Posterior Collapse and Latent Variable Non-identifiability

Yixin Wang

Joint work with David Blei and John Cunningham

The Power of Deep Generative Models

- Density estimation; Reconstruct input; Generate new samples

• Unsupervised representation learning: Extract meaningful latent variable

Variational Autoencoders

 $z_i \sim p(z_i), \qquad x_i | z_i \sim p(x_i | z_i; \theta) = \operatorname{EF}(x_i | f_{\theta}(z_i))$

Weng (Lil'Log, 2018)

Posterior Collapse

Ideal

Reality

Jha et al. (CVPR, 2018)

• The model fits well: Good predictive likelihood; Generate good new samples.

• **Posterior is equal to the prior**: Non-informative; Useless as representations.

We have blamed many aspects of VAE for collapse

- Decoder is too powerful (Li+ 2019)
- The prior biases us (Higgins+ 2016)
- Approximate inference (Bowman+ 2015; Kingma+ 2016; Sønderby+ 2016)
- Training procedure; the order of parameter updates (He+ 2019)
- Local minima of optimization (Lucas+ 2019)
- Information preference (Chen+ 2016)

We have invented many ways to try to fix it

- Beta VAE (Higgins+ 2016)
- VampPrior (Tomczak+ 2017)
- Lagging inference (He+ 2019)
- Semi-amortized training (Kim+ 2018)
- Threshold the KL to prior (Li+ 2019)

Posterior Collapse and Latent Variable Identifiability

- What is it? Why it happens? Is it new?
- Can we fix it? Do we pay a price? Does it work?

Posterior collapse is a problem of latent variable non-identifiability.

Takeaways first

- It is **not** specific to the use of neural networks or variational inference
- We propose a class of latent-identifiable variational autoencoders mitigate posterior collapse.
- important practical implications in modern machine learning.

Posterior collapse is a problem of **latent variable non-identifiability**.

algorithms in VAE. Rather, it is an **intrinsic** issue of the model and the dataset.

(LIDVAE) via Brenier maps to resolve latent variable non-identifiability and

Identifiability used to be mostly of theoretical interest, but it turns out to have

Modeling high-dimensional data with VAE

• A variational autoencoder (VAE) assumes each datapoint x_i is generated by the latent variable z_i with parameters θ

$$z_i \sim p(z_i), \qquad x_i \mid z_i \sim p(x_i \mid z_i; \theta)$$

• Infer θ and posterior $p(z_i \mid x_i; \theta)$ by **maximum (marginal) likelihood** with variational approximation

$$\theta^* = \operatorname{argmax} \quad p(\mathbf{x} | \theta),$$
$$q(z_i | x_i; \theta) = \operatorname{argmin}_{\mathcal{Q}} \operatorname{KL}(q(z_i | x_i; \theta))$$

 $= \operatorname{EF}(x_i | f_{\theta}(z_i)).$

 $(\theta) | | p(z_i | x_i; \theta))$

Examples of Variational Autoencoders

- Variational Autoencoder (VAE) $Z_i \sim p(z_i),$
- Example: Gaussian VAE
- Example: Bernoulli mixture VAE

 $Z_i \sim \text{Categorical}(1/K),$

$$X_i | Z_i \sim p(x_i | z_i; \theta),$$

$Z_i \sim \mathcal{N}(0, I_K), \qquad X_i | Z_i \sim \mathcal{N}(f_\theta(z_i), \sigma_\theta^2 \cdot I_m).$

 $X_i | Z_i \sim \text{Bernoulli}(\text{sigmoid}(f_{\theta}(\mathcal{N}(\mu_{z_i}, \Sigma_{z_i}))))),$

Posterior Collapse: What is it?

Ideal

VAE is equal to its uninformative prior

 $p(\boldsymbol{z} \,|\, \boldsymbol{x})$

Reality

Jha et al. (CVPR, 2018)

• **Posterior collapse** is a phenomenon where the posterior of the latents in a

$$\boldsymbol{z}; \, \boldsymbol{\theta}^*) = p(\boldsymbol{z}).$$

Posterior Collapse: What are the essential conditions?

- Let's abstract away approximate inference
 - Consider the ideal case where the variational approximation is exact.
- Posterior collapse can happen in the absence of variational approximation.

Latent Variable Non-identifiability

- **Definition (Latent variable non-identifiability)**

$$p(\mathbf{x} | \mathbf{z} = \tilde{\mathbf{z}}'; \hat{\theta}) = p(\mathbf{x} | \mathbf{z} = \tilde{\mathbf{z}}; \hat{\theta})$$

• Given a likelihood function $p(\mathbf{x}, \mathbf{z}; \theta)$, a parameter value $\theta = \hat{\theta}$, and a dataset $\mathbf{x} = (x_1, \dots, x_n)$, the latent variable \mathbf{z} is **non-identifiable** if

 $\forall \tilde{\mathbf{z}}', \tilde{\mathbf{z}} \in \mathscr{Z}$.

Posterior Collapse iff Latent Variable Non-identifiability

- • The latent variables \mathbf{z} are non-identifiable at $\hat{\theta}$ if and only if the posterior of z collapses, $p(\mathbf{z} | \mathbf{x}; \hat{\theta}) = p(\mathbf{z})$.
- **Proof:** One line proof due to the Bayes rule
 - $p(\mathbf{z} | \mathbf{x}; \hat{\theta}) \propto p(\mathbf{z})p(\mathbf{x} | \mathbf{z}; \hat{\theta}) = p(\mathbf{z})p(\mathbf{x}; \hat{\theta}) \propto p(\mathbf{z})$

Posterior Collapse iff Latent Variable Non-identifiability

- It happens with exact inference.
- It happens in classical not-so-flexible models.
- It doesn't have to involve neural network.
- It happens with global optima.
- It happens with both local and global latent variables. \bullet

Posterior Collapse in Gaussian Mixture VAE

Gaussian Mixture VAE (GMVAE)

Latent variable is non-identifiable

 $p(z_i) = \text{Categorical}(1/K), \qquad p(w_i | z_i) = \mathcal{N}(\mu_{z_i}, \Sigma_{z_i}), \qquad p(x_i | w_i; \theta) = \mathcal{N}(f_{\theta}(w_i), \sigma^2 \cdot I_m)$

Latent variable is identifiable

Posterior Collapse in Gaussian Mixture Model

• Gaussian mixture model (GMM) $p(\alpha) = \text{Beta}(\alpha; 5, 5), \quad p(x_i | \alpha; \theta) = \alpha \cdot \mathcal{A}$

(a) Likelihood function

$$\mathcal{V}(x_i;\mu_1,\sigma_1^2) + (1-\alpha) \cdot \mathcal{N}(x_i;\mu_2,\sigma_2^2)$$

(b) Posterior histogram

Posterior Collapse in Probabilistic PCA

- Probabilistic PCA (PPCA) $p(z_i) = \mathcal{N}(z_i; 0, I_2),$ $p(x_i | z_i; \theta) = \mathcal{N}(x_i; z_i^{\mathsf{T}} w, \sigma^2 \cdot I_5)$
- (Top): z_1 non-identifiable
- (Bottom): z_1 identifiable

(a) Likelihood (1D PPCA)

(**b**) Posterior (1D PPCA)

(c) Likelihood (2D PPCA)

(d) Posterior (2D PPCA)

Posterior Collapse in Probabilistic PCA

- The latent variable becomes closer to non-identifiable with larger σ \bullet
- The posterior collapses more.

Posterior Collapse: Can we fix it?

- Make latent variables **identifiable** in VAE.
- Z_i ,

$$x_i \sim p(z_i), \qquad x_i \mid z_i \sim p(x_i \mid z_i; \theta) = \text{EF}$$

- function for VAE.

• A variational autoencoder (VAE) assumes each datapoint x_i is generated by the latent variable

 $f(x_i \mid f_{\theta}(z_i))$.

Constructing latent-identifiable VAE thus amounts to constructing an injective likelihood

 The construction is based on a few building blocks of linear and nonlinear injective functions, then composed into an injective likelihood $p(x_i | z_i; \theta)$ mapping from \mathscr{Z}^d to \mathscr{X}^m .

The building blocks of LIDVAE: Injective functions

- Linear injective functions
 - Left multiplication by matrix β^{\top} where β has full column rank
- **Nonlinear injective function**
 - - semidefinite and has a nonnegative determinant)
 - Other options can work too, e.g. normalizing flows

Brenier map (aka monotone transport map): gradient of a convex function

Guaranteed to be bijective: derivative is the Hessian of a convex function (positive)

• Parametrizable by neural networks using input convex neural networks (ICNN)

Latent-Identifiable VAE (LIDVAE)

- We construct injective likelihoods for LIDVAE by composing injective functions.
- Vanilla VAE $z_i \sim p(z_i), \qquad x_i \mid z_i \sim p(x_i \mid z_i; \theta) = \text{EF}(x_i \mid f_{\theta}(z_i)).$
- Latent-Identifiable VAE $z_i \sim p(z_i), \quad x_i | z_i \sim p(x_i | z_i; \theta) = EF(x_i | g_{2,\theta}(\beta^{\top} g_{1,\theta}(z_i)))$
 - $g_{1,\theta} : \mathbb{R}^K \to \mathbb{R}^K$ and $g_{2,\theta} : \mathbb{R}^D \to \mathbb{R}^D$ are continuous Brenier maps. (Nonlinear injective)
 - The matrix β is a $K \times D$ -dimensional matrix ($D \ge K$) with full row rank. (Linear injective)

Properties of LIDVAE

- Latent-identifiable VAE (LIDVAE) $z_i \sim p(z_i), \qquad x_i | z_i \sim p(x_i | z_i; \theta) = \operatorname{EF}(x_i | g_{2,\theta}(\beta^{\top} g_{1,\theta}(z_i)))$
- Properties
 - have $p(x_i | z_i = \tilde{z}'; \theta) = p(x_i | z_i = \tilde{z}; \theta) \implies \tilde{z}' = \tilde{z}, \quad \forall \tilde{z}', \tilde{z}, \theta.$
 - generate the same distribution.

• (Identifiability) The latent variable z_i is identifiable in LIDVAE i.e. for all $i \in \{1, ..., n\}$, we

• (Flexibility) For any VAE-generated data distribution, there exists an LIDAVE that can

Inference in LIDVAE

- LIDVAE is a **drop-in replacement** for VAE.
 - identifiable and does not suffer from posterior
- The price we pay for LIDVAE is **computational.**

Inference in LIDVAE is **identical** to the classical VAE, as they differ only in parameter constraints.

Both have the same capacity and share the same inference algorithm, but LIDVAE is

• The generative model (i.e. decoder) is parametrized using the gradient of a neural network

Its optimization thus requires calculating gradients of the gradient of a neural network,

• It increases the computational complexity and can sometimes challenge optimization.

Example: Latent-Identifiable Mixture VAE

• Mixture VAE (MVAE)

 $w_{i} \sim \text{Categorical}(1/K),$ $z_{i} | w_{i} \sim \text{EF}(\beta_{1}^{\top} w_{i}; \gamma_{\theta}),$ $x_{i} | z_{i} \sim \text{EF}(f_{\theta}(z_{i}))$ Latent-Identifiable Mixture VAE (LIDMVAE)

 $w_{i} \sim \text{Categorical}(1/K),$ $z_{i} | w_{i} \sim \text{EF}(\beta_{1}^{\top} w_{i}; \gamma_{\theta}),$ $x_{i} | z_{i} \sim \text{EF}(g_{2,\theta}(\beta_{2}^{\top} g_{1,\theta}(z_{i})))$

Example: Latent-Identifiable Sequential VAE

Sequential VAE (SVAE)

 $z_i \sim p(z_i),$ $x_i | z_i, x_{< i} \sim \text{EF}(f_{\theta}([z_i, h_{\theta}(x_{< i})]))$

 Latent-Identifiable Sequential VAE (LIDSVAE)

 $z_i \sim p(z_i),$ $x_i | z_i, x_{< i} \sim \text{EF}(g_{2,\theta}(\beta_2^\top g_{1,\theta}([z_i, h_{\theta}(x_{< i})])))$

LIDVAE: It works!

			Fashion-MNIST					Om	niglot			-
			AU	KL	MI	LL		AU	KL	MI	LL	
VAE [28]			0.1	0.2	0.9	-258.8		0.02	0.0	0.1	-862.1	_
SA-VAE [25]			0.2	0.3	1.3	-252.2		0.1	0.2	1.0	-853.4	
Lagging VAE [18]		0.4	0.6	1.6	-248.5		0.5	1.0	3.6	-849.4	
β-VAE [19] (β=	=0.2)		0.6	1.2	2.4	-245.3		0.7	1.4	5.9	-842.6	
LIDGMVAE	this wo	ork)	1.0	1.6	2.6	-242.3		1.0	1.7	7.5	-820.3	_
				;		Yahoo					Yelp	
	AU	KL	MI	LI		U KL	MI	LL	A	U K	L MI	
VAE [28]	0.0	0.0	0.0	-46	.5 0	.0 0.0	0.0	-519.7	7 0.	0 0	0.0 0.0	
SA-VAE [25]	0.4	0.1	0.1	-40	.2 0	.2 1.0	0.2	-520.2	2 0.	1 1	.9 0.2	
Lagging VAE [18]	0.5	0.1	0.1	-40	.0 0	.3 1.6	0.4	-518.0	6 0.	2 3	.6 0.1	
B-VAE [19] (β=0.2)	1.0	0.1	0.1	-39	9 0	.5 4.7	0.9	-524.4	4 0.	3 10	0.0 0.1	

Table 1: Across image and text datasets, LIDVAE outperforms existing VAE variants in preventing posterior collapse while achieving similar goodness-of-fit to the data.

Takeaways

- It is **not** specific to the use of neural networks or variational inference
- We propose a class of latent-identifiable variational autoencoders mitigate posterior collapse.
- important practical implications in modern machine learning.

Posterior collapse is a problem of **latent variable non-identifiability**.

algorithms in VAE. Rather, it is an **intrinsic** issue of the model and the dataset.

(LIDVAE) via Brenier maps to resolve latent variable non-identifiability and

Identifiability used to be mostly of theoretical interest, but it turns out to have

Thank you!

- Latent Variable Non-identifiability. NeurIPS 2021.
- https://github.com/yixinwang/lidvae-public

Wang, Y., Blei, D.M., and Cunningham, J.P. (2021) Posterior Collapse and

Input Convex Neural Networks (ICNN)

$$z_0 = u, \qquad z_{l+1} = h_l (W_l z_l)$$

where the last layer z_L must be a scalar, $\{W_l\}$ are non-negative weight matrices with $W_0 = 0$, and $\{h_l\}$ are convex and non-decreasing functions. A common choice of h_0 is the square of a leaky RELU, $h_0(x) = (\max(\alpha \cdot x, x))^2$ with $\alpha = 0.2$; the remaining h_l 's are set to be a leaky RELU, $h_l(x) = \max(\alpha \cdot x)^2$ (x, x). This neural network is called "input convex" because it is guaranteed to be a convex function.

An L-layer ICNN is a neural network mapping from \mathbb{R}^d to \mathbb{R} . Given an input $u \in \mathbb{R}^d$, its l th layer is $+A_{l}u+b_{l}$, (l=1,...,L-1), (6)

Input convex neural networks can approximate any convex function on a compact domain in sup norm (Theorem 1 of Chen et al. [9].) Given the neural network parameterization of convex functions, we can parametrize the Brenier map $g_{\theta}(\cdot)$ as its gradient with respect to the input $g_{\theta}(u) = \partial z_L / \partial u$. This neural network parameterization of Brenier map is a universal approxiamtor of all Brenier maps on a compact domain, because input convex neural networks are universal approximators of convex functions [9].