SCP for trajectory optimization

- Basic problem
 - minimize\(_{\text{traj}}\) path_length + other costs
 - subject to pose constraints, joint limits, “no collisions”

- Why use optimization for planning?
 - Solve high-DOF problems
 - Smooth solutions
 - Encode preferences
 - It’s wicked fast

- Why SCP rather than some other descent method?
 - Deals with hard constraints and discontinuous costs stably and robustly
 - Solver isn’t the bottleneck anyway
SCP in general

minimize \(f(x) \)
subject to \(g(x) \leq 0 \)

where \(f, g \), may not be convex

- repeat until convergence:
 - convexify objective and constraints
 - solve convex approximation to problem
 - recalculate actual objective
 - if objective decreased
 - shrink trust region
 - else
 - accept update
Non-overlap constraints

- Any kind of collision cost/constraint is non-convex, but we can locally approximate it as convex
 - simple example: consider constraint $x \notin C$

- For convex C, this is an “OR” of linear constraints
- Approximation: only impose constraint/cost from closest side to current x
Signed distance

- distance(shape1, shape2) = length of shortest translation that puts them in contact. (for non-overlapping shapes)
- penetration_depth(shape1, shape2) = length of shortest translation that takes them out of contact (for overlapping shapes)
- signed_distance(shape1, shape2) =
 - if overlapping: - penetration_depth
 - else: + distance

There are efficient algorithms for convex shapes, based on considering Minkowski difference
- GJK: find if convex set contains the origin
- EPA: find distance from origin to exterior
Collision cost

- Decompose the robot into convex parts
- Cost:
 \[\sum_t \sum_{i,j} |d_{safe} - \text{signeddist}(\text{part}_i, \text{obstacle}_j)|^+ \]
- Convexification
 - detect all near-collisions
 - for each near-collision, linearize position of closest point using Jacobian

\[\Delta p = J \Delta \theta \]
\[\Delta d = \hat{n} : \dot{J} \Delta \theta \]
Two problems

- Need to make collision cost high enough to get out of all collisions
 - solution: increase collision cost coefficient
- Need to make sure trajectory is continuous-time safe
 - solution: subdivide trajectory in collision intervals
Two problems

- Need to make collision cost high enough to get out of all collisions
 - solution: increase collision cost coefficient
 - since it’s an L1 penalty, cost \rightarrow zero for finite coeff
- Need to make sure trajectory is **continuous-time** safe
 - solution: subdivide trajectory in collision intervals
Two problems

- Need to make collision cost high enough to get out of all collisions
 - solution: increase collision cost coefficient
 - since it’s an L1 penalty, cost -> zero for finite coeff
- Need to make sure trajectory is **continuous-time** safe
 - solution: subdivide trajectory in collision intervals
while true:
 do sqp optimization
 if trajectory is not discrete-time safe:
 increase penalty parameter
 continue
 if traj is not continuous-time safe:
 subdivide collision intervals
 continue
 break
Demo videos
How to make SCP fast

- Convexification
 - If func evaluation is expensive, use analytic gradients
- Solving
 - Warm-start
 - Use a fast solver that exploits sparsity (any trajectory problem has banded-diagonal structure)
- Fast convergence
 - Use adaptive trust region adjustment

 If exact_improvement > 0.2 * approx_improvement:
 expand trust region
 Else:
 shrink trust region
Robot LfD: comparison of techniques

- Inverse Optimal Control
 - Learn the objective function from human demonstrations, then do optimal control
 - e.g. Abbeel & Ng, 2004

- Trajectory learning
 - Learn a trajectory, the control inputs that achieve it, and a dynamics model
 - e.g. Abbeel, Coates, and Ng 2010

- Behavioral cloning
 - Learn mapping between states and actions
 - e.g. Calinon, Guenter, and Billard 2007
 - the following work
When can’t we use traditional planning & opt. ctrl?

- Planning problem is hard
 - state space is big and you don’t get any gradient info
 - e.g. with deformable objects like rope or cloth
- Can’t simulate
 - e.g. we don’t want to do a fluid simulation to figure out how to pour liquid
- Can simulate, but unable to perceive the full state
 - e.g. crumpled up clothing article
Generalizing trajectories

- Abstract problem: given a bunch of demonstrations of a task, (scene_1, traj_1), (scene_2, traj_2) ..., learn to generate a correct trajectory given a new scene
Knot tying

- very hard to program
- To my knowledge, no one has gotten a robot to autonomously and robustly tie knots with a closed-loop procedure
- The most basic problem:

 given a demonstrated motion on this rope...

 generate an appropriate motion for this rope
Cartoon Problem Setting
Cartoon Problem Setting

demonstration: --- trajectory
Train situation:

Test situation:

Demonstration: --- trajectory

How to perform action here?
Cartoon Problem Setting

Train situation:

Test situation:

demonstration: --- trajectory

How to perform action here?
Cartoon Problem Setting

Train situation:

Test situation:

How to perform action here?

demonstration: --- trajectory
Cartoon Problem Setting

Train situation:

Test situation:

demonstration: ____ trajectory

How to perform action here?
Cartoon Problem Setting

Train situation:

Test situation:

demonstration: --- trajectory

How to perform action here?
Cartoon Problem Setting

Train situation:

Test situation:

How to perform action here?

demonstration: --- trajectory
Cartoon Problem Setting

Train situation:

Test situation:

demonstration: --- trajectory

How to perform action here?

Wednesday, October 31, 12
Cartoon Problem Setting

Train situation:

Test situation:

\[f : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \]

Samples of \(f \) vs. \(\text{demonstration: --- trajectory} \)

How to perform action here?
Cartoon Problem Setting

Train situation:
Samples of $f : \mathbb{R}^2 \rightarrow \mathbb{R}^2$

demonstration: --- trajectory

Test situation:
How to perform action here?
Cartoon Problem Setting

Train situation:

Test situation:

Samples of $f : \mathbb{R}^2 \rightarrow \mathbb{R}^2$

demonstration: --- trajectory

How to perform action here?
Cartoon Problem Setting

Train situation:

Test situation:

demonstration: --- trajectory

Samples of \(f : \mathbb{R}^2 \to \mathbb{R}^2 \)

How to perform action here?
Thin plate splines

- Global smoothness is very important, since this function will determine the gripper trajectory and orientation
- Thin plate splines: regularize function by Frobenius norm of second derivatives matrix

\[J(f) = \sum_i (y_i - f(x_i))^2 + \lambda \int d^3x \| D_2 f(x) \|^2 \]

- Kernel expansion (1D):

\[f(x) = \sum_{i=1}^{m} a_i K(x_i, x) + b^\top x + c, \]

\[K(x, y) = \begin{cases} c_0 r^{4-d} \ln r, & d = 2 \text{ or } d = 4 \\ c_1 r^{4-d}, & \text{otherwise} \end{cases} \quad \text{with } r = \| x - y \|_2.\]
Knot tying procedure

- Look up nearest demonstration
 \[\text{ClosestDemoRope} = \arg \min_i \text{dist}(\text{DemoRope}_i, \text{NewRope}) \]
- Fit a non-rigid transformation \(f \) that maps from ClosestDemoRope to NewRope
- Apply \(f \) to the end-effector trajectory (positions and orientations) to get a “warped” trajectory
- Execute warped trajectory
Visualization during knot tie
Point cloud registration

- Find a non-rigid transformation between two point clouds
- Given two point clouds X, Y, find a non-rigid transformation f that minimizes $\text{dist}(f(X), Y)$
 - for some meaningful distance measure $\text{dist}(.)$ on unorganized point clouds
- TPS-RPM Algorithm (Chui & Ragnaran, 2003)
 - Correspondence: find matrix of correspondences between X and Y points
 - $C_{ij} = \text{correspondence between } x_i \text{ and } y_j$
 - Fit thin plate spline transformation that maps each x_i to weighted sum of points y_j it corresponds to
Application to other tasks

- Want to apply this method to a wide assortment of everyday tasks. e.g. in the kitchen:
 - pour, open container, pour, sprinkle, dip, stir, scoop, skewer, unskewer, stack, toss, cover, uncover, press, shake, grind, dump out, slice
- Still need to use non-rigid registration, even if the objects themselves are rigid