Velocity Motion Model

Pieter Abbeel
UC Berkeley EECS

Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics
Velocity Motion Model

- Assumes:
 - Can control robot through two velocities:
 - Translational velocity v
 - Rotational velocity ω

Figure 5.3 The velocity motion model, for different noise parameter settings.
Sampling from Velocity Motion Model

\[\hat{v} = v + \text{sample}(\alpha_1 v^2 + \alpha_2 \omega^2) \]
\[\hat{\omega} = \omega + \text{sample}(\alpha_3 v^2 + \alpha_4 \omega^2) \]
\[\hat{\gamma} = \text{sample}(\alpha_5 v^2 + \alpha_6 \omega^2) \]
\[x' = x + \frac{\hat{v}}{\hat{\omega}} (\sin(\theta + \hat{\omega} \Delta t) - \sin(\theta)) \]
\[y' = y + \frac{\hat{v}}{\hat{\omega}} (\cos(\theta) - \cos(\theta + \hat{\omega} \Delta t)) \]
\[\theta' = \theta + \hat{\omega} \Delta t + \hat{\gamma} \Delta t \]

\text{sample}(v)\text{ provides a sample from a distribution with mean zero and variance } v
Samples from Velocity Motion Model

Figure 5.4 Sampling from the velocity motion model, using the same parameters as in Figure 5.3. Each diagram shows 500 samples.