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Posterior Collapse and  
Latent Variable Non-identifiability



The Power of Deep Generative Models

• Unsupervised representation learning: Extract meaningful latent variable


• Density estimation; Reconstruct input; Generate new samples

[Kim et al. (Biorxiv, 2020)]



Variational Autoencoders

Weng (Lil’Log, 2018)



Posterior Collapse

• The model fits well: Good predictive likelihood; Generate good new samples.


• Posterior is equal to the prior: Non-informative; Useless as representations.

Ideal Reality
Jha et al. (CVPR, 2018)



We have blamed many aspects of VAE for collapse

• Decoder is too powerful (Li+ 2019)


• The prior biases us (Higgins+ 2016)


• Approximate inference (Bowman+ 2015; Kingma+ 2016; Sønderby+ 2016)


• Training procedure; the order of parameter updates (He+ 2019)


• Local minima of optimization (Lucas+ 2019)


• Information preference (Chen+ 2016)



We have invented many ways to try to fix it

• Beta VAE (Higgins+ 2016)


• VampPrior (Tomczak+ 2017)


• Lagging inference (He+ 2019)


• Semi-amortized training (Kim+ 2018)


• Threshold the KL to prior (Li+ 2019)



Posterior Collapse and Latent Variable Identifiability

• What is it? Why it happens? Is it new?


• Can we fix it? Do we pay a price? Does it work?

Posterior collapse is a problem of latent variable non-identifiability.



Takeaways first

• Posterior collapse is a problem of latent variable non- identifiability.


• It is not specific to the use of neural networks or variational inference 
algorithms in VAE. Rather, it is an intrinsic issue of the model and the dataset.


• We propose a class of latent-identifiable variational autoencoders 
(LIDVAE) via Brenier maps to resolve latent variable non-identifiability and 
mitigate posterior collapse.


• Identifiability used to be mostly of theoretical interest, but it turns out to have 
important practical implications in modern machine learning.



Modeling high-dimensional data with VAE

• A variational autoencoder (VAE) assumes each datapoint  is generated by 
the latent variable  with parameters  
 




• Infer  and posterior  by maximum (marginal) likelihood with 
variational approximation 
 

xi
zi θ

zi ∼ p(zi), xi | zi ∼ p(xi | zi ; θ) = EF(xi | fθ(zi)) .

θ p(zi | xi; θ)

θ* = argmax p(x |θ),
q(zi | xi; θ) = argmin𝒬KL(q(zi | xi; θ) | |p(zi | xi; θ))



Examples of Variational Autoencoders

• Variational Autoencoder (VAE)


• Example: Gaussian VAE


• Example: Bernoulli mixture VAE



Posterior Collapse: What is it?

• Posterior collapse is a phenomenon where the posterior of the latents in a 
VAE is equal to its uninformative prior

Ideal Reality
Jha et al. (CVPR, 2018)



Posterior Collapse: What are the essential conditions?

• Let’s abstract away approximate inference


• Consider the ideal case where the variational approximation is exact.


• Posterior collapse can happen in the absence of variational approximation.



Latent Variable Non-identifiability

• Definition (Latent variable non-identifiability) 

• Given a likelihood function , a parameter value , and a 
dataset , the latent variable  is non-identifiable if  
 

p(x, z; θ) θ = ̂θ
x = (x1, …, xn) z

p(x |z = z̃′￼; ̂θ) = p(x |z = z̃; ̂θ) ∀z̃′￼, z̃ ∈ 𝒵 .



Posterior Collapse iff Latent Variable Non-identifiability 

• Theorem (Latent variable non-identifiability  Posterior collapse) 

• The latent variables  are non-identifiable at  if and only if the posterior 
of  collapses, .


• Proof: One line proof due to the Bayes rule


•

⇔

z ̂θ
z p(z |x; ̂θ) = p(z)

p(z |x; ̂θ) ∝ p(z)p(x |z; ̂θ) = p(z)p(x; ̂θ) ∝ p(z)



Posterior Collapse iff Latent Variable Non-identifiability 

• It happens with exact inference.


• It happens in classical not-so-flexible models.


• It doesn’t have to involve neural network.


• It happens with global optima.


• It happens with both local and global latent variables.



Posterior Collapse in Gaussian Mixture VAE

• Gaussian Mixture VAE (GMVAE) 
p(zi) = Categorical(1/K), p(wi |zi) = 𝒩(μzi

, Σzi
), p(xi |wi; θ) = 𝒩( fθ(wi), σ2 ⋅ Im)

Latent variable is non-identifiable Latent variable is identifiable



Posterior Collapse in Gaussian Mixture Model

• Gaussian mixture model (GMM) 
p(α) = Beta(α; 5,5), p(xi |α; θ) = α ⋅ 𝒩(xi; μ1, σ2

1) + (1 − α) ⋅ 𝒩(xi; μ2, σ2
2)



Posterior Collapse in Probabilistic PCA

• Probabilistic PCA (PPCA) 
 

 


• (Top):  non-identifiable 


• (Bottom):  identifiable

p(zi) = 𝒩(zi; 0,I2),
p(xi |zi; θ) = 𝒩(xi; z⊤

i w, σ2 ⋅ I5)

z1

z1



Posterior Collapse in Probabilistic PCA

• Probabilistic PCA (PPCA) 


• The latent variable becomes closer to non-identifiable with larger 


• The posterior collapses more.

p(zi) = 𝒩(zi; 0,I2), p(xi |zi; θ) = 𝒩(xi; z⊤
i w, σ2 ⋅ I5)

σ



Posterior Collapse: Can we fix it?

• Make latent variables identifiable in VAE.


• A variational autoencoder (VAE) assumes each datapoint  is generated by the latent variable 
, 

 



• Constructing latent-identifiable VAE thus amounts to constructing an injective likelihood 
function for VAE. 


• The construction is based on a few building blocks of linear and nonlinear injective 
functions, then composed into an injective likelihood  mapping from  to . 


•

xi
zi

xi ∼ p(zi), xi | zi ∼ p(xi | zi ; θ) = EF(xi | fθ(zi)) .

p(xi |zi; θ) 𝒵d 𝒳m



The building blocks of LIDVAE: Injective functions  

• Linear injective functions 

• Left multiplication by matrix  where  has full column rank 

• Nonlinear injective function 

• Brenier map (aka monotone transport map): gradient of a convex function


• Guaranteed to be bijective: derivative is the Hessian of a convex function (positive 
semidefinite and has a nonnegative determinant)


• Parametrizable by neural networks using input convex neural networks (ICNN)


• Other options can work too, e.g. normalizing flows

β⊤ β



Latent-Identifiable VAE (LIDVAE)

• We construct injective likelihoods for LIDVAE by composing injective functions.


• Vanilla VAE 



• Latent-Identifiable VAE 



•  and  are continuous Brenier maps. (Nonlinear injective)


• The matrix  is a -dimensional matrix  with full row rank. (Linear injective)

zi ∼ p(zi), xi | zi ∼ p(xi | zi ; θ) = EF(xi | fθ(zi)) .

zi ∼ p(zi), xi |zi ∼ p(xi | zi ; θ) = EF(xi |g2,θ(β⊤ g1,θ(zi)))

g1,θ : ℝK → ℝK g2,θ : ℝD → ℝD

β K × D (D ≥ K)



Properties of LIDVAE

• Latent-identifiable VAE (LIDVAE) 



• Properties


• (Identifiability) The latent variable  is identifiable in LIDVAE i.e. for all , we 
have 


• (Flexibility) For any VAE-generated data distribution, there exists an LIDAVE that can 
generate the same distribution. 

zi ∼ p(zi), xi |zi ∼ p(xi | zi ; θ) = EF(xi |g2,θ(β⊤ g1,θ(zi)))

zi i ∈ {1,…, n}
p(xi |zi = z̃′￼; θ) = p(xi |zi = z̃; θ) ⇒ z̃′￼ = z̃, ∀z̃′￼, z̃, θ .



Inference in LIDVAE

• Inference in LIDVAE is identical to the classical VAE, as they differ only in parameter constraints.


• LIDVAE is a drop-in replacement for VAE. 


• Both have the same capacity and share the same inference algorithm, but LIDVAE is 
identifiable and does not suffer from posterior


• The price we pay for LIDVAE is computational. 

• The generative model (i.e. decoder) is parametrized using the gradient of a neural network


• Its optimization thus requires calculating gradients of the gradient of a neural network,


• It increases the computational complexity and can sometimes challenge optimization. 



Example: Latent-Identifiable Mixture VAE

• Mixture VAE (MVAE) 
 
 




• Latent-Identifiable Mixture VAE 
(LIDMVAE) 
 

wi ∼ Categorical(1/K),
zi |wi ∼ EF(β⊤

1 wi; γθ),
xi |zi ∼ EF( fθ(zi))

wi ∼ Categorical(1/K),
zi |wi ∼ EF(β⊤

1 wi; γθ),
xi |zi ∼ EF(g2,θ(β⊤

2 g1,θ(zi)))



Example: Latent-Identifiable Sequential VAE

• Sequential VAE (SVAE) 
 
 




• Latent-Identifiable Sequential VAE 
(LIDSVAE) 
 

zi ∼ p(zi),
xi |zi, x<i ∼ EF( fθ([zi, hθ(x<i)]))

zi ∼ p(zi),
xi |zi, x<i ∼ EF(g2,θ(β⊤

2 g1,θ([zi, hθ(x<i)])))



LIDVAE: It works!



Takeaways

• Posterior collapse is a problem of latent variable non- identifiability.


• It is not specific to the use of neural networks or variational inference 
algorithms in VAE. Rather, it is an intrinsic issue of the model and the dataset.


• We propose a class of latent-identifiable variational autoencoders 
(LIDVAE) via Brenier maps to resolve latent variable non-identifiability and 
mitigate posterior collapse.


• Identifiability used to be mostly of theoretical interest, but it turns out to have 
important practical implications in modern machine learning.



Thank you!

• Wang, Y., Blei, D.M., and Cunningham, J.P. (2021) Posterior Collapse and 
Latent Variable Non-identifiability. NeurIPS 2021.  

• https://github.com/yixinwang/lidvae-public

https://github.com/yixinwang/lidvae-public


Input Convex Neural Networks (ICNN)


