SEIF, EnKF, EKF SLAM

Pieter Abbeel
UC Berkeley EECS
Information Filter

- From an analytical point of view == Kalman filter

- Difference: keep track of the inverse covariance rather than the covariance matrix [matter of some linear algebra manipulations to get into this form]

- Why interesting?
 - Inverse covariance matrix = 0 is easier to work with than covariance matrix = infinity (case of complete uncertainty)
 - Inverse covariance matrix is often sparser than the covariance matrix --- for the “insiders”: inverse covariance matrix entry (i,j) = 0 if \(x_i \) is conditionally independent of \(x_j \) given some set \(\{x_k, x_l, \ldots\} \)
 - Downside: when extended to non-linear setting, need to solve a linear system to find the mean (around which one can then linearize)

- See Probabilistic Robotics pp. 78-79 for more in-depth pros/cons and Probabilistic Robotics Chapter 12 for its relevance to SLAM (then often referred to as the “sparse extended information filter (SEIF)”)
Represent the Gaussian distribution by samples

- Empirically: even 40 samples can track the atmospheric state with high accuracy with enKF
- \(\leftarrow \rightarrow \) UKF: \(2 \times n \) sigma-points, \(n = 10^6 \) + then still forms covariance matrices for updates

The intellectual innovation:

- Transforming the Kalman filter updates into updates which can be computed based upon samples and which produce samples while never explicitly representing the covariance matrix

Ensemble Kalman filter (enKF)
KF

Keep track of μ, Σ

Prediction:

\[
\hat{\mu}_t = A_t \mu_{t-1} + B_t u_t \\
\hat{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + R_t
\]

Correction:

\[
K_t = \hat{\Sigma}_t C_t^T (C_t \hat{\Sigma}_t C_t^T + \bar{Q}_t)^{-1} \\
\mu_t = \mu_{t-1} + K_t (z_t - C_t \mu_{t-1}) \\
\Sigma_t = (I - K_t C_t) \hat{\Sigma}_t
\]

Return μ_t, Σ_t

enKF

Keep track of ensemble $[x_1, \ldots, x_N]$

Can update the ensemble by simply propagating through the dynamics model + adding sampled noise

?
enKF correction step

- **KF:**
 \[
 K_t = \Sigma_t C_t^T (C_t \Sigma_t C_t^T + Q_t)^{-1}
 \]
 \[
 \mu_t = \mu_t + K_t (z_t - C_t \mu_t)
 \]
 \[
 \Sigma_t = (I - K_tC_t)\Sigma_t
 \]

- Current ensemble \(X = [x_1, \ldots, x_N]\)

- Build observations matrix \(Z = [z_t + v_1 \ldots z_t + v_N]\) where \(v_i\) are sampled according to the observation noise model

- Then the columns of
 \[
 X + K_t(Z - C_t X)
 \]
 form a set of random samples from the posterior

Note: when computing \(K_t\), leave \(\Sigma_t\) in the format
\[
\Sigma_t = [x_1-\mu_t \ldots x_N-\mu_t] [x_1-\mu_t \ldots x_N-\mu_t]^T
\]
How about C?

- Indeed, would be expensive to build up C.
- However: careful inspection shows that C only appears as in:
 - $C X$
 - $C \sum C^T = C X X^T C^T$

- → can simply compute $h(x)$ for all columns x of X and compute the empirical covariance matrices required

- [details left as exercise]
Are the columns of \(X + K^t (Z - C^t X) \) really sampled from \(N(\mu^t, \Sigma_t) \)?

One column:
\[
y^{(i)} = x^{(i)} + k^t (z^{(i)} + u^{(i)} - C_t x^{(i)})
\]
where
\[
x^{(i)} \sim N(\mu^t, \Sigma_t) \quad u^{(i)} \sim N(0, \Theta_t)
\]

1. \[
E[y^{(i)}] = \mu^t + k^t (z^t + o - C_t \mu^t)
\]
\[
= \mu^t + k^t (z^t - C_t \mu^t)
\]
\[
= \mu^t
\]

2. \[
E\left[\begin{pmatrix} y^{(i)} - E[y^{(i)}] \\ E[y^{(i)}] - E[y^{(i)}]^T \end{pmatrix} \right]
\]
\[
= E\left[\begin{pmatrix} \left(x^{(i)} + k^t (z^{(i)} + u^{(i)} - C_t x^{(i)}) - (\mu^t + k^t (z^t - C_t \mu^t)) \right) \\ \left(\frac{1}{2} \right) \end{pmatrix} \right]
\]
\[
= E\left[\begin{pmatrix} (I - K_t C_t)(z^{(i)} - \mu^t) + k^t u^{(i)} \end{pmatrix} \right] \left(\begin{pmatrix} (I - K_t C_t)^T \end{pmatrix} \right)
\]

\(u^{(i)} \) and \(x^{(i)} \) independent

\[
= E\left[(I - K_t C_t)(z^{(i)} - \mu^t)(z^{(i)} - \mu^t)^T (I - K_t C_t)^T \right] + E\left[k^t u^{(i)}(u^{(i)})^T k^T \right]
\]
\[
= (I - K_t C_t) \Sigma_t (I - K_t C_t)^T + K_t Q_t K^T
\]
\[
= \Sigma_t + K_t C_t \Sigma_t K_t^T - K_t C_t \Sigma_t K_t^T + K_t Q_t K^T
\]
\[
K_t = \Sigma_t C_t (C_t \Sigma_t C_t + Q_t)^{-1}
\]
\[
= \Sigma_t + \Sigma_t C_t K_t^T - K_t C_t \Sigma_t - \Sigma_t C_t K_t^T
\]
\[
= \Sigma_t - K_t C_t \Sigma_t = \Sigma_t \quad Q.E.D.
\]
References for enKF

- Mandel, 2007 “A brief tutorial on the Ensemble Kalman Filter”
- Evensen, 2009, “The ensemble Kalman filter for combined state and parameter estimation”
KF Summary

- Kalman filter exact under linear Gaussian assumptions
- Extension to non-linear setting:
 - Extended Kalman filter
 - Unscented Kalman filter
- Extension to extremely large scale settings:
 - Ensemble Kalman filter
 - Sparse Information filter
- Main limitation: restricted to unimodal / Gaussian looking distributions
- Can alleviate by running multiple XKFs + keeping track of the likelihood; but this is still limited in terms of representational power unless we allow a very large number of them
EKF/UKF SLAM

- Now map = location of landmarks (vs. gridmaps)

Transition model:
- Robot motion model; Landmarks stay in place
Simultaneous Localization and Mapping (SLAM)

- In practice: robot is not aware of all landmarks from the beginning

- Moreover: no use in keeping track of landmarks the robot has not received any measurements about

 → Incrementally grow the state when new landmarks get encountered.
Simultaneous Localization and Mapping (SLAM)

- Landmark measurement model: robot measures \([x_k; y_k]\), the position of landmark \(k\) expressed in coordinate frame attached to the robot:

 \[
 h(n_R, e_R, \theta_R, n_k, e_k) = [x_k; y_k] = R(\theta) ([n_k; e_k] - [n_R; e_R])
 \]

- Often also some odometry measurements

 - E.g., wheel encoders

 - As they measure the control input being applied, they are often incorporated directly as control inputs (why?)
Victoria Park Data Set

[courtesy by E. Nebot]
Victoria Park Data Set Vehicle

[courtesy by E. Nebot]
Data Acquisition

[courtesy by E. Nebot]
Estimated Trajectory

[courtesy by E. Nebot]
EKF SLAM Application

[courtesy by J. Leonard]
EKF SLAM Application

odometry

estimated trajectory

[courtesy by John Leonard]
Landmark-based Localization
EKF-SLAM: practical challenges

- Defining landmarks
 - Laser range finder: Distinct geometric features (e.g. use RANSAC to find lines, then use corners as features)
 - Camera: “interest point detectors”, textures, color, …

- Often need to track multiple hypotheses
 - Data association/Correspondence problem: when seeing features that constitute a landmark --- Which landmark is it?
 - Closing the loop problem: how to know you are closing a loop?
 - Can split off multiple EKFs whenever there is ambiguity;
 - Keep track of the likelihood score of each EKF and discard the ones with low likelihood score

- Computational complexity with large numbers of landmarks.