (f ,A). Taking η = ǫ ·MAC (f ,A) for some ǫ > 0, we have
equivalently achieved A (x) ≤ (1 + ǫ)MAC (f ,A); i.e., x ∈ ǫ-IMAC (∗). Moreover, since
MAC (f ,A) ≤ C−

0 , this efficient algorithm is able to find a ǫ-IMAC (∗) for some ǫ ≤ ǭ.

Corollary 3 If for some hypothesis space F , cost function A, there exists some ǭ > 0 such
that no efficient query-based algorithm can find an ǫ-IMAC (∗) for any 0 < ǫ ≤ ǭ, then there
is no efficient query-based algorithm that can find a η-IMAC (+) for any η.

Proof This follows from Theorem 2 since C−
0 may be arbitrarily large and ǭ > 0.

This corollary demonstrates that the lack of scale invariance in the additive optimality
condition allows for the feature space to be arbitrarily rescaled until any fixed level of
additive optimality can no longer be achieved; i.e., the units of the cost determine whether
a particular level of additive accuracy can be achieved whereas multiplicative costs are
unitless.

3. Evasion of Convex Classes

We generalize ǫ-IMAC searchability to the family of convex-inducing classifiers Fconvex that
partition the feature space X into a positive and negative class, one of which is convex. The

8
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ut xA

X+
f X−

f

(a)

ut xA

X−
f X+

f

(b)

Figure 1: Geometry of convex sets and ℓ1 balls. (a) If the positive set X+
f is convex, finding

an ℓ1 ball contained within X+
f establishes a lower bound on the cost, otherwise at

least one of the ℓ1 ball’s corners witnesses an upper bound. (b) If the negative set
X−
f is convex, we can establish upper and lower bounds on the cost by determining

whether or not an ℓ1 ball intersects with X−
f , but this intersection need not include

any corner of the ball.

convex-inducing classifiers include the linear classifiers studied by Lowd and Meek (2005),
anomaly detectors using bounded PCA (Lakhina et al., 2004) and that use hyper-sphere
boundaries (Bishop, 2006), one-class classifiers that predict anomalies by thresholding the
log-likelihood of a log-concave (or uni-modal) density function, and quadratic classifiers of
the form x⊤Ax + b⊤x + c ≥ 0 if A is semidefinite. The convex-inducing classifiers also
include complicated bodies such as any intersections of a countable number of halfspaces,
cones, or balls.

Restricting F to be the family of convex-inducing classifiers simplifies ǫ-IMAC search.
When the negative class X−

f is convex, the problem reduces to minimizing a (convex)

function A constrained to a convex set—if X−
f were known to the adversary, this simply

corresponds to solving a convex program. When the positive class X+
f is convex, however,

our task is to minimize the (convex) function A outside of a convex set; this is generally a
hard problem (cf. Section 4.1.4 where we show that minimizing ℓ2 cost can require expo-
nential query complexity). Nonetheless for certain cost functions A, it is easy to determine
whether a particular cost ball BC (A) is completely contained within a convex set. This
leads to efficient approximation algorithms.

We construct efficient algorithms for query-based optimization of the ℓ1 cost of Eq. (1)
for the convex-inducing classifiers. There appears to be an asymmetry depending on whether
the positive or negative class is convex as illustrated in Figure 1. When the positive set is

convex, determining whether an ℓ1 ball BC(A(c)
1 ) ⊂ X+

f only requires querying the vertices
of the ball as depicted in Figure 1(a). When the negative set is convex, determining whether

or not BC(A(c)
1 )∩X−

f = ∅ is non-trivial since the intersection need not occur at a vertex as

9
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depicted in Figure 1(b). We present an efficient algorithm for the optimizing a ℓ1 cost when
X+
f is convex and a polynomial random algorithm for optimizing any convex cost when X−

f

is convex.
The algorithms we present achieve multiplicative optimality via binary search. We use

Eq. (5) to define Lǫ as the number of phases required by our binary search to reduce the

multiplicative gap to less than 1+ ǫ. We also use C−
0 = A

(c)
1 (x−) as an initial upper bound

on the MAC and assume there is some C+
0 > 0 that lower bounds the MAC (i.e., xA is in

the interior of X+
f ). This condition eliminates the case where xA is on the boundary of X+

f

where MAC (f ,A) = 0 and ǫ-IMAC (f ,A) = ∅—in this degenerate case, no algorithm can
find an ǫ-IMAC since there are negative instances arbitrarily close to xA.

3.1 ǫ-IMAC Search for a Convex X+
f

Solving the ǫ-IMAC Search problem when X+
f is hard in the general case of convex cost

A (·). We demonstrate algorithms for the ℓ1 cost of Eq. (1) that solve the problem as a
binary search. Namely, given initial costs C+

0 and C−
0 that bound the MAC , our algorithm

can efficiently determine whether BC (A1) ⊂ X+
f for any intermediate cost C+

t < Ct < C−
t .

If the ℓ1 ball is contained in X+
f , then Ct becomes the new lower bound C+

t+1. Otherwise Ct

becomes the new upper bound C−
t+1. Since our objective Eq. (2) is to obtain multiplicative

optimality, our steps will be Ct =
√

C+
t · C−

t . We now explain how we exploit the properties

of the ℓ1 ball and convexity of X+
f to efficiently determine whether BC (A1) ⊂ X+

f for any C.
We also discuss practical aspects of our algorithm and extensions to other ℓp cost functions.

The existence of an efficient query algorithm relies on three facts: (1) xA ∈ X+
f ; (2)

every ℓ1 cost C-ball centered at xA intersects with X−
f only if at least one of its vertices

is in X−
f ; and (3) C-balls of ℓ1 costs only have 2 · D vertices. The vertices of the ℓ1 ball

BC (A1) are axis-aligned instances differing from xA in exactly one feature (e.g., the dth

feature) and can be expressed in the form

xA ± C

cd
δd , (6)

which belongs to the C-ball of our ℓ1 cost (the coefficient C
cd

normalizes for the weight cd

on the dth feature). We now formalize the second fact as follows.

Lemma 4 For all C > 0, if there exists some x ∈ X−
f that achieves a cost of C = A

(c)
1 (x),

then there is some feature d such that a vertex of the form of Eq. (6) is in X−
f (and also

achieves cost C by Eq. 1).

Proof Suppose not; then there is some x ∈ X−
f such that A

(c)
1 (x) = C and x has M ≥ 2

features that differ from xA (if x only differs in 1 feature it would be of the form of Eq. 6).
Let {d1, . . . , dM} be the differing features and let bdi = sign

(
xdi − xAdi

)
be the sign of the

difference between x and xA along the di-th feature. For each di, let edi = xA+ C
cdi
· bdi ·δdi

be a vertex of the form of Eq. (6) which has a cost C (from Eq. 1). The M vertices edi
form an M -dimensional equi-cost simplex of cost C on which x lies; i.e., x =

∑M
i=1 αiedi

10
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ut xA

(a)

ra
y
in
X
+
f

x ∈ X+
f

v

ut xA

(a)

ut xA

(a)

Figure 2: The geometry of search. (a) Weighted ℓ1 balls are centered around the target xA

and have 2D vertices; 3.1 Search directions in multi-line search radiate from xA

to probe specific costs; 3.1 In general, we leverage convexity of the cost function
when searching to evade. By probing all search directions at a specific cost, the
convex hull of the positive queries bounds the ℓ1 cost ball contained within it.

for some 0 ≤ αi ≤ 1. If all edi
∈ X+

f , then the convexity of X+
f implies that all points in

their simplex are in X+
f and so x ∈ X+

f which violates our premise. Thus, if any instance

in X−
f achieves cost C, there is always a vertex of the form Eq. (6) in X−

f that also achieves
cost C.

As a consequence, if all such vertices of any C ball BC (A1) are positive, then all x with

A
(c)
1 x ≤ C are positive thus establishing C as a lower bound on the MAC . Conversely, if

any of the vertices of BC (A1) are negative, then C is an upper bound on MAC . Thus, by
simultaneously querying all 2 ·D equi-cost vertices of BC (A1), we either establish C as a
new lower or upper bound on the MAC . By performing a binary search on C we iteratively
halve the multiplicative gap between our bounds until it is within a factor of 1 + ǫ. This
yields an ǫ-IMAC of the form of Eq. (6).

A general form of this multiline search procedure is presented as Algorithm 1 and de-
picted in Figure 2. MultiLineSearch simultaneously searches along the directions in a
set W of search directions that radiate from their origin at xA and that are unit vectors
for their cost; i.e., A (w) = 1 for any w ∈ W. (We transform a given set of non-normalized
search vectors {v} into unit search vectors by simply applying a normalization constant
of A (v)−1 to each vector.) At each step of MultiLineSearch, at most |W| queries are
issued in order to construct a bounding shell (i.e., the convex hull of these queries will
either form an upper or lower bound on the MAC ) to determine whether BC (A) ⊂ X+

f .
Once a negative instance is found at cost C, we cease further queries at cost C since a
single negative instance is sufficient to establish a lower bound. We call this policy lazy
querying5. Further, when an upper bound is established for a cost C (a negative vertex is

5. We could continue querying at any distance B− where there is a known negative instance as it may allow
us to prune other search directions quickly. However, once the classifier reveals a negative instance at

11
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found), our algorithm prunes all directions that were positive at cost C. This pruning is
sound; by the convexity assumption these pruned directions are positive for all costs less
than the new upper bound C on the MAC . Finally, by performing a binary search on the
cost, MultiLineSearch finds a ǫ-IMAC with no more than |W| · Lǫ queries but at least
|W|+ Lǫ queries. Thus, this algorithm is O (|W| · Lǫ) for ℓ1 costs.

It is worth noting that, in its present form, MultiLineSearch has two implicit as-
sumptions. First, we assume all search directions radiate from a common origin, xA, and
A
(
xA
)
= 0. Without this assumption, the ray-constrained cost function A

(
xA + s ·w

)
is

still convex in s ≥ 0 but not necessarily monotonic as required for binary search. Second,
we assume the cost function A is a positive homogeneous function along an ray from xA;
i.e., A

(
xA + s ·w

)
= |s| ·A

(
xA +w

)
. This assumption allows MultiLineSearch to scale

its unit search vectors to achieve the same scaling of their cost. Although the algorithm
could be adapted to eliminate these assumptions, the cost functions in Eq. (1) satisfy both
assumptions since they are norms centered at xA.

Algorithm 2 uses MultiLineSearch for ℓ1 costs by making W be the vertices of the
unit-cost ℓ1 ball centered at xA. In this case, the search issues at most 2 · D queries to
determine whether BC (A1) ⊂ X+

f and so Algorithm 2 is O (Lǫ ·D). However, MultiLine-

Search does not rely on its directions being vertices of the ℓ1 ball although those vertices
are sufficient to span the ℓ1 ball. Generally, MultiLineSearch is agnostic to the configu-
ration of its search directions and can be adapted for any set of directions that can provide
a bound on the cost using the convexity of X+

f . However, as we show in Section 4, the
number of search directions required to bound an ℓp for p > 1 can be exponential in D.

3.1.1 K-step Multi-Line Search

Here we present a variant of the multi-line search algorithm that better exploits pruning
to reduce the query complexity of Algorithm 1—we call this variant K-step MultiLi-

neSearch. The MultiLineSearch algorithm is 2 · |W| simultaneous binary searches
(breadth-first). This strategy prunes directions most effectively when the convex body is
assymetrically elongated relative to xA but fails to prune for symmetrically rounded bodies.
Instead we could search each direction sequentially (depth-first) and still obtain a worst case
of O (Lǫ ·D) queries. In contrast, this strategy reduces queries used to shrink the cost gap
on symmetrically rounded bodies but is unable to do so for assymetrically elongated bodies.
We therefore propose an algorithm that mixes these strategies.

At each phase, the K-step MultiLineSearch (Algorithm 4) chooses a single direction
e and queries it for K steps to generate candidate bounds B− and B+ on the MAC . The
algorithm makes substantial progress towards reducing Gt without querying other directions
(depth-first). It then iteratively queries all remaining directions at the candidate lower
bound B+ (breadth-first). Again we use lazy querying and stop as soon as a negative
instance is found since B+ is then no longer a viable lower bound. In this case, although
the candidate bound is invalidated, we can still prune all directions that were positive at

distance B
−, the classifier would be foolish to subsequently reveal that another direction has a '+' at

the same distance since it freely allows the adversary to prune a search direction. Hence, a malicious
classifier will always respond with '−' for any cost where a negative instance has already been revealed.
Thus, our algorithm uses lazy querying and only queries at costs below our upper bound C

−
t on the

MAC .

12
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Algorithm 1 Multi-line Search

MLS
(
W,xA,x−, C+

0 , C−
0 , ǫ
)

x∗ ← x−

t← 0
while C−

t /C
+
t > 1 + ǫ do begin

Ct ←
√

C+
t · C−

t

for all e ∈ W do begin

Query: f t
e ← f

(
xA + Ct · e

)

if f t
e = '−' then begin

x∗ ← xA + Ct · e
Prune i from W if f t

i = '+'

break for-loop

end if

end for

C+
t+1 ← C+

t and C−
t+1 ← C−

t

if ∀e ∈ W f t
e = '+' then C+

t+1 ← Ct

else C−
t+1 ← Ct

t← t+ 1
end while

return: x∗

Algorithm 2 Convex X+
f Set

Search

ConvexSearch
(
W,xA,x−, ǫ, C+

)

C− ← A (x−)
W ← ∅
for all i ∈ 1 . . . D do begin

ei ← 1
ci
· δi

W ←W ∪
{
±ei

}

end for

return: MLS
(
W,xA,x−, C+, C−, ǫ

)

Algorithm 3 Linear X+
f Set

Search

LinearSearch
(
W,xA,x−, ǫ, C+

)

C− ← A (x−)
W ← ∅
for all i ∈ 1 . . . D do begin

ei ← 1
ci
· δi

bi ← sign
(
x−i − xAi

)

if bi = 0 then W ←W ∪
{
bie

i
}

else W ←W ∪
{
±ei

}

end for

return: MLS
(
W,xA,x−, C+, C−, ǫ

)

B+. Thus, in every iteration, either the gap is decreased or at least one search direction is
pruned. We show that for K = ⌈

√
Lǫ⌉, the algorithm achieves a delicate balance between

breadth-first and depth-first approaches to attain a better worst-case complexity than either.

Theorem 5 Algorithm 4 will find an ǫ-IMAC with at most O
(
Lǫ +

√
Lǫ|W|

)
queries when

K = ⌈
√
Lǫ⌉.

The proof of this theorem appears in Appendix A. As a consequence of Theorem 5,
finding a ǫ-IMAC with Algorithm 4 for a ℓ1 cost requires O

(
Lǫ +

√
LǫD

)
queries. Further,

both Algorithms 2 and 3 can incorporate K-step MultiLineSearch directly by replacing
their function call to MLS to KLMS and using K = ⌈√Lǫ⌉.

3.1.2 Lower Bound

Here we find lower bounds on the number of queries required by any algorithm to find an
ǫ-IMAC when X+

f is convex for any convex cost function (e.g., Eq. 1 for p ≥ 1). Below we
present two theorems, one for both additive and multiplicative optimality. Notably, since
an ǫ-IMAC uses multiplicative optimality, we incorporate a lower bound C+

0 > 0 on the
MAC into our statement.

13
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Algorithm 4 K-Step Multi-line Search

KMLS
(
W,xA,x−, C+

0 , C−
0 , ǫ,K

)

x∗ ← x−

t← 0
while C−

t /C
+
t > 1 + ǫ do begin

Choose a direction e ∈ W
B+ ← C+

t

B− ← C−
t

for K steps do begin

B ←
√
B+ · B−

Query: fe ← f
(
xA +B · e

)

if fe = '+' then B+ ← B
else B− ← B and x∗ ← xA +B · e

end for

for all i 6= e ∈ W do begin

Query: f t
i ← f

(
xA + (B+) · i

)

if f t
i = '−' then begin

x∗ ← xA + (B+) · i
Prune k from W if f t

k = '+'

break for-loop

end if

end for

C−
t+1 ← B−

if ∀i ∈ W f t
i = '+' then C+

t+1 ← B+

else C−
t+1 ← B+

t← t+ 1
end while

return: x∗

Theorem 6 For any D > 0, any positive convex function A : RD → R+, any initial bounds
0 ≤ C+

0 < C−
0 on the MAC, and 0 < η < C−

0 − C+
0 , all algorithms must submit at least

max{D,L
(+)
η } membership queries in the worst case to be η-additive optimal on Fconvex,'+'.

Theorem 7 For any D > 0, any positive convex function A : RD → R+, any initial

bounds 0 < C+
0 < C−

0 on the MAC, and 0 < ǫ <
C−

0

C+

0

− 1, all algorithms must submit at

least max{D,L
(∗)
ǫ } membership queries in the worst case to be ǫ-multiplicatively optimal on

Fconvex,'+'.

The proof of both of these theorems is in Appendix B. In these theorems, we restrict

η and ǫ to the intervals
(
0, C−

0 − C+
0

)
and

(

0,
C−

0

C+

0

− 1
)

respectively. In fact, outside of

these intervals the query strategies are trivial. For either η = 0 or ǫ = 0 no approximation
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algorithm will terminate and for η ≥ C−
0 −C+

0 or ǫ ≥ C−
0

C+

0

−1, x− is an IMAC , so no queries

are required.
Theorem 6 and 7 show that one needs that η-additive and ǫ-multiplicative optimality

require Ω(L
(+)
η +D) and Ω(L

(∗)
ǫ +D) queries respectively. Thus, we see that our K-step

MultiLineSearch algorithm (Algorithm 4) has close to the optimal query complexity for
ℓ1-costs with its O(Lǫ+

√
LǫD) queries. These results also hold for arbitrary ℓp (p ≥ 1) costs

but we show lower bounds in Section 4 for p > 1 that substantially exceed these results.

3.1.3 Special Cases

Here we present a number of special cases that require minor modifications to Algorithms 1
and 4 primarily as preprocessing steps.

Revisiting Linear Classifiers Lowd and Meek originally developed a method for reverse
engineering linear classifiers for a ℓ1 cost. First their method isolates a sequence of points
from x− to xA that cross the classifier’s boundary and then it estimates the hyperplane’s
parameters using D line searches. However, as a consequence of the ability to efficiently
minimize our objective when X+

f is convex, we immediately have an alternative method for
linear classifiers (i.e., half-spaces). In fact, for this special case, as many as half of the search
directions can be eliminated using the initial orientation of the hyperplane separating xA

and x−. Intuitively, the minimizer in the negative halfspace can only occur along one of the
axes of the orthants that contain x−. This algorithm is presented as Algorithm 3. More-
over, because linear classifiers are a special case of convex-inducing classifiers, our K-step

MultiLineSearch algorithm improves on the reverse-engineering technique’s O (Lǫ ·D)
queries and applies to a broader family.

Extending MultiLineSearch algorithms to cd =∞ or cd = 0 In Algorthms 2 and 3,
we reweighted the dth axis-aligned directions by a factor 1

cd
to make unit cost vectors but

implictly assuming cd ∈ (0,∞). The case where cd = ∞ (e.g., immutable features) is
dealt with simply removing those features from the set of search directions W used in the
MultiLineSearch. In the case when cd = 0 (e.g., useless features), MultiLineSearch-
like algorithms no longer ensure near-optimality because they implicitly assume that cost
balls are bounded sets. If cd = 0, B0 (A) is no longer bounded and a 0-cost could be achieved
if X−

f anywhere intersects the subspace spanned by the 0-cost features—this makes near-
optimality unachievable unless a negative 0-cost instance can be found. In the worst case,
such an instance could be arbitrarily far in any direction within the 0-cost subspace making
search for such an instance intractable. Nonetheless, one possible search strategy is to
assign all 0-cost features a non-zero weight that decays quickly toward 0 (e.g., cd = 2−t in
the tth iteration) as we repeatly rerun an MultiLineSearch on the altered objective for
T iterations. We will either find a negative instance that only alters 0-cost features (and
hence is a 0-IMAC ), or we will terminate assuming no such instance exists. This algorithm
does not ensure near-optimality but may find a suitable instance with only T runs of a
MultiLineSearch.

Lack of an Initial Lower Bound Thus far, to find a ǫ-IMAC our algorithms have
searched between initial bounds C+

0 and C−
0 , but, in general, C+

0 may not be known to
a real-world adversary. We now present an algorithm we call SpiralSearch that can
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efficiently establish a lower bound on the MAC if one exists. This algorithm performs
a halving search on the exponent along a single direction to find a positive example, then
queries the remaining directions at that cost. Either the lower bound is verified or directions
that were positive can be pruned for the remainder of the search.

Algorithm 5 Spiral Search

spiral
(
W,xA,x−, C−

0 , ǫ
)

t← 0 and V ← ∅
repeat

Choose a direction e ∈ W
Remove e from W and V ← V ∪ {e}
Query: fe ← f

(

xA + (C−
0 )2−2te

)

if fi = '−' then begin

W ←W ∪ {e} and V ← ∅
t← t+ 1

end if

until W = ∅
C+
0 ← C−

0 · 2−2t

return: (V,C+
0 ,C−

0 )

At the tth iteration of SpiralSearch a direction is selected and queried at the current
lower bound of (C−

0 )2−2t . If the query is positive, that direction is added to the set V of
directions consistent with the lower bound. Otherwise, all directions in V are discarded
and the lower bound is lowered with an exponentially decreasing exponent. Thus, given
that some lower bound C+

0 > 0 does exist, one will be found in O (Lǫ +D) queries and this
algorithm can be used as a precursor to any of the previous searches6. Further, the search
directions pruned by SprialSearch are also invalid for the subsequentMultiLineSearch

so the set V returned by SprialSearch will be used as the setW for the subsequent search.

Lack of a Negative Example Our algorithms can also naturally be adapted to the
case when the adversary has no negative example x−. This is accomplished by querying ℓ1
balls of doubly exponentially increasing cost until a negative instance is found. During the
tth iteration, we probe along every search direction at a cost (C+

0 )22
t
; either all probes are

positive (and we have a new lower bound) or at least one is negative and we can terminate the
search. Once a negative example is located (having probed for T iterations), we must have

(C+
0 )22

T−1

< MAC (f ,A) ≤ (C+
0 )2

2T ; thus, T =
⌈

log2 log2
MAC (f ,A)

C+

0

⌉

. We can subsequently

perform MultiLineSearch with C+
0 = 22

T−1

and C−
0 = 22

T
; i.e., log2G0 = 2T−1. This

precursor step requires at most |W|·T queries to initialize theMultiLineSearch algorithm

with a gap such that Lǫ =
⌈

(T − 1) + log2
1

log2(1+ǫ)

⌉

according to Eq. (5).

If there is neither an initial upper bound or lower bound, we proceed by probing each
search direction at cost 1 using an additional | {W} | queries—we will subsequently have
either an upper or lower bound and can proceed accordingly.

6. If no lower bound on the cost exists, no algorithm can find a ǫ-IMAC . As presented, this algorithm
would not terminate, but in practice the search would be terminated after sufficiently many iterations.
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Algorithm 6 Intersect Search

IntersectSearch
(
P0,Q =

{
xj ∈ P0

}
, C
)

for all s = 1 . . . T do begin

(1) Generate 2N samples
{
xj
}2N

j=1
Choose x from Q
xj ← HitRun

(
Ps−1,Q,xj

)

(2) If any xj , A
(
xj
)
≤ C terminate the for-

loop
(3) Put samples into 2 sets of size N

R←
{
xj
}N

j=1
and S ←

{
xj
}2N

j=2N+1

(4) zs ← 1
N

∑

xj∈R xj

(5) Compute Hzs using Eq. (8)
(6) Ps ← Ps−1 ∩Hzs

(7) Keep samples in Ps

Q ← {x ∈ S ∧ x ∈ Ps}
end for

Return: the found [xj ,Ps,Q]; or No Intersect

Algorithm 7 Hit-and-Run

HitRun
(
P,
{
yj
}
,x0
)

for all i = 1 . . . K do begin

(1) Choose a random direction:
νj ∼ N(0, 1)
v←∑

j νj · yj

(2) Sample uniformly along v us-
ing rejection sampling:
Choose Ω s.t. xi−1 +Ω · v /∈ P
repeat

ω ∼ Unif (0,Ω)
xi ← xi−1 + ω · v
Ω← ω

until xi ∈ P
end for

Return: xK

3.2 ǫ-IMAC Learning for a Convex X−
f

In this section, we consider minimizing a convex cost function A (we focus on weighted ℓ1
costs in Eq. 1) when the feasible set X−

f is convex. Any convex function can be efficiently
minimized within a known convex set (e.g., using the Ellipsoid Method and Interior Point
methods; see Boyd and Vandenberghe 2004). However, in our problem the convex set is
only accessible via membership queries. We use a randomized polynomial algorithm of
Bertsimas and Vempala (2004) to minimize the cost function A given an initial point x− ∈
X−
f . For any fixed cost Ct we use their algorithm to determine (with high probability)

whether X−
f intersects with BCt

(A); i.e., whether Ct is a new lower or upper bound on
the MAC . With high probability, we find an ǫ-IMAC in no more than Lǫ repetitions using
binary search. We now focus only on weighted ℓ1 costs (Eq. 1) and return to more general
cases in Section 4.2.

3.2.1 Intersection of Convex Sets

We now outline Bertsimas and Vempala’s query-based procedure for determining whether
two convex sets (e.g., X−

f and BCt
(A1)) intersect. Their IntersectSearch procedure

(which we present as Algorithm 6) is a randomized Ellipsoid method for determining
whether there is an intersection between two bounded convex sets: P is only accessible
through membership queries and B provides a separating hyperplane for any point outside
it. They use efficient query-based approaches to uniformly sample from P to obtain suf-
ficiently many samples such that cutting P through the centroid of these samples with a
separating hyperplane from B will significantly reduce the volume of P with high prob-
ability. Their technique thus constructs a sequence of progressively smaller feasible sets
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Ps ⊂ Ps−1 until either the algorithm finds a point in P ∩Q or it is highly unlikely that the
intersection is non-empty.

Our problem reduces to finding the intersection between X−
f and BCt

(A1). Though

X−
f may be unbounded, we are minimizing a cost with bounded equi-cost balls, so we can

instead use the set P0 = X−
f ∩ B2R (A1) (where R = A (x−) > Ct) is a (convex) bounded

subset of X−
f that envelops all of BCt

(A1) and thus the intersection X−
f ∩ BC

t
(A1) if it

exists. We also assume that there is some r > 0 such that there is an r-ball contained in
the convex set X−

f ; i.e., there exists y ∈ X−
f such that Br (A1;y) ⊂ X−

f . We now detail
this IntersectSearch procedure (Algorithm 6).

The backbone of the algorithm is the capability to sample uniformly from an unknown
but bounded convex body by means of the hit-and-run random walk technique intro-
duced by Smith (1996) (Algorithm 7). Given an instance xj ∈ Ps−1, hit-and-run selects
a random direction v through xj (we return to the selection of v in Section 3.2.2). Since
Ps−1 is a bounded convex set, the set Ω =

{
ω > 0

∣
∣ xj + ωv ∈ Ps−1

}
is a bounded interval

indexing all feasible points along direction v through xj. Sampling ω uniformly from Ω
(using rejection sampling) yields the next step of the random walk; xj +ωv. Under the ap-
propriate conditions (see Section 3.2.2), the hit-and-run random walk generates a sample
uniformly from the convex body after O∗

(
D3
)
steps7 (Lovász and Vempala, 2004).

Randomized Ellipsoid Algorithm: We use hit-and-run to obtain 2N samples
{
xj
}

from Ps−1 ⊂ X−
f for a single phase of the randomized ellipsoid algorithm. If any sample xj

satisfies A1

(
xj
)
≤ Ct, then xj is in the intersection of X−

f and BCt
(A1) and the procedure is

complete. Otherwise, we want to significantly reduce the size of Ps−1 without excluding any
of BCt

(A1) so that sampling concentrates toward the intersection (if it exists)—for this we
need a separating hyperplane for BCt

(A1). For any point y /∈ BCt
(A1), the (sub)gradient

of the ℓ1 cost given by
hyd = cd sign

(
yd − xAd

)
, (7)

and is a separating hyperplane for y and BCt
(A1).

To achieve efficiency, we choose a point z ∈ Ps−1 so that cutting Ps−1 through z

with the hyperplane hz eliminates a significant fraction of Ps−1. To do so, z must be
centrally located within Ps−1. We use the empirical centroid of the half of our samples in
R: z = N−1

∑

x∈R x (the other half we will be used in Section 3.2.2). We cut Ps−1 with
the hyperplane hz through z; i.e., Ps = Ps−1 ∩Hz where Hz is the halfspace

Hz =
{

x

∣
∣
∣ x⊤hz ≤ z⊤hz

}

. (8)

As shown by Bertsimas and Vempala, this cut achieves vol (Ps) ≤ 2
3vol

(
Ps−1

)
with high

probability if N = O∗ (D) and Ps−1 is near-isotropic (see Section 3.2.2). Since the ratio of
volumes between the initial circumscribing and inscribing balls of the feasible set is (R/r)D,
the algorithm can terminate after T = O (D log(R/r)) unsuccessful iterations with a high
probability that the intersection is empty.

Because every iteration in Algorithm 6 requires N = O∗ (D) samples, each of which
need K = O∗

(
D3
)
random walk steps, and there are O∗ (D) iterations, the total number

of membership queries required by Algorithm 6 is O∗
(
D5
)
.

7. O∗ (·) denotes the standard complexity notation O (·) without logarithmic terms.

18



Query Strategies for Evading Convex-Inducing Classifiers

3.2.2 Sampling from a Queriable Convex Body

In the randomized Ellipsoid algorithm, random samples are used for two purposes: estimat-
ing the convex body’s centroid and maintaining the conditions required for the hit-and-run
sampler to efficiently generate points uniformly from a sequence of shrinking convex bodies.
Until this point, we assumed the hit-and-run random walk efficiently produces uniformly
random samples from any bounded convex body P accessible through membership queries.
However, if the body is severely elongated, randomly selected directions will rarely align
with the long axis of the body and our random walk will take small steps (relative to the
long axis) and mix slowly. For the sampler to mix effectively, we need the convex body
P to be sufficiently round, or more formally near-isotropic; i.e., for any unit vector v,

Ex∼P

[(
v⊤ (x− Ex∼P [x])

)2
]

is bounded between 1/2 and 3/2 of vol (P).
If the body is not near-isotropic, we must rescale X with an appropriate affine transfor-

mation T so the resulting body P ′ is near-isotropic. With sufficiently many samples from
P we can estimate T as their empirical covariance matrix. Instead, we rescale X implicitly
using a technique described by Bertsimas and Vempala (2004). We maintain a set Q of
sufficiently many uniform samples from the body Ps and in the hit-and-run algorithm
(Algorithm 7) we sample the direction v based on this set. Intuitively, because the samples
in Q are distributed uniformly in Ps, the directions we sample based on the points in Q
implicitly reflect the covariance structure of Ps. This is equivalent to sampling the direction
v from a normal distribution with zero mean the covariance of P.

We must ensure Q is a set of sufficiently many samples from Ps after each cut: Ps ←
Ps−1∩Hzs . To do so, we initially resample 2N points from Ps−1 using hit-and-run—half
of these, R, are used to estimate the centroid zs for the cut and the other half, S, are used
to repopulate Q after the cut. Because S contains independent uniform samples from Ps−1,
those in Ps after the cut constitute independent uniform samples from Ps (i.e., rejection
sampling). By choosing N sufficiently large, our cut will be sufficiently deep and we will
have sufficiently many points to resample Ps after the cut.

Finally, we also need an initial set Q of uniform samples from P0 but, in our problem,
we only have a single point x− ∈ X−

f . Fortunately, there is an iterative procedure for

putting the initial convex set P0 into a near-isotropic position from which we obtain Q.
The RoundingBody algorithm described by Lovász and Vempala (2003) uses O∗

(
D4
)

membership queries to transforms the convex body into a near-isotropic position. We use
this as a preprocessing step for Algorithms 6 and 8; that is, given X−

f and x− ∈ X−
f we

make P0 = X−
f ∩ B2R (A1;x

−) and then use the RoundingBody algorithm to produce

an initial uniform sample Q =
{
xj ∈ P0

}
. These sets are then the inputs to our search

algorithms.

3.2.3 Optimization over ℓ1 Balls

We now revisit the outermost optimization loop (for searching the minimum feasible cost) of
the algorithm and suggest improvements. First, since xA, x− and Q are the same for every
iteration of the optimization procedure, we only need to run the RoundingBody procedure
once as a preprocessing step rather than running it as a preprocessing step every time
IntersectSearch is invoked. The set of samples

{
xj ∈ P0

}
produced by RoundingBody
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Algorithm 8 Convex X−
f Set Search

SetSearch
(
P,Q =

{
xj ∈ P

}
, C−

0 , C+
0 , ǫ
)

x∗ ← x− and t← 0
while C−

t /C
+
t > 1 + ǫ do begin

Ct ←
√

C−
t · C+

t

[x∗,P ′,Q′]← IntersectSearch (P,Q, C)
if intersection found then begin

C−
t+1 ← A (x∗) and C+

t+1 ← C+
t

P ← P ′ and Q ← Q′

else

C−
t+1 ← C−

t and C+
t+1 ← Ct

end if

t← t+ 1
end while

Return: x∗

are sufficient to initialize the IntersectSearch at each stage of the binary search over
Ct. Second, the separating hyperplane h

y
f given by Eq. (7) does not depend on the target

cost Ct but only on xA, the common center of all the ℓ1 balls. In fact, the separating
hyperplane at point y is valid for all ℓ1-balls of cost C < A (y). Further, if C < Ct, we have
BC (A1) ⊂ BCt

(A1). Thus, the final state from a successful call to IntersectSearch for
the Ct-ball as the starting state for any subsequent call to IntersectSearch for all C < Ct.
These improvements are reflected in our final procedure SetSearch in Algorithm 8—the
total number of queries required is also O∗

(
D5
)
.

4. General ℓp Costs

Here we further extend ǫ-IMAC searchability over the family of convex-inducing classifiers
to the full family of ℓp costs for any 0 < p <∞. As we demonstrate in this section, many ℓp
costs are not generally ǫ-IMAC searchable for all ǫ > 0 over the family of convex-inducing
classifiers(i.e., we show that finding an ǫ-IMAC for this family can require exponentially
many queries inD and ǫ). In fact, only the weighted ℓ1 costs are known to have (randomized)
polynomial query strategies when either the positive or negative set is convex.

4.1 Convex Positive Set

Here we explore the ability of MultiLineSearch and K-step MultiLineSearch algo-
rithms presented in Section 3.1 to find solutions to the near-optimal evasion problem for ℓp
cost functions with p 6= 1. Particularly for p > 1 we will be exploring the consequences of
using the MultiLineSearch algorithms using more search directions than just the 2 · D
axis-aligned directions. Figure 3 demonstrates how queries can be used to construct upper
and lower bounds on general ℓp costs. The following Lemma also summarizes well known
bounds on general ℓp costs based on an ℓ1 cost.
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Figure 3: Convex hull for a set of queries and the resulting bounding balls for several ℓp
costs. Each row represents a unique set of positive (red '+' points) and negative
(green '−' points) queries and each column shows the implied upper bound (in
green) and lower bound (in blue) for a different ℓp cost. In the first row, the body
is defined by a random set of 7 queries, in the second, the queries are along the
coordinate axes, and in the third, the queries are around a circle.

Lemma 8 The largest ℓp (p > 1) ball enclosed within an ℓ1 ball has a radius (cost) of D
1−p
p

and for p =∞ the radius is D−1.

4.1.1 Bounding ℓp Balls

In general, suppose we probe along some set of M unit directions and at some point we
have at least one negative point supporting an upper bound of C−

0 and M positive points
supporting at a cost of C+

0 . However, the lower bound provided by those M positive points
is the cost of the largest ℓp cost ball that fits entirely within their convex hull; let’s say this
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cost is C† < C+
0 . In order to achieve ǫ-multiplicative optimality, we need

C−
0

C†
≤ 1 + ǫ .

Expanding this, we need
(
C−
0

C+
0

)(
C+
0

C†

)

≤ 1 + ǫ .

This allows us to break the problem into two parts. The first factor C−
0 /C

+
0 is only in terms

of parameters controlled by the multiline search algorithm whereas the second factor C+
0 /C†

depends only on the shape of the ℓp ball as it captures how well the ball is approximated by
the convex hull of the search directions. These two factors separate our task into choosing
M and Lǫ sufficiently so that their product is less than 1+ ǫ. First we choose factors α ≥ 0
and β ≥ 0 so that (1 + α)(1 + β) ≤ 1 + ǫ. Then we chose M so that

C+
0

C†
= 1 + β

and a parameter ǫ′ = α so that multiline search with M directions will achieve

C−
0

C+
0

= 1 + α .

In doing so, we create a generalized multiline search that is able to achieve ǫ-multiplicative
optimality.

For example in the case of p = 1, we previously saw that choosing M = 2 ·D allows us
to exactly reconstruct the ℓ1 ball so that C+

0 /C
† = 1 (i.e., β = 0). Thus we can just make

α = ǫ and we recover our original multiline search method exactly.

Objective: Below we present a number of results that deal with cases when β > 0. In

this case, what we want to show is that a ratio of
C+

0

C† = 1 + β can be achieved with a
polynomial number of search directions when β ≤ ǫ; otherwise, (1 + α)(1 + β) > 1 + ǫ.
Thus, we will be trying to find how many search directions are required for to achieve

C+
0

C†
≤ 1 + ǫ ,

since this is the highest we can allow this ratio to be. Moreover, since this problem scales
linearly with C+

0 we will simply examine the values of C† that can be achieved for the unit
cost ball (i.e., w.l.o.g. we make C+

0 = 1 and rescale). Thus we will be looking at how many
points are required to achieve:

C† ≥ 1

1 + ǫ
. (9)

We will try to show that only polynomially many are required for at least some values of ǫ.

Lemma 9 If there exists a configuration of M unit search directions with a convex hull
that yields a bound C† for the cost function A then multi-line search algorithms can use
those search directions to achieve ǫ-multiplicative optimality with a query complexity that is

polynomial in M and L
(∗)
ǫ for any

ǫ >
1

C†
− 1 .
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Corollary 10 If there exists a configuration of M unit search directions with a convex
hull that yields a bound C† = 1 for the cost function A then multi-line search algorithms
then multi-line search algorithms can use those search directions to achieve ǫ-multiplicative

optimality with a query complexity that is polynomial in M and L
(∗)
ǫ for any ǫ > 0.

As this corollary reaffirms, for p = 1 using the M = 2 ·D coordinate directions allows
multi-line search algorithms to achieve ǫ-multiplicative optimality for any ǫ > 0 with a

query complexity that is polynomial in M and L
(∗)
ǫ .

4.1.2 Multiline Search for p < 1

A simple result holds here. Namely, since the unit ℓ1 ball bounds any unit ℓp balls with
p < 1 we can achieve C+

0 /C† = 1 using only the 2 · D corners of the hyperoctahedron as
search directions. Thus we can efficiently search for p < 1 for any value of ǫ > 0. Whether
or not the ℓp (p < 1) cost functions can be efficiently searched with fewer search directions
is an open question.

4.1.3 Multiline Search for p > 1

For this case, we can trivially use the ℓ1 bound on ℓp balls as summarized by the following
corollary:

Corollary 11 For 1 < p < ∞ and ǫ ∈
(

D
p−1

p − 1,∞
)

any multi-line search algorithm

can achieve ǫ-multiplicative optimality on Ap using M = 2 ·D search directions. Similarly
for p =∞ and ǫ ∈ (D − 1,∞) any multi-line search algorithm can achieve ǫ-multiplicative
optimality on A∞.

Proof From Lemma 8, the largest co-centered ℓp ball contained within the unit ℓ1 ball has

radius (cost) D
1−p
p (or D for p =∞). The bounds on ǫ then follows from Lemma 9.

Unfortunately, this result only applies for a range of ǫ that grows with D, which is
insufficient for ǫ-IMAC searchability. In fact, for some fixed values of ǫ, there is no query-
based strategy that can bound ℓp costs using polynomially-many queries in Das the following
result formalizes.

Theorem 12 For p > 1, D > 0, any initial bounds 0 < C+
0 < C−

0 on the MAC, and

0 < ǫ < 2
p−1

p − 1 (or 0 < ǫ < 1 for p = ∞), all algorithms must submit at least αD
p,ǫ

membership queries (for some constant αp,ǫ > 1) in the worst case to be ǫ-multiplicatively
optimal on Fconvex,'+' for ℓp costs.

The proof of this theorem is in Appendix C. A consequence of this theorem is that
there is no query-based algorithm that can efficiently find an ǫ-IMAC of any ℓp cost (p > 1)

for any 0 < ǫ < 2
p−1

p (or 0 < ǫ < 1 for p = ∞) on the family Fconvex,'+'. However, from
Theorem 11 and Lemma 9, multiline-search type algorithms efficiently find the ǫ-IMAC of

any ℓp cost (p > 1) for any ǫ ∈
(

D
p−1

p − 1,∞
)

(or D − 1 < ǫ < ∞ for p = ∞). It is

generally unclear if efficient algorithms exist for any values of ǫ between these intervals, but
in the following section we derive a stronger bound for the case of p = 2.
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4.1.4 Multiline Search for p = 2

Theorem 13 For any D > 1, any initial bounds 0 < C+
0 < C−

0 on the MAC, and 0 <

ǫ <
C−

0

C+

0

− 1, all algorithms must submit at least α
D−2

2
ǫ membership queries (where αǫ =

(1+ǫ)2

(1+ǫ)2−1
> 1) in the worst case to be ǫ-multiplicatively optimal on Fconvex,'+' for ℓ2 costs.

The proof of this result is in Appendix D.

This result says that no algorithm can achieve ǫ-multiplicative optimality for ℓ2 costs
for any fixed ǫ > 0 using only polynomially-many queries in D. However, for a fixed D, the
bound provided by Theorem 13 suggests that reasonable approximations may be achievable
αǫ → 1.

It may appear that Theorem 13 contradicts Corollary 11. However, in Corollary 11 only
applies for a range of ǫ that depends on D; i.e., ǫ >

√
D−1. Interestingly, substituting this

lower bound on ǫ into the bound given by Theorem 13, we get that the number of required
queries for ǫ >

√
D − 1 need only be

M ≥
(

(1 + ǫ)2

(1 + ǫ)2 − 1

)D−2

2

=

(
D

D − 1

)D−2

2

which is a monotonically increasing function in D that asymptotes at
√
e ≈ 1.64. Thus,

Theorem 13 and Corollary 11 are in agreement since for ǫ >
√
D − 1, the former only

requires that we need at least 2 queries.

4.2 Convex Negative Set

Algorithm 8 generalizes immediately to all weighted ℓp costs (p ≥ 1) centered at xA since
these costs are convex. For these costs an equivalent separating hyperplane for y can be
used in place of Eq. (7). These are given by the equivalent (sub)-gradients for ℓp cost-balls:

hyp,d = cd sign
(
yd − xAd

)
·
(

|yd − xAd |
A

(c)
p (y)

)p−1

hy∞,d = cd sign
(
yd − xAd

)
· I
{

|yd − xAd | = A(c)
p (y)

}

.

By only changing the cost function A and the separating hyperplane hy used for the half-
space cut in Algorithms 6 and 8, the randomize ellipsoid search can be applied for any

weighted ℓp cost A
(c)
p .

For more general convex costs A, we still have that the set of all points x with A (x) ≤ C
(the sublevel set of cost C) is a subset of the sublevel set of cost D for all D > C; thus, the
separating hyperplanes for the sublevel set at cost D will also be separating hyperplanes for
the sublevel set at cost C. The SetSearch procedure therefore is applicable for any convex
cost function A so long as we can compute the separating hyperplanes of any sublevel set
of A for any point y not in sublevel set8.

8. The sublevel set of any convex function is a convex set (see Boyd and Vandenberghe, 2004) so such a
separating hyperplane always exists but may not be simple to compute.
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For non-convex costs A such as weighted ℓp costs with p < 1, minimizing on a convex
set X−

f is generally a hard problem. However, there may be special cases when minimizing
such a cost can be accomplished efficiently.

5. Conclusions and Future Work

In this paper we study ǫ-IMAC searchability of convex-inducing classifiers. We present
membership query algorithms that efficiently accomplish ǫ-IMAC search on this family.
When the positive class is convex we demonstrate very efficient techniques that outperform
the previous reverse-engineering approaches for linear classifiers. When the negative class
is convex, we apply a randomized Ellipsoid method to achieve efficient ǫ-IMAC search.
If the adversary is unaware of which set is convex, they can trivially run both searches
to discover an ǫ-IMAC with a combined polynomial query complexity. We also show our
algorithms can be efficiently extended to cope with a number of special circumstances. Most
importantly, we demonstrate that these algorithms can succeed without reverse engineering
the classifier. Instead, these algorithms systematically eliminate inconsistent hypotheses
and progressively concentrate their efforts in an ever-shrinking neighborhood of a MAC
instance. By doing so, these algorithms only require polynomially-many queries in spite of
the size of the family of all convex-inducing classifiers.

We also consider general ℓp costs and show that Fconvex is only ǫ-IMAC searchable for
both positive and negative convexity for any ǫ > 0 if p = 1. For 0 < p < 1, the Mul-

tiLineSearch algorithms of Section 3.1 achieve identical results when the positive set is
convex, but the non-convexity of these ℓp costs precludes the use of our randomized Ellipsoid
method. The Ellipsoid method does provide an efficient solution for convex negative sets
when p > 1 (since these costs are convex). However, for convex positive sets, our results
show that for p > 1 there is no algorithm that can efficiently find an ǫ-IMAC for all ǫ > 0.
Moreover, for p = 2 we prove that there is no efficient algorithm for finding an ǫ-IMAC for
any fixed value of ǫ.

By studying ǫ-IMAC searchability, we provide a broader picture of how machine learning
techniques are vulnerable to query-based evasion attacks. Exploring near-optimal evasion is
important for understanding how an adversary may circumvent learners in security-sensitive
settings. In such an environment, system developers are hesitant to trust procedures that
may create vulnerabilities. The algorithms we demonstrate are invaluable tools not for
an adversary to develop better attacks but rather for analysts to better understand the
vulnerabilities of their filters. Our algorithms may not necessarily be easily used by an
adversary since various real-world obstacles would first need to be overcome. Queries may
only be partially observable or noisy and the feature set may only be partially known.
Moreover, an adversary may not be able to query all x ∈ X ; instead their queries must be
legitimate objects (such as email) that are mapped into X . A real-world adversary must
invert the feature-mapping—a generally difficult task. These limitations necessitate further
research on the impact of partial observability and approximate querying on ǫ-IMAC search,
and to design more secure filters. Broader open problems include: is ǫ-IMAC search possible
on other classes of learners such as SVMs (linear in a large possibly infinite feature space)?
Is ǫ-IMAC search feasible against an online learner that adapts as it is queried? Can learners
be made resilient to these threats and how does this impact learning performance?
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Appendix A. Proof of Theorems for MultiLineSearch Algorithms

To analyze the worst case of K-step MultiLineSearch (Algorithm 4), we consider a
malicious classifier that maximizes the number of queries. We refer to the agent that
queries the classifier as the adversary.
Proof of Theorem 5 At each each iteration of Algorithm 4, the adversary choses some
direction, e not yet eliminated from W. Every direction in W is feasible (i.e., could yield
an ǫ-IMAC ) and the malicious classifier, by definition, will make this choice as costly as
possible. During the K steps of binary search along this direction, regardless of which
direction e is selected or how the malicious classifier responds, the candidate multiplicative
gap (see Section 2.2) along e will shrink by an exponent of 2−K ; i.e.,

B−

B+
=

(
C−

C+

)2−K

(10)

log(G′
t+1) = log(Gt) · 2−K (11)

The primary decision for the malicious classifier occurs when the adversary begins querying
other directions beside e. At iteration t, the malicious classifier has 2 options:

Case 1 (t ∈ C1): Respond with '+' for all remaining directions. Here the bounds
candidates B+ and B− are verified and thus the new gap is reduced by an
exponent of 2−K ; however, no directions are eliminated from the search.
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Case 2 (t ∈ C2): Choose at least 1 direction to respond with '−'. Here since
only the value of C− changes, the malicious classifier can chose to respond
to the first K queries so that the gap decreases by a neglibile amount (by
always responding with '+' during the first K queries along e, the gap only
decreases by an exponent of (1 − 2−K)). However, the malicious classifier
must chose some number Et ≥ 1 of directions that will be eliminated.

We conservatively assume that the gap only decreases for case 1, which decouples the
analysis of the queries for C1 and C2 and allows us to upper bound the total number of
queries made by the algorithm. By this assumption, if t ∈ C1 we have Gt = G2−K

t−1 whereas
if t ∈ C2, we have Gt = Gt−1. By analyzing the gap before and after the final iteration T ,
it can be shown that

|C1| =
⌈
Lǫ

K

⌉

(12)

since, for the algorithm to terminate, there must be a total of at least Lǫ binary search
steps made during the case 1 iterations and each case 1 iteration takes exactly K steps.

At every case 1 iteration, the adversary make exactly K + |Wt| − 1 queries where Wt is
the set of feasible directions remaining at the tth iteration. While Wt is controlled by the
malicious classifier, we can apply the bound |Wt| ≤ |W|. Using this and the relation from
Eq. (12), we can bound the number of queries Q1 used in case 1 by

Q1 ≤
∑

t∈C1

(K + |W| − 1)

=

⌈
L

K

⌉

· (K + |W| − 1)

≤
(
L

K
+ 1

)

·K +

⌈
L

K

⌉

· (|W| − 1)

= L+K +

⌈
L

K

⌉

· (|W| − 1) .

For each case 2 iteration, we make exactly K+Et queries and this causes the elimination
of Et ≥ 1 directions; hence, |Wt+1| = |Wt| − Et. A malicious classifier will always make
Et = 1 whenever they use case 2 since that maximally limits how much the adversary
gains. Nevertheless, since case 2 requires the elimination of at least 1 direction, we have
|C2| ≤ |W| − 1 and moreover, regardless of the choice of Et we have

∑

t∈C2
Et ≤ |W| − 1

since each direction can be eliminated no more than once. Thus,

Q2 =
∑

i∈C2

(K + Et)

≤ |C2| ·K + |W| − 1

≤ (|W| − 1) (K + 1) .
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The total number of queries used by Algorithm 4

Q = Q1 +Q2 ≤ L+K +

⌈
L

K

⌉

· (|W| − 1) + (|W| − 1) (K + 1)

= L+

⌈
L

K

⌉

· |W|+K · |W|+ |W| −
⌈
L

K

⌉

− 1

= L+

(⌈
L

K

⌉

+K + 1

)

|W| .

Finally, choosing K = ⌈
√
L⌉ minimizes this expression and using L/⌈

√
L⌉ ≤

√
L and

substituting K into Q’s bound, we have

Q ≤ L+
(

2⌈
√
L⌉+ 1

)

|W| .

Appendix B. Proof of Lower Bounds

Here we give proofs for the lower bound theorems in Section 3.1.2 first giving the proof
for the more complictated multiplicative case followed by a similar proof sketch for the
additive case. For these lower bounds, D is the dimension of the space, A : RD → R+ is any
positive convex function, 0 < C+

0 < C−
0 are initial upper and lower bounds on the MAC ,

and F̂convex,'+' ⊂ Fconvex,'+' is the set of classifiers consistent with the constraints on the
MAC ; i.e., for f ∈ F̂convex,'+' we have X+

f is convex, BC+

0 (A) ⊂ X+
f , and BC−

0 (A) 6⊂ X+
f .

Proof of Theorems 6 and 7 Suppose a query-based algorithm submits N < D + 1
membership queries x1, . . . ,xN ∈ RD to the classifier. For the algorithm to be ǫ-optimal,
these queries must constrain all consistent classifiers F̂convex,'+' to have a common point
among their ǫ-IMAC sets. Suppose that the responses to the queries are consistent with
the classifier f defined as:

f (x) =

{

+1 , if A (x) < C−
0

−1 , otherwise
. (13)

For this classifier, X+
f is convex since A is a convex function, BC+

0 (A) ⊂ X+
f since C+

0 < C−
0 ,

and BC−
0 (A) 6⊂ X+

f since X+
f is the open C−

0 -ball whereas BC−
0 (A) is the closed C−

0 -ball.

Moreover, since X+
f is the open C−

0 -ball, ∄ x ∈ X−
f s.t. A (x) < C−

0 therefore MAC (f ,A) =

C−
0 , and any ǫ-optimal points x′ ∈ ǫ-IMAC (∗) (f ,A) must satisfy C−

0 ≤ A (x′) ≤ (1+ ǫ)C−
0 .

Similarly, any η-optimal points x′ ∈ η-IMAC (+) (f ,A) must satisfy C−
0 ≤ A (x′) ≤ C−

0 + η.
Consider an alternative classifier g that responds identically to f for x1, . . . ,xN but has

a different convex positive set X+
g . Without loss of generality, suppose the first M ≤ N

queries are positive and the remaining are negative. Let G = conv
(
x1, . . . ,xM

)
; that

is, the convex hull of the M positive queries. Now let X+
g be the convex hull of G and

the C+
0 -ball of A: X+

g = conv
(

G ∪ BC+

0 (A)
)

. Since G contains all positive queries and
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C+
0 < C−

0 , the convex set X+
g is consistent with the observed responses, BC+

0 (A) ⊂ X+
g by

definition, and BC−
0 (A) 6⊂ X+

g since the positive queries are all inside the open C−
0 -sublevel

set. Further, since M ≤ N < D + 1, G is contained in a proper linear subspace of RD and
hence int (G) = ∅. Hence, there is always some point from BC+

0 (A) that is on the boundary

of X+
g ; i.e., BC+

0 (A) 6⊂ int (G) because int (G) = ∅ and BC+

0 (A) 6= ∅. Hence, there must

be at least one point from BC+

0 (A) on the boundary of the convex hull of BC+

0 (A) and

G. Hence, MAC (g ,A) = inf
x∈X−

g
[A (x)] = C+

0 . Since the accuracy ǫ <
C−

0

C+

0

− 1, any

x ∈ ǫ-IMAC (∗) (g ,A) must have

A (x) ≤ (1 + ǫ)C+
0 <

C−
0

C+
0

C+
0 = C−

0 ,

whereas any y ∈ ǫ-IMAC (∗) (f ,A) must have A (y) ≥ C−
0 . Thus, ǫ-IMAC (∗) (f ,A) ∩

ǫ-IMAC (∗) (g ,A) = ∅ and we have constructed two convex-inducing classifiers f and g
both consistent with the query responses with no common ǫ-IMAC (∗). Similarly, since
η < C−

0 − C+
0 , any x ∈ η-IMAC (+) (g ,A) must have

A (x) ≤ η + C+
0 < C−

0 − C+
0 + C+

0 = C−
0 ,

whereas any y ∈ η-IMAC (+) (f ,A) must have A (y) ≥ C−
0 . Thus, η-IMAC (+) (f ,A) ∩

η-IMAC (+) (g ,A) = ∅ and so the two convex-inducing classifiers f and g also have no
common η-IMAC (+).

Suppose instead that a query-based algorithm submits N < L
(∗)
ǫ membership queries

(or N < L
(+)
η for the additive case). Recall our definitions: C−

0 is the initial upper bound

on the MAC , C+
0 is the initial lower bound on the MAC , and G

(∗)
t = C−

t /C
+
t is the gap

between the upper bound and lower bound at iteration t (G
(+)
t = C−

t −C+
t for the additive

case). Here, the malicious classifier f responds with

f
(
xt
)
=

{

+1 , if A
(
xt
)
≤
√

C−
t−1 · C+

t−1

−1 , otherwise
. (14)

When the classifier responds with '+', C+
t increases to no more than

√

C−
t−1 · C+

t−1 and so

Gt ≥
√
Gt−1. Similarly when this classifier responds with '−', C−

t decreases to no less than
√

C−
t−1 · C+

t−1 and so again Gt ≥
√
Gt−1. Thus, these responses ensure that at each iteration

Gt ≥
√
Gt−1 and since the algorithm can not terminate until GN ≤ 1+ ǫ, we have N ≥ L

(∗)
ǫ

from Eq. (5) (or in the additive case N ≥ L
(+)
η from Eq. 4). Again we have constructed two

convex-inducing classifiers with consistent query responses but with no common ǫ-IMAC .
The first classifier’s positive set is the smallest cost-ball enclosing all positive queries, while
the second classifier’s positive set is the largest cost-ball enclosing all positive queries but no

negatives. The MAC values of these sets differ by more than a factor of (1+ ǫ) if N < L
(∗)
ǫ

(or, for the additive case, by a difference of more than η if N < L
(+)
η ), so they have no

common ǫ-IMAC .
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Appendix C. Proof of Theorem 12

First we introduce the following lemma for theD-dimensional hypercube graphs—a collection
of 2D nodes of the form (±1,±1, . . . ,±1) where each node has an edge to every other node
that is Hamming distance 1 from it.

Lemma 14 For any 0 < δ < 1/2, to cover a D-dimensional hypercube graph so that every
vertex has a Hamming distance of at most ⌊δD⌋ to some vertex in the covering, the number
of vertices in the covering must be

Q (D,h) ≥ 2D(1−H (δ)) ,

where H (δ) = −δ log2 δ − (1− δ) log(1− δ) is the entropy of δ.

Proof There are 2D vertices in the D-dimensional hypercube graph. Each vertex in the
covering is within a Hamming distance of at most h for exactly

∑h
k=0

(
D
k

)
vertices. Thus,

one needs at least 2D/
(
∑h

k=0

(D
k

))

to cover the hypercube graph. Now we apply the bound

⌊δD⌋
∑

k=0

(
D

k

)

≤ 2H (δ)D

to the denominator, which is valid for any 0 < δ < 1/2.

Lemma 15 The minimizer of the ℓp cost function Ap to any target xA on the halfspace
Hw,b =

{
x
∣
∣ x⊤w ≥ b⊤w

}
can be expressed in terms of the equilavent hyperplane x⊤w ≥ d

parameterized by a normal vector w and displacement d =
(
b− xA

)⊤
w as

{

d · ‖w‖−1
p

p−1

, if d > 0

0 , otherwise
(15)

for all 1 < p <∞ and is {

d · ‖w‖−1
1 , if d > 0

0 , otherwise
(16)

for p =∞.

Proof For 1 < p < ∞, minimizing Ap on the halfspace Hw,b is equivalent to finding a
minimizer for

min
x

1

p

D∑

i=1

|xi|p s.t. x⊤w ≤ d .

Clearly, if d ≤ 0 then the vector 0 (corresponding to xA in the transformed space) trivially
satisfies the constraint and minimizes the cost function with cost 0 which yields the second
case of Eq. (15). For the case d > 0, we construct the Lagrangian

L (x, λ) , 1

p

D∑

i=1

|xi|p − λ
(

x⊤w − d
)

.
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Differentiating this with respect to x and setting that partial derivative equal to zero yields

x∗i = sign(wi) (λ|wi|)
1

p−1 .

Plugging this back into the Lagrangian yields

L (x∗, λ) =
1− p

p
λ

p
p−1

D∑

i=1

|wi|
p

p−1 + λd ,

which we now differentiate with respect to λ and set the derivative equal to zero to yield

λ∗ =

(

d
∑D

i=1 |wi|
p

p−1

)p−1

.

Plugging this solution into the formula for x∗ yields the solution

x∗i = sign(wi)

(

d
∑D

i=1 |wi|
p

p−1

)

|wi|
1

p−1 .

The ℓp cost of this optimal solution is given by

Ap (x
∗) = d · ‖w‖−1

p
p−1

,

which is the first case of Eq. (15).
For p = ∞, once again if d ≤ 0 then the vector 0 trivially satisfies the constraint and

minimizes the cost function with cost 0 which yields the second case of Eq. (16). For the
case d > 0, we use the geometry of hypercubes (the equi-cost balls of a ℓ∞ cost function) to
derive the second case of Eq. (16). For any optimal solution must occur at a point where
the hyperplane given by x⊤w = b⊤w is tangent to a hypercube about xA—this can either
occur along a side (face) of the hypercube or at a corner. However, if the plane is tangent
along a side (face) it is also tangent at a corner of the hypercube. Hence, there is always
an optimal solution at some corner of optimal cost hypercube.

At a corner of the hypercube, we have the following property:

|x∗1| = |x∗2| = . . . = |x∗D| ;

that is, the magnitude of all coordiates of this optimal solution is the same value. Further,
the sign of the optimal solution’s ith coordinate must agree with the sign of the hyperplane’s
ith coordinate, wi. These constraints, along with the hyperplane constraint, lead to the
following formula for an optimal solution:

xi = d · sign(wi)‖w‖−1
1 .

The ℓ∞ cost of these solutions is simply

d · ‖w‖−1
1 .
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For the proof of Theorem 12, we use the orthants (centered at xA)—an orthant is the
D-dimensional generalization of a quadrant in 2-dimensions. There are 2D orthants in a
D-dimensional space. We represent each orthant by it’s canonical representation which is a
vector of D positive or negative ones; i.e.,, the orthant represented by a = (±1,±1, . . . ,±1)
contains the point xA + a and is the set of all points x satisfying:

xi ∈
{

[0,+∞] , if a = +1

[−∞, 0] , if a = −1
.

Proof of Theorem 12 Suppose a query-based algorithm submits N membership queries
x1, . . . ,xN ∈ RD to the classifier. Again, for the algorithm to be ǫ-optimal, these queries
must constrain all consistent classifiers F̂convex,'+' to have a common point among their
ǫ-IMAC sets. The responses described above are consistent with the classifier f defined as

f (x) =

{

+1 , if Ap (x) < C−
0

−1 , otherwise
; (17)

For this classifier, X+
f is convex since Ap is a convex function for p ≥ 1, BC+

0 (Ap) ⊂ X+
f

since C+
0 < C−

0 , and BC−
0 (Ap) 6⊂ X+

f since X+
f is the open C−

0 -ball whereas BC
−
0 (Ap) is

the closed C−
0 -ball. Moreover, since X+

f is the open C−
0 -ball, ∄ x ∈ X−

f s.t. Ap (x) < C−
0

therefore MAC (f ,Ap) = C−
0 , and any ǫ-optimal points x′ ∈ ǫ-IMAC (∗) (f ,Ap) must satisfy

C−
0 ≤ Ap (x

′) ≤ (1 + ǫ)C−
0 .

Now consider an alternative classifier g that responds identically to f for x1, . . . ,xN

but has a different convex positive set X+
g . Without loss of generality suppose the first

M ≤ N queries are positive and the remaining are negative. Here we consider a set which
is a convex hull of the orthants of all M positive queries; that is,

G = conv
(

orth
(
x1
)
∩ X+

f , orth
(
x2
)
∩ X+

f , . . . , orth
(
xM
)
∩ X+

f

)

where orth (x) is some orthant that x lies with in relative to xA (a data point may lie within
more than one orthant but we need only select any orthant that contains it in order to cover
it). By intersecting each data point’s orthant with the set X+

f and taking the convex hull of

these regions, G is convex , contains xA and is a subset of X+
f that is also consistent with all

the query responses of f ; i.e.,, each of the M positive queries are in X+
g and all the negative

queries are in X−
g . Moreover, G is a superset of the convex hull of the M positive queries.

Thus, by finding the largest enclosed ℓp ball within the G, we upper bound MAC (g ,Ap).
We now represent each orthant as a vertex in a D-dimensional hypercube graph—the

Hamming distance between any pair of orthants is the number of different coordinates
in their canonical representations and two orthants are adjacent in the graph if and only
if they have Hamming distance of 1. Using this notion of Hamming distance, we will
seek a K-covering of the hypercube. We refer to the orthants used in G to cover the M
positive queries as covering orthants and their corresponding vertices form a covering of the
hypercube. Suppose the M covering orthants are sufficient for a K covering but not K − 1
covering; then there must be at least one vertex not in the covering that has at least a K
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Hamming distance to every vertex in the covering. This vertex corresponds to an empty
orthant that differs from all covered orthants in at least K coordinates of their canonical
vertices. Without loss of generality, suppose this uncovered orthant has the canonical vertex
of all postitive ones which we scale to C−

0 (+1,+1, . . . ,+1). Consider the hyperplane with
normal vector w = (+1,+1, . . . ,+1) and displacement

d =

{

C−
0 (D −K)

p−1

p if 1 < p <∞
C−
0 (D −K) if p =∞

that specifies the function s (x) = x⊤w− d =
∑D

i=1 xi − d. For this hyperplane, the vertex
C−
0 (+1,+1, . . . ,+1) yields

s
(
C−
0 (+1,+1, . . . ,+1)

)
= C−

0 D − d > 0 .

Also for any orthant a with Hamming distance at least K from this uncovered orthant, we
have that for any x ∈ orth (a) ∩ X+

f , by definition of the orthant and X+
f , the function s

yields

s (x) =
D∑

i=1

xi − d

=
∑

{i | ai=+1}

xi
︸︷︷︸

≥0

+
∑

{i | ai=−1}

xi
︸︷︷︸

≤0

− d .

Since all the terms in the second summation are non-postive, the second sum is at most
0. Further, by maximizing the first summation, we upper bound s (x). The summation
∑

{i | ai=+1} xi (with the constraint that ‖x‖p < C−
0 ) has at most D − K terms and is

maximized by xi = C−
0 (D −K)−1/p (or xi = C−

0 for p =∞) for which the first summation

is upper bounded by C−
0 (D−K)

p−1

p or C−
0 (D−K) for p =∞; i.e., it is upper bounded by

d. Thus we see that

s (x) ≤ 0 .

Thus, this hyperplane seperates the scaled vertex C−
0 (+1,+1, . . . ,+1) from each set orth (a)∩

X+
f where a is the canonical representation of any orthant with a Hamming distance of at

least K. Thus, this hyperplane also seperates the scaled vertex from G by the properties
of the convex hull. Since the displacement C−

0 (D −K) > 0, by applying Lemma 15, this
separating hyperplane upper bounds the cost of the largest ℓp ball enclosed in G as

MAC (g ,Ap) ≤ C−
0 (D −K)

p−1

p · ‖w‖−1
p

p−1

= C−
0

(
D −K

D

) p−1

p

for 1 < p <∞ and

MAC (g ,Ap) ≤ C−
0 (D −K) · ‖1‖−1

1 = C−
0

D −K

D

34



Query Strategies for Evading Convex-Inducing Classifiers

for p = ∞. Since we have an upper bound on the MAC of g and the MAC of f is C−
0 , in

order to have a common ǫ-IMAC between these classifiers, we must have

(1 + ǫ) ≥







(
D

D−K

) p−1

p
, if 1 < p <∞

D
D−K , if p =∞

.

Solving for the value of K required to achieve a desired accuracy of 1 + ǫ we have

K ≤







(1+ǫ)
p

p−1 −1

(1+ǫ)
p

p−1

D , if 1 < p <∞
ǫ

1+ǫD , if p =∞
,

which bounds the size of the covering required to achieve the desired accuracy.

For the case 1 < p <∞, by Lemma 14, there must be

M ≥ exp

{

ln(2) ·D
(

1− H

(

(1 + ǫ)
p

p−1 − 1

(1 + ǫ)
p

p−1

))}

vertices of the hypercube in the covering to achieve any desired accuracy 0 < ǫ < 2
p−1

p − 1,
for which

(1 + ǫ)
p

p−1 − 1

(1 + ǫ)
p

p−1

<
1

2

as required by the Lemma. Moreover, since 0 < H (δ) < 1 for any 0 < δ < 1,

αp,ǫ = exp

{

ln(2)

(

1− H

(

(1 + ǫ)
p

p−1 − 1

(1 + ǫ)
p

p−1

))}

> 1

and we have

M > αD
p,ǫ .

Similarly for p =∞, Lemma 14 can be applied yielding

M ≥ 2D(1−H( ǫ
1+ǫ))

to achieve any desired accuracy 0 < ǫ < 1 (for which ǫ/(1 + ǫ) < 1/2 as required by the

Lemma). Again, by the properties of entropy the constant α∞,ǫ = 2(1−H( ǫ
1+ǫ)) > 1 for

0 < ǫ < 1 and we have

M > αD
∞,ǫ .
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-1
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h

(a)

-1 0 1

-1

0

1

h

R
− h

R

√

h(2R
−
h)φ

(b)

Figure 4: This figure depictions the geometry of spherical caps. (a) A spherical cap of
height h is shown that is created by a plane passing through the sphere. The
green region represents the area of the cap. (b) We see the geometry of the
spherical cap. Notice that the intersecting hyperplane forms a right triangle with
the centroid of the hypershere. The length of the first side of that triangle is
R− h, it’s hypotenuse is length R, and its other side is length

√

h(2R − h). The
half angle φ of the right circular cone can also be used to parameterize the cap.

Appendix D. Proof of Theorem 13

For this proof, we build on previous results for covering hyperspheres. The proof is based on
the following covering number result by Wyner and Shannon which bounds the minimum
number of spherical caps required to cover a hypersphere. A D-dimensional spherical cap
is the region formed by the intersection of a halfspace and a hypersphere facing away from
the center of the hypersphere as depicted in Figure 4. This cap is parameterized by the
hypersphere’s radius R and the half-angle φ about a central radius (through the peak of
the cap) as in the right-most diagram of Figure 4.

Based on these formula, we now derive a bound on the number of spherical caps of
half-angle φ required to cover the sphere, mirroring the result due to Wyner (1965).

Lemma 16 (Result based on Wyner 1965) Covering the surface of D-dimensional
hypersphere of radius R requires at least

(
1

sinφ

)D−2

spherical caps of half-angle φ.

Proof In Capabilities of Bounded Discrepancy Decoding, Wyner showed that the minimal
number, M , of spherical caps of half-angle φ required to cover D-dimensional hypersphere
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of radius R is given by

M ≥ D
√
πΓ
(
D+1
2

)

(D − 1)Γ
(
1 + D

2

)

[∫ φ

0
sinD−2(t)dt

]−1

.

This result follows directly from computing the surface area of the hypersphere and the
spherical caps.

We continue by lower bounding the above integral for a looser but more interpretable
bound. Integrals of the form

∫ φ
0 sinD(t)dt also arise in computing the volume of a spherical

cap. This volume (and thus the integral) can be bounded by enclosing the cap within a
hypersphere; cf. Ball (1997). This yields the following bound:

∫ φ

0
sinD(t)dt ≤

√
πΓ
(
D+1
2

)

Γ
(
1 + D

2

) · sinD φ .

Using this bound on the integral, our bound on the size of the covering is

M ≥ D
√
πΓ
(
D+1
2

)

(D − 1)Γ
(
1 + D

2

)

[√
πΓ
(
D−1
2

)

Γ
(
D
2

) · sinD−2 φ

]−1

.

Now using properties of the gamma function, it can be shown that
Γ(D+1

2 )Γ(D
2 )

Γ(1+D
2
)Γ(D−1

2
)
= D−1

D

so that after canceling terms we arrive at our result:

M ≥
(

1

sinφ

)D−2

.

Proof of Theorem 13 Suppose a query-based algorithm submits N < D+1 membership
queries x1, . . . ,xN ∈ RD to the classifier. For the algorithm to be ǫ-optimal, these queries
must constrain all consistent classifiers F̂convex,'+' to have a common point among their
ǫ-IMAC sets. Suppose that all the responses are consistent with the classifier f defined as

f (x) =

{

+1 , if A2 (x) < C−
0

−1 , otherwise
; (18)

For this classifier, X+
f is convex since A2 is a convex function, BC+

0 (A2) ⊂ X+
f since C+

0 <

C−
0 , and BC−

0 (A2) 6⊂ X+
f since X+

f is the open C−
0 -ball whereas BC−

0 (A2) is the closed

C−
0 -ball. Moreover, since X+

f is the open C−
0 -ball, ∄ x ∈ X−

f s.t. A2 (x) < C−
0 therefore

MAC (f ,A2) = C−
0 , and any ǫ-optimal points x′ ∈ ǫ-IMAC (∗) (f ,A2) must satisfy C−

0 ≤
A2 (x

′) ≤ (1 + ǫ)C−
0 .

Now consider an alternative classifier g that responds identically to f for x1, . . . ,xN

but has a different convex positive set X+
g . Without loss of generality suppose the first

M ≤ N queries are positive and the remaining are negative. Let G = conv
(
x1, . . . ,xM

)
;
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that is, the convex hull of the M positive queries. We will assume xA ∈ G since if it
is not, then we constuct the set X+

g as in the proof for Theorems 7 and 6 above and

achieve MAC (f ,A2) = C+
0 thereby showing our desired result. Now consider the points

zi = C−
0

xi

A2 (xi)
; i.e.,, the projection of each of the positive queries onto the surface of the ℓ2

ball BC−
0 (A2). Since each positive query lies along the line between xA and its projection zi,

by convexity and the fact that xA ∈ G, we have G ⊂ conv
(
z1, z2, . . . , zM

)
. We will call this

enlarged hull Ĝ. TheseM projected points
{
zi
}
must form a covering of the C−

0 -hypersphere
as the locii of caps of half-angle φ∗ = arccos

(
(1 + ǫ)−1

)
. If not, then there exists some point

on the surface of this hypersphere that is at least an angle φ∗ from all zi points and the
resulting φ∗-cap centered at this uncovered point is not in Ĝ (since a cap is defined as the
intersection of the hypersphere and a halfspace). Moreover, by definition of the φ∗-cap, it
achieves a minimal ℓ2 cost of C−

0 cosφ∗. Thus, if we fail to achieve a φ∗-covering of the
C−
0 -hypersphere, the alternative classifier g has MAC (g ,A2) < C−

0 cosφ∗ = C−
0 /(1 + ǫ)

and any x ∈ ǫ-IMAC (∗) (g ,A2) must have

A2 (x) ≤ (1 + ǫ)MAC < (1 + ǫ)
C−
0

1 + ǫ
= C−

0 ,

whereas any y ∈ ǫ-IMAC (∗) (f ,A) must have A (y) ≥ C−
0 . Thus, we would have ǫ-IMAC (∗) (f ,A)∩

ǫ-IMAC (∗) (g ,A) = ∅ and thus fail to achieve ǫ-multiplicative optimality. Thus, we have
shown that an φ∗-covering is necessary for ǫ-multiplicative optimality. However, from
Lemma 16, to have a φ∗-covering we must have

M ≥
(

1

sinφ∗

)D−2

.

Using the trigonometric identity sin (arccos(x)) =
√
1− x2 we can substitute for φ∗ and

find

M ≥




1

sin
(

arccos
(

1
1+ǫ

))





D−2

≥
(

(1 + ǫ)2

(1 + ǫ)2 − 1

)D−2

2

.
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