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Abstract

In this paper, we consider the problem of automatically recognizing human faces from partially

occluded frontal views. We argue that new mathematical theory from sparse signal representation offers

the key to address this difficult problem. The desired representation is sparse, since the test face image

should only be represented in terms of training face images of the same object. The occlusion of the

face is also sparse, typically affecting only a fraction of the image pixels. We propose a simple, novel

algorithm which uses `1 minimization to express the test image as a sparse linear combination of the

training images plus a sparse error due to occlusion. This algorithm achieves state-of-the-art performance

using raw imagery data, with no need for dimension reduction, feature selection, synthetic training

examples or domain-specific information. We investigate the implications of this new mathematical

framework for the engineering of recognition systems, showing how to predict how much occlusion

the algorithm can handle and how to choose the training data to maximize robustness to occlusion.

Extensive experiments on publicly available databases verify the efficacy of the proposed method.

Index Terms

Face Recognition, Occlusion, Random Corruption, Sparse Representation, `1-Minimization, Outlier

Rejection.

I. INTRODUCTION

Occlusion poses a significant obstacle to robust, real-world object recognition [1], [2]. Con-

sider, for example, a camera capturing an image of a human face, which we wish to recognize

automatically. The image can be viewed as a measurement sampled from the fairly restricted set

of possible images of the same face. Now suppose that the face is partially occluded or corrupted,

as the examples shown in Figure 1. Occlusion corrupts the measured image, introducing errors

that are

• large in magnitude in the value of pixels affected (gross errors),

• unpredictable in location of the pixels affected (randomly supported errors),

• concentrated only on relatively small portion of pixels of the image (sparse errors).

Ensuring robust recognition performance despite such errors incurred by occlusion is undoubtably

a challenging task. Nevertheless, several aspects of the problem work in our favor.
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Fig. 1. Top: Two typical examples of test images to be considered in this paper: one is with contiguous occlusion and one with

random corruption (50% pixels corrupted in the example shown). Both test images at left belong to one of the sixteen individuals

on the right. Can you tell which one? Bottom: Our method represents a test image (left) as a sparse linear combination of

the training images (middle) plus sparse errors (right) due to occlusion or corruption. Red (darker) coefficients correspond to

training images of occluded individual. Algorithm 1 determines the true identity (second row, third from left) from amongst 100

individuals in the database.

a) Robustness from redundancy: A fundamental principle of coding theory [3] is that

redundancy in the measurement is essential to detecting and correcting gross errors. Redundancy

arises in object recognition because the number of image pixels is typically far greater than the

number of subjects that have generated the images. In this case, even if a fraction of the pixels

are completely corrupted by occlusion, recognition may still be possible based on the remaining

pixels. On the other hand, schemes based on dimension reduction or feature extraction (e.g., PCA

[4], ICA [5], LDA [6]) discard redundant information that could compensate for the occlusion.
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In this sense, no representation is more redundant, robust, or informative than the original image.

b) Robustness from locality: Of course, redundancy would be of no use without efficient

computational tools for exploiting the information encoded in the redundant data. The difficulty

of directly harnessing the redundancy of raw images has led researchers to instead focus on

spatial locality as a guiding principle for robust recognition. Local features computed from

only a small fraction of the image pixels are clearly less likely to be corrupted by occlusion

than holistic features. In face recognition, methods such as ICA [5] and LNMF [7] exploit this

observation by adaptively choosing filter bases that are locally concentrated. A related approach

partitions the image into fixed regions and computes features for each region [8], [9]. Notice,

though, that projecting onto locally concentrated bases transforms the domain of the occlusion

problem, rather than eliminating the occlusion. Errors on the original pixels become errors in the

transformed domain, and may even become less local. The role of feature extraction in achieving

spatial locality is therefore questionable, since no bases or features are more spatially localized

than the original image pixels. In fact, the most popular approach to improving the robustness

of feature-based methods is based on randomly sampling individual pixels [10], sometimes in

conjunction with statistical techniques such as multivariate trimming [11].

c) Robustness from sparsity: In this paper, we contend that the sparsity that arises in

the context of recognizing partially occluded objects provides the key to achieving robust and

accurate recognition. This sparsity arises from two sources: the identity of the test image and the

nature of the occlusion. Ideally, the test image can be represented in terms of just the training

images of the same object, a small portion of the entire training set. The corruption incurred by

occlusion is also typically sparse, affecting only a relatively small fraction of the image pixels.

To the best of our knowledge, there has been very little work in computer vision on predicting

how much occlusion a robust recognition algorithm can handle before it starts to break down.

Sparse representations have attracted a great deal of attention in signal processing and in-

formation theory [12]–[15]. Recent progress has focused on the surprising effectiveness of the

`1 norm for recovering sparse representations1. One significant implication is that under quite

general conditions, the combinatorial problem of finding sparse solutions to systems of linear

1In face recognition, the `1 norm has been proposed as a distance measure for nearest neighbor classifiers (see, e.g., [16]).

This use of the `1 norm is not directly related to our work here, and hence it does not convey the same advantages in terms of

sparsity or robustness.
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equations can be efficiently and exactly solved via convex optimization, by minimizing the `1

norm [15].

Early work on sparse representation has been applied by [17] to detect translated face templates

from a small library. Whereas our use of the `1 norm leads to tractable, convex problems, [17]

utilizes the (non-convex) `p norm (p < 1) and so must resort to a greedy matching pursuit

strategy. Sparsity induced by the identity of the test image is not identified as a critical factor

in that work, due to the use of much smaller image libraries.

In this paper, we show for the first time how `1 minimization provides a principled framework

for exploiting the two types of sparsity inherent in the robust recognition problem: sparsity in

interpreting the test image and sparsity in the measurement error incurred by occlusion. We

propose a simple, novel algorithm for recognition in the presence of occlusion. The algorithm

uses `1 minimization to express the test image as a sparse linear combination of the given

training images plus a sparse error due to occlusion. Directly exploiting the sparse structure of

the problem enables our method to achieve performance exceeding the state of the art, using raw

imagery data, with no need for dimension reduction, feature selection, synthetic training examples

or domain-specific information (such as illumination models [18], [19]). We also investigate the

implications of this framework for the engineering of recognition systems, showing how to

predict how much occlusion the algorithm can handle and how to choose the training data to

maximize robustness to occlusion. Extensive experiments on publicly available databases verify

the efficacy of the proposed method.

d) What we do not do: While the proposed method is of broad interest to object recognition

in general, the studies and experimental results in this paper are confined to human frontal face

recognition. We will deal with illumination and expressions but we do not explicitly account for

object pose, nor rely on any 3-D model of the face. The `1-minimization based framework is

robust to small variations in pose and displacement, for example, due to registration errors.

However, we do assume that detection, cropping, and normalization of the face have been

performed prior to applying our algorithm.

e) Relation to the companion paper: In this paper, we will represent the test image as

a sparse linear combination of training images of all the subjects in the database. This global

approach has significant advantages over one-subject-at-a-time methods such as nearest neighbor

and nearest subspace. However, the focus of this paper is on robustness and we will simply
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employ this new framework here. One can find a more thorough justification for this choice in

the companion paper [20]. Also, one should be aware of the distinction between the random

corruption considered in this paper and the random measurements studied in the companion

paper: with random corruption, we do not know which measurements are valid.

II. ROBUST RECOGNITION VIA SPARSITY

A. Problem Formulation

The basic problem in object recognition is to use labeled training images from k distinct

object classes to correctly determine the class of a test image whose identity is initially unknown.

Throughout, we identify a w × h grayscale image with the vector v ∈ Rm (m = wh) given by

stacking its columns. We arrange the given n training images of as columns of a single matrix

A = [v1, . . . ,vn] ∈ Rm×n, and let Ai ∈ Rm×ni denote the (submatrix of) ni training images of

the i-th subject. An immense variety of statistical, generative and discriminative models have

been proposed for exploiting the structure of the Ai for recognition. One particularly simple and

effective approach models the images from a single class as lying on a linear subspace. Subspace

models are flexible enough to capture much of the variety in real datasets, and are especially

well-motivated in the context of face recognition, where it has been observed that the images of

faces under varying lighting conditions lie on a special 9-dimensional subspace [18] (see Figure

2(b)).

Thus, given sufficient training images, a test image y of the i-th object will approximately lie

in the linear span of the training images from the same class: y = Aixi, where xi ∈ Rni is a

vector of coefficients. y can also be expressed in terms of the entire training set A = [A1 . . . Ak]:

y = A x0, (1)

where x0
.
= [0 . . .0 xT

i 0 . . .0]T ∈ Rn is a vector with zero entries everywhere except those

associated with the corresponding subject i.2

2In the presence of noise, the linear subspace model does not hold exactly, and it may be more realistic to write y = Ax0 +z,

where z is a vector of small-magnitude (e.g., Gaussian) errors. For simplicity of the exposition, we will neglect the effect of

z. However, the geometry and algorithms described are provably stable under noise [14]. z can be explicitly accounted for by

replacing the linear program in Algorithm 1 with a second-order cone program [13].
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Fig. 2. Our model. Left: First three principal components of images of three individuals in the Yale Face Database B. The

distribution suggests that training images Ai of each individual approximately lie on a subspace, denoted as R(Ai). Right: An

occluded test image y is generated by sampling a point Ax0 from one of the subspaces, say R(Aj), and perturbing it by an

error vector, e.

Now suppose that the observed image y is also partially occluded. Let ρ be the fraction of

pixels in the occluded region. Then a fraction (1− ρ) of the pixels belong to an image y0 from

one of the K object classes:

y = y0 + e = A x0 + e, (2)

where e ∈ Rm is a vector of errors – a fraction ρ of its entries are nonzero. The errors may

have arbitrary magnitude and therefore cannot be ignored or treated with techniques designed

for small-magnitude noise. Notice, however, that the true e is sparse; its non-zero entries lie on

a set of size ρm corresponding to the occluded pixels (Figure 2).

Given this formulation, consider the following problem:

Given labeled sets of training images A1, . . . , Ak from k classes and a test image y

generated by sampling an image from the ith class and then perturbing the values of

a fraction ρ of its pixels arbitrarily, identify the correct class i.

Notice that in the problem statement, we did not make any specific assumption on the location

or value of the perturbation: the corrupted pixels could be a contiguous region or totally random

in location; the change in pixel values does not have to obey any prior probabilistic distribution.

In a sense, we are looking for a solution that works even when the corruption occurs at the
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Fig. 3. Brittleness of the `2 minimizer. (a) occluded test image, y. (b) coefficients against the training set, x̂2, estimated

by minimizing the `2 norm. (c) error, ê2. (d) reconstruction from the estimated coefficients. The estimated coefficient vector is

dense, and the reconstruction is significantly corrupted.

worst possible locations and with the worst possible change of pixel values.3

As a first step toward solving this problem, notice that due to its special, sparse structure

the vector x0 is extremely informative for classification. Since x0 is initially unknown, we seek

(approximate) solutions to the system of linear equations, Ax = y. Solving a system of linear

equations involving the entire training set represents a significant departure from “one-subject-

at-a-time” methods such as nearest neighbor and subspace methods. In related work [20], we

argue that such a global representation is naturally discriminative, and demonstrate its superiority

over local methods for identifying subjects represented in the training set and rejecting outlying

images of subjects not included in the training set.

When the number of image pixels, m, is greater than the number of training images, n, the

system is overdetermined, and may not have an exact solution. In this case, conventional wisdom4

overwhelmingly favors a solution in the least-squares sense, by minimizing the `2 norm of the

residual:

x̂2
.
= arg min

x
‖y − Ax‖2. (3)

3The rationale for considering the worst-case scenario is to have a guaranteed performance for the resulting algorithm, even

against the worst possible malicious disguise or corruption of the face image. However, towards the end of this paper, we will

show how to incorporate additional knowledge of the occlusion to further enhance the performance of the algorithm under

specific conditions.
4including common practice in computer vision. Popular techniques (e.g., [4] amongst others) represent y as a linear

superposition of basis vectors whose coefficients are computed by minimizing the `2 norm. For orthonormal bases, these

coefficients are just the projection of y onto the basis vectors.
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In the presence of isotropic Gaussian noise, x̂2 is the maximum likelihood estimate of x.

However, the error e introduced by occlusion is highly non-Gaussian, consisting of gross errors

concentrated on a subset of the image pixels. In this situation, x̂2 can be arbitrarily bad: since

‖e‖2 is unbounded, ‖x̂2−x0‖2 is also unbounded. Figure 3 gives a visual demonstration of this

phenomenon. Notice that both the coefficients x̂2 and the error ê2 estimated by `2 minimization

are densely supported. Consequently, the reconstruction in Figure 3 (d) is quite poor, comparing

to our results in Figure 7. In the remainder of this section, we will show how to exploit sparsity

by minimizing the `1 norm, rather than the `2 norm, leading to a simple, robust and efficient

algorithm for recognition in the presence of occlusion.

B. Imposing Sparsity of Occlusion

Since the error e is known to be sparse, but of arbitrary magnitude, a reasonable alternative to

minimizing the `2 norm of the residual is to instead seek the x which gives the sparsest residual:

x̂0 = arg min
x
‖y − Ax‖0. (4)

Here, the `0 “norm” ‖x‖0 counts the number of nonzero entries5 of the vector x. Computing

(4) gives the vector Ax̂0 in the range of A such that the error, e = y − Ax̂0, has the fewest

nonzero entries.

In fact, if A is in general position and the error e has support less than m/2 (less than half

the image is occluded), then x̂0 = x0. That is, the true solution x0 gives the sparsest residual

and can be found exactly by solving (4). However, in the general case, problem (4) is NP-hard

and also difficult to approximate [21]. Unless P = NP, there is no procedure significantly more

efficient than exhaustive search over all supports of e. It may therefore seem that computing the

true x0 is prohibitively costly. Fortunately, and somewhat surprisingly, this is not the case for

our problem of interest. Recently, a series of papers [12]–[15] have shown that if the error e is

sufficiently sparse, then the `0 minimizer x̂0 is equal to the `1 minimizer:

x̂0 = x̂1, (5)

where x̂1
.
= arg minx ‖y − Ax‖1. This is a convex optimization problem, whose solution is

unique and can be efficiently computed by linear programming.

5‖x‖0 is not a true norm, since ‖αx‖0 = ‖x‖0 for α 6= 0.
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Fig. 4. Robustness of the `1 minimizer to sparse errors. Left: the `2 minimizer is obtained by placing a sphere (`2 ball)

centered at y and expanding it to touch R(A). Right: the `1 minimizer is obtained by placing an `1 ball (a polytope) centered

at y and expanding it to touch R(A).

Thus, if y = Ax0 + e and the error e is sufficiently sparse, then the generating coefficients,

x0 can be recovered efficiently and exactly by minimizing the `1 norm of the residual. A proof

of this equivalence and a detailed exposition of the technical conditions under which it holds

are beyond the scope of this paper. However, Figure 4 gives the basic intuition for why the `1

minimizer conveys such dramatic advantages in terms of robustness. In Figure 4, the observation

y is generated by sampling a point Ax0 in the range of A and then perturbing it by e along

one of the coordinate axes. Minimizing the `2 norm is equivalent to finding the smallest radius

sphere around y which touches the range, R(A), of A. The point where it touches is Ax̂2, and

is not equal to Ax0 unless e ⊥ R(A). On the other hand, the level sets of ‖ · ‖1 are octahedral,

aligned with the coordinate axes. Minimizing the `1 norm is equivalent to centering an `1 ball

(octahedron) about y, and expanding it until it touches R(A). This point of intersection is Ax̂1,

which in this case is equal to Ax0. Notice that the right picture in Figure 4 is scale invariant.

This implies that the ability of `1 minimization to recover the true solution x0 is independent

of the magnitude of the e, and depends only on the signs of e and the relative geometry of the

subspace R(A) and the unit `1 ball.

C. Imposing Simultaneous Sparsity of Identity and Occlusion

The previous section showed how, in overdetermined systems (m � n), minimizing the `1

norm of the residual could recover x0, even in the presence of arbitrarily large errors, provided
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those errors are sparsely supported. This approach does not explicitly enforce the sparseness

of the estimated coefficient vector x̂1. As the number of training images n increases, the

equivalence x̂1 = x̂0 = x0 begins to break down. The reason for the this breakdown is clear

from examining the linear system Ax = y. As n increases, this system becomes square, and

then underdetermined. R(A) will then span all of Rm, and even the occluded test image x will

be expressible as a linear combination of the columns of A.

From an error correction perspective, increasing n (e.g., by expanding the number of object

classes K in the database) seems to decrease the redundancy of the representation: the same

number of image pixels must express a greater number of degrees of freedom. Notice, however,

that this is not the case. Each test image still has an expression, y0 = Ax0, which is highly

redundant – it depends only on a few (≤ ni) nonzero entries of x0. However, in order to exploit

the robustness inherent in such a redundant representation, we need to enforce that the estimated

coefficients x̂ have such sparse structure.

We therefore seek a simultaneously sparse solution for x and e. Rewriting (2),

y =
[
A I

]  x

e

 .
= B w. (6)

Here, B = [A I] ∈ Rm×(n+m), so the system Bw = y is underdetermined and does not have

a unique solution. However, from the above discussion, the generating w has at most ni + ρm

nonzeros. This motivates us to seek the sparsest solution to this system of equations:

ŵ0 = arg min ‖w‖0 subject to Bw = y. (7)

In fact, if the matrix B is in general position, then as long as y = Bw̃ for some w̃ with less

than m/2 nonzeros, w̃ is the unique sparsest solution: ŵ0 = w̃. Thus, if the occlusion e covers

less than m−ni

2
pixels, ≈ 50% of the image, the solution to (7) is the true generator, [x0 e].

Like the overdetermined problem (4), finding the sparsest solution to a system of linear

equations is NP-hard in general. In fact, the problem of solving overdetermined systems y =

Ax+e with sparse errors and the problem of solving underdetermined systems y = Bw with a

spare solution are equivalent, and can be converted from one to the other [13]. A corresponding

equivalence result states that if the sparsest solution w0 is sufficiently sparse, then it is equal to

the minimum `1 norm solution [15],

ŵ1 = arg min ‖w‖1 subject to Bw = y. (8)
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This implies that as long as the occlusion e and the coefficients x0 together are sufficiently

sparse, they can be efficiently and exactly computed by `1 minimization.

D. When Does the `1-`0 Equivalence Hold?

Thus far, we have sketched several results in the theory of `1-`0 equivalence, and shown how

these provide an efficient and tractable means of exploiting the two types of sparsity inherent

in the robust recognition problem. However, determining whether these results are practically

relevant requires a more precise notion of when w0 is “sufficiently sparse.”

In an effort to quantify when `1-`0 equivalence holds (i.e., when ŵ1 = w0), Donoho [15]

defines the equivalence breakdown point (EBP) of a matrix B as the maximum number, k,

such that if y = Bw0 for some w0 with less than k nonzero entries, then the minimal `1

norm solution ŵ1 to the system Bw = y is equal to that sparse generator w0. A number of

sufficient conditions have been given in the literature for the existence of a constant, ρ0, such that

EBP(B) > ρ0m (i.e. for solutions with a non-vanishing fraction of nonzeros to be recoverable

by `1 minimization). For example, [12] shows that even for a random matrix B drawn from a

Gaussian ensemble, EBP(B) > ρ0m with overwhelming probability, as m →∞. An important

upper bound on EBP(B) comes from the theory of centrally neighborly polytopes [22]:

EBP(B) ≤ b(m + 1)/3c . (9)

This result indicates that we should not expect to perfectly recover [x0 e] if ni + |support(e)| >

m/3. Generally, m � ni, so (9) implies that the largest fraction of occlusion under which

we can hope to still achieve perfect reconstruction is 33%. This bound is corroborated by our

experimental results; see Figure 7.

In our context, we often need to have more accurate information about the breakdown point

than a loose upper bound. For instance, we would like to know for a given set of training

images, what is the largest amount of occlusion it can handle. While the best known algorithms

for exactly computing EBP(·) are combinatorial in nature (see [23] for details), tight upper

bounds can be obtained by restricting the search for intersections between R(B⊥) and the `1

ball to a random subset of the k-skeletons of the `1 ball. This will be the technique that we use

to estimate all the EBPs of the training datasets considered.
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Fig. 5. Geometry of Classification via `1 Minimization. The convex hull of the columns of B = [A I] is a high-dimensional

polytope in Rm. Each vertex of this polytope is either a training image or an image with just a single pixel illuminated

(corresponding to the identity submatrix of B). Given a test image, solving the `1 minimization problem essentially locates

which facet of the polytope the test image falls on. The algorithm finds the facet with the fewest possible vertices. Only vertices

of that facet contribute to the representation; all other vertices have no contribution.

E. Face Recognition Algorithm

Suppose now that we are given a test image y generated according to (6), and further suppose

that support(ŵ0) < EBP(B), so that (7) and (8) are equivalent. Then, by minimizing ‖w‖1

subject to [A I]w = y, we can recover the coefficient vector x0 and the error e induced by

occlusion. Figure 5 gives a geometric interpretation of this recovery, in the context of face

recognition with occlusion. The training images and the standard basis of single-pixel images

together span a convex polytope in Rm. Solving the `1 minimization problem determines which

facet of this polytope the test image lies on. All training images not incident on this facet do

not contribute to the representation; their coefficients in x̂1 are zero.

There are many potential ways that the estimates, x̂1 and ê1 can be used for classification. For

example, setting yr
.
= y−ê1 compensates for the effect of occlusion. One could then classify the

reconstructed image yr based on which of the face subspaces R(A1), . . . ,R(Ak) it is closest to.
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Notice, however, that the sparse coefficients, x̂1 already encode the identity of the test subject.

We therefore directly use the x̂1, assigning y to the class whose coefficients best approximate it.

More precisely, we define k functions δi : Rn → Rn the i-th of which preserves the coefficients

corresponding to the i-th group and sets the rest to zero: δi(x) = [0 . . .0xT
i 0 . . .0]T ∈ Rn. The

approximation in terms of the coefficients associated with the i-th group is then ŷ = Aδi(x̂1)+ê1,

and classification can be achieved by assigning y to the group that minimizes ‖y−Aδi(x̂1)−ê1‖2.

The entire process is summarized as Algorithm 1. Our implementation minimizes the `1 norm

via a primal-dual algorithm for linear programming based on [24], [25].

Algorithm 1 (Robust Recognition via Sparse Representation).
1: Input: n training samples partitioned into k classes, A1, . . . , Ak and a test sample y.

2: Normalize the training samples to have unit `2 norm and set B = [A1 . . . Ak I].

3: Solve the `1 minimization problem:

ŵ1 = arg min
w=[x e]

‖w‖1 s.t. Bw = y, (10)

by linear programming.

4: Compute the residuals ri(y) = ‖y − A δi(x̂1)− ê1‖2, for i = 1, . . . , k.

5: Output: id(y) = arg mini=1,...,k ri(y).

In the above algorithm, the equation y = Bw is considered as a hard constraint in the

optimization. Although in reality the equality would never be satisfied exactly, most numerical

implementations of linear program is stable and can tolerate small amount of error in the

constraints. For all the experiments in this paper, we find this already gives sufficiently good

performance. If the user has good reason to believe that the test image has certain amount of

noise, one can revise the above optimization problem as minw=[x e] ‖w‖1 s.t. ‖Bw−y‖2 ≤ ε so

as to tolerate up to the error ε. This optimization problem is convex and can still be solved very

efficiently.6 The solution gives a provably stable estimate of the desired sparse solution [14].

As discussed above, Algorithm 1 perfectly compensates for arbitrary occlusions covering upto

(EBP(B)− ni) pixels. Beyond this range, theory no longer guarantees exact recovery with the

6This is the method of choice in the companion paper [20] in which we deal with images or features of much lower dimension,

where the signal-to-noise ratio may become considerably lower.
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worst possible occlusion, and so recognition performance may start to suffer. Nevertheless, a

body of experience suggests that minimizing the `1 norm still encourages sparsity far beyond the

breakdown point. The worse-case analysis may be too conservative for the average performance

with random corruption and occlusion. In the next section, we will see that this is indeed the

case.

III. EXPERIMENTS

A. Recognition despite Random Pixel Corruption

For this experiment, we use the Extended Yale B Face Database [26] (cropped and normalized

[19]). This dataset contains frontal images of 38 subjects under various illumination conditions.

We choose Subsets 1 and 2 (717 images, normal-to-moderate lighting conditions) for training,

and Subset 3 (453 images, more extreme lighting conditions) for testing. Without occlusion, this

is a relatively easy recognition problem. This choice is deliberate, in order to isolate the effect of

occlusion. The images are resized to 96×84 pixels,7 so in this case B is an 8, 064×8, 761 matrix.

Each of the training images vi is scaled to have unit `2 norm. For this dataset, we have estimated

EBP(B) ≈ 1, 185 (using the method given in [23]), suggesting that perfect reconstruction can

be achieved upto 13.3% percent occlusion.

We corrupt certain percentage of randomly chosen pixels from each of the test images,

replacing their values with iid samples from a uniform distribution8. The corrupted pixels are

randomly chosen for each test image and the locations are unknown to the computer. We vary the

percentage of corrupted pixels from 0% to 90%. Figure 6 (left) visualizes several representative

examples of the test images. To the human eye, beyond 50% corruption, the corrupted images

(Figure 6(a) second row) are barely recognizable as face images; determining their identity by

humans seems out of the question. Yet even in this extreme circumstance, Algorithm 1 correctly

recovers the identity of the subject. While such random patterns of corruption are not typical of

real-world occlusions, this robustness might be useful for recognition over extremely unreliable

lossy communication channels, or even for recognizing faces in outdoor environments (e.g., in

the presence of rain, or partially occluding fence or foliage).

7The only reason for resizing the images is to be able to run all the experiments within the memory size of MATLAB on a

typical PC. The algorithm relies on linear programming and is scalable in the image size.
8Uniform over [0, ymax], where ymax is the largest possible pixel value.

August 12, 2007 DRAFT



MANUSCRIPT SUBMITTED TO IEEE TRANS. PAMI, AUGUST 2007. 16

0 100 200 300 400 500 600 700 800
−20

−10

0

10

20

30

40

0 100 200 300 400 500 600 700 800
−5

0

5

10

15

20

25

(a) (b)

0 100 200 300 400 500 600 700 800
−4

−2

0

2

4

6

8

10

12

14

16

(c) (d)

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

Percent occluded (%)

R
ec

og
ni

tio
n 

ra
te

 (
%

)

 

 

Algorithm 1
PCA + NN
ICA I + NN
LNMF + NN

Fig. 6. Recognition under random corruption. Left: (a) Test images y from Extended Yale B, with random corruption.

Top row: 30% of pixels are corrupted, Middle row: 50% corrupted, Bottom row: 70% corrupted. (b) Estimated errors ê1. (c)

Estimated sparse coefficients x̂1. (d) Reconstructed images yr . Algorithm 1 correctly identifies all three corrupted face images.

Right: The recognition rate across the entire range of corruption for four algorithms. Algorithm 1 (red curve) significantly

outperforms others, performing almost perfectly upto 60% random corruption.

TABLE I

RECOGNITION RATE OF ALGORITHM 1 ON EXTENDED YALE B WITH VARYING LEVEL OF RANDOM CORRUPTION.

Corruption (%) 0 10 20 30 40 50 60 70 80 90

Rec. rate (%) 100 100 100 100 100 100 99.3 90.7 37.5 7.1

We quantitatively compare our method to three popular techniques for face recognition in

the vision literature. The Principal Component Analysis (PCA) approach of [4] is not robust

to occlusion. There are many variations to make PCA robust to corruption or incomplete data,

and some have been applied to robust face recognition, e.g., [11]. We will later discuss their

performance against ours on more realistic conditions. But here we use the basic PCA to provide a

standard baseline for comparison9. The remaining two techniques are designed to be more robust

to occlusion. Independent Component Analysis (ICA) architecture I [5] attempts to express the

training set as a linear combination of statistically independent basis images. Local Non-negative

Matrix Factorization (LNMF) [7] approximates the training set as an additive combination of

9Following [26] we normalize the image pixels to have zero mean and unit variance before applying PCA.
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basis images, computed with a bias toward sparse bases.10

Figure 6 (right) plots the recognition performance of Algorithm 1 and the other three methods,

as a function of the level of corruption. We see that the algorithm dramatically outperforms others.

From 0% upto 50% occlusion, Algorithm 1 correctly classifies all subjects. At 50% corruption,

none of the others achieves higher than 60% recognition rate, while the proposed algorithm

achieves 100%. Even at 70% occlusion, the recognition rate is still 90.7% (see Table I). This

greatly surpasses the theoretical bound of worst-case corruption (13.3%) that the algorithm is

ensured to tolerate. Clearly, the worst-case analysis is too conservative for random corruption.

Notice that, interestingly the recognition rates for PCA and LNMF actually increase with 10%

and 20% corruption. This phenomenon is due to the differences in the statistics of the training

and test image: the test images are taken from more extreme lighting conditions and hence are

darker in certain areas (see Figure 14). The uniform noise contains more bright pixels than the

test images, and when this corruption is filtered through the PCA and LNMF bases, its main

effect is to increase the magnitude of the coefficients, essentially compensating for this overall

illumination difference. Notice, however, that as the number of pixels corrupted grows larger than

30%, the performance of these algorithms degrades quickly and significantly, while Algorithm

1’s performance remains stable and superior.

B. Recognition despite Random Block Occlusion

We next simulate various levels of contiguous occlusion, from 0% to 50%, by replacing a

randomly located square block of each test image with an unrelated image, as in Figure 7(a).

Again, the location of occlusion is randomly chosen for each image and is unknown to the

computer. Methods that select fixed facial features or blocks of the image (e.g., [8], [9]) are

less likely to succeed here, due to the unpredictable location of the occlusion. Figure 7 left

shows two representative results of Algorithm 1 with 30% occlusion. Figure 7(a) is the occluded

image. In the second row, the entire center of the face is occluded; this is a difficult recognition

task even for humans. Figure 7(b) shows the magnitude of the estimated error ê1. Notice that

ê1 compensates not only for occlusion due to the baboon, but also for the violation of the

10For PCA, ICA and LNMF, the number of basis components is chosen to give the optimal test performance over the range

{100, 200, 300, 400, 500, 600}.
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Fig. 7. Recognition under varying level of random contiguous occlusion. Left: (a) 30% occluded test face images y

from Extended Yale B. (b) Estimated sparse errors, ê1. (c) Estimated sparse coefficients, x̂1, red (darker) entries correspond to

training images of the same person. (d) Reconstructed images, yr . Algorithm 1 correctly identifies both occluded faces. Right:

The recognition rate across the entire range of corruption for four algorithms. Algorithm 1 (red curve) significantly outperforms

others, performing almost perfectly upto 30% contiguous occlusion.

TABLE II

RECOGNITION RATE OF ALGORITHM 1 ON EXTENDED YALE B WITH VARYING LEVELS OF SYNTHETIC OCCLUSION.

Occlusion 0% 10% 20% 30% 40% 50%

Rec. rate 100% 100% 99.8% 98.5% 90.3% 65.3%

linear subspace model caused by the shadow under the nose. Figure 7(c) plots the estimated

coefficient vector x̂1. The red entries are coefficients corresponding to test image’s true class. In

both examples, the estimated coefficients are indeed sparse, and have large magnitude only for

training images of the same person. In both cases, Algorithm 1 correctly classifies the occluded

image. For this dataset, our Matlab implementation requires 90 seconds per test image on a

PowerMac G5.

The graph in Figure 7 (right) shows the recognition rates of all four algorithms. Algorithm 1

again significantly outperforms the other three methods, for all levels of occlusion. Upto 30%

occlusion, Algorithm 1 performs almost perfectly, correctly identifying over 98% of test subjects.

Even at 40% occlusion, only 9.7% of subjects are misclassified (Table II). Compared to random

pixel corruption, contiguous occlusion is certainly a worse type of errors for the algorithm. Notice
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that though, the algorithm does not assume any knowledge about the nature of corruption or

occlusion. In Section IV-B, we will see if we know in advance the occlusion is contiguous, how

that information can be used to customize the algorithm and greatly enhance the recognition

performance.

This result has interesting implications for the debate over the use of holistic versus local

features in face recognition [1]. It has been suggested that both ICA I and LNMF are robust

to occlusion: since their bases are locally concentrated, occlusion corrupts only a fraction of

the coefficients. By contrast, if one uses `2 minimization (orthogonal projection) to express an

occluded image in terms of a holistic basis such as the training images themselves, all of the

coefficients may be corrupted (as in Figure 3). The implication here is that the problem is

not the choice of representing the test image in terms of a holistic or local basis, but rather

how the representation is computed. Properly harnessing redundancy and sparsity is the key to

error correction and robustness. Extracting local or disjoint features can only reduce redundancy,

resulting in inferior robustness.

C. Most Informative Face Regions for Recognition

Experiments in human vision indicate that the eye and eyebrow region is most important for

face recognition by humans; if the eyebrows are removed, even familiar faces become quite

difficult to recognize [27], [28]. We test the effect of occluding various face regions on our

algorithm, using the Extended Yale B database. We generate three separate test sets in which a

black patch occludes the eyes, nose and mouth, respectively. Figure 8 visualizes the three sets.

In each, the black box occludes 20% of the image. With the nose area occluded, Algorithm 1

achieves 98.7% recognition, whereas occluding the eyes and eyebrows reduces the recognition

rate to 95.6%. This corroborates the results on humans [27]; eyes appear to be the most important

feature for our algorithm as well. However, the performance of our algorithm is arguably more

stable than humans with respect to the choice of occluded region – the difference is merely 3%

between eyes and nose.

D. Recognition Despite Disguise

Given the importance of the eyes and mouth for face recognition, it is not surprising that people

trying to conceal their identity often obscure these regions (as in Figures 9 and 10). We test our
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Region occluded Rec. rate

Nose 98.7%

Mouth 97.1%

Eyes 95.6%

Fig. 8. Effect of occluding different regions. Left: test images with 20% occlusion covering different parts of the face, nose,

mouth, and eyes respectively. Right: recognition rate with Algorithm 1.

algorithm’s ability to cope with such real and possibly malicious occlusions using a subset of

the AR Face Database [29]. The chosen subset consists of 1, 399 images (14 each, except for a

corrupted image w-027-14.bmp) of 100 subjects, 50 male and 50 female. All of the images

are cropped, resized to 83 × 60 pixels, and normalized to have unit `2 norm. For training, we

use 799 images (about 8 per subject) of unoccluded frontal views with varying facial expression,

giving a matrix B of size 4, 980 × 5, 779. We estimate EBP(B) ≈ 577, indicating that perfect

reconstruction is possible upto 11.6% occlusion. On this dataset, our Matlab implementation

requires about 75 seconds per test image on a PowerMac G5.

We consider two separate test sets of 200 images. The first test set contains images of

the subjects wearing sunglasses, which occlude roughly 20% of the image. Figure 9 shows

a successful example from this test set. Notice that ê1 compensates for misalignment of the

image edges as well as occlusion due to sunglasses.11

The second test set considered contains images of the subjects wearing a scarf, which occludes

roughly 40% of the image. Since the occlusion level is more than three times EBP(B), Algorithm

1 is unlikely to succeed in this domain. Figure 10 (a) shows an example that the algorithm fails

to identify the correct subject. Notice that the image with the largest coefficient, Figure 10(d),

is that of a bearded man whose mouth region most closely resembles the scarf.

Table III compares Algorithm 1 to the other three algorithms described in the previous section.

On faces occluded by sunglasses, Algorithm 1 achieves a recognition rate of 87%, more than 17%

better than the nearest competitor. For occlusion by scarves, its recognition rate is 59.5%, more

than double its nearest competitor but still quite poor. This confirms that although the algorithm

11Larger misalignments do cause problems, however. Most of the failures on this dataset seem to be due to registration errors.

August 12, 2007 DRAFT



MANUSCRIPT SUBMITTED TO IEEE TRANS. PAMI, AUGUST 2007. 21

0 20 40 60 80 100 120 140 160 180 200
−50

0

50

100

150

200

250

(a) (b) (c) (d)

Fig. 9. Recognition despite sunglasses. (a) A test image from AR Database, occluded by sunglasses. (b) Magnitude of

estimated sparse error, ê1. (c) Estimated sparse coefficient vector, x̂1. Red (darker) coefficients correspond to training images

from the same class. (d) Reconstructed image, yr .
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Fig. 10. A failed example in the scarf test set. (a) A test image from AR database, roughly 40% occluded by scarf. (b)

Magnitude of estimated sparse error, ê1. (c) Estimated sparse coefficient vector, x̂1. The largest do not belong to the correct

class. (d) Training image with the largest coefficient, bearded man. When amount of occlusion exceeds EBP(B), the algorithm

is susceptible to occlusions that resemble one of the training images.

is provably robust to arbitrary occlusions upto EBP(B), beyond that point it is sensitive to

occlusions that resemble regions of a training image from a different individual. Because the

amount of occlusion exceeds the breakdown point, additional assumptions are needed to achieve

good recognition. In Section IV-B, we will describe how spatial continuity of the occlusion

can be exploited within our framework, allowing successful recognition even in this difficult

circumstance (see Table IV).

IV. VARIATIONS AND IMPROVEMENTS OF THE ALGORITHM

A. Outlier Rejection and Reciever Operator Characteristic

Practical recognition systems are sometimes confronted with invalid test images: images of

some person not in the gallery of training images, or even images of some completely different
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TABLE III

Performance on the AR database. ALGORITHM 1 AND ITS PARTITIONED VERSION (DESCRIBED IN SECTION IV-B)

ACHIEVE THE HIGHEST RECOGNITION RATE.

Algorithms Recognition rate Recognition rate

with sunglasses with scarves

Algorithm 1 87.0% 59.5%

PCA + NN 70.0% 12.0%

ICA I + NN 53.5% 15.0%

LNMF + NN 33.5% 24.0%

object. Thus, in addition to returning a best match within the training set, an effective recognition

system should also return a measure of confidence as to whether the test image represents any

of the gallery subjects, or even reject invalid images outright. One simple and effective heuristic

comes from the observation that the coefficients x̂1 associated with invalid test images are

generally not concentrated on any individual subject, but rather be spread across several training

subjects, as shown in Figure 11. We can therefore reject images for which

k maxi ‖δi(x̂1)‖1/‖x̂1‖1 − 1

k − 1
< τ, (11)

where k is the number of classes and τ is a preselected threshold. The left hand side of (11) falls

in [0, 1], with value 0 if the coefficients are evenly spread between the classes and 1 if all of the

coefficients are associated with a single class. We dub this quantity the sparsity concentration

index (SCI).

We test this simple outlier rejection rule on the Extended Yale B database, using Subsets 1 and

2 for training and Subset 3 for testing as before. We again simulate varying levels of occlusion

(10%, 30%, 50%) by replacing a randomly chosen block of each test image with an unrelated

image. However, in this experiment, we include only half of the subjects in the training set.

Thus, half of the subjects in the testing set are new to the algorithm. We test the system’s ability

to determine whether a given test subject is in the training database or not by sweeping the

threshold τ through a range of values in [0, 1], generating the reciever operator characteristic

(ROC) curves in Figure 12. For comparison, we also considered outlier rejection by thresholding
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Fig. 11. Rejecting invalid test images. Top: valid test image (subject from the training set). Bottom: invalid test image (subject

not from the training set). (a) Test image, 30% occluded. (b) Recovered coefficients. (c) Value of the ratio (11) for each class,

i. Notice that the coefficients for the valid test image are much more sparse, and the ratio (11) is much larger.

the Euclidean distance between (features of) the test image and (features of) the nearest training

images within the PCA, ICA and LNMF feature spaces. These curves are also displayed in

Figure 12. Notice that the simple rejection rule (11) performs nearly perfectly at 10% and 30%

occlusion. At 50% occlusion, it still significantly outperforms the other three algorithms, and is

the only one of the four algorithms that performs significantly better than chance.

B. Aggregating Image Blocks

In Section III, we saw that with no assumptions on the support of the occlusion, e, Algorithm

1 was still able to tolerate arbitrary occlusions of upto 30% of the image pixels. Moreover, in

cases where the occlusion is roughly orthogonal to all of the training images (e.g., the corruption

example in Figure 6), the algorithm tolerates upto 70% corruption. Nevertheless, thus far we have

not exploited the fact that in many real recognition scenarios, the occlusion falls on some patch

of image pixels which is a-priori unknown, but is known to be connected. A somewhat traditional

approach (explored in [8], [9] amongst others) to exploiting this information in face recognition

is to partition the image into blocks and process each block independently. The results for
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(c) 30% occlusion
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(b) 10% occlusion
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(d) 50% occlusion

Fig. 12. ROC curves for outlier rejection. Vertical axis: true positive rate. Horizontal axis: false positive rate. The solid red

curve is generated by computing a sparse representation as in Algorithm 1 and then rejecting outliers via equation (11). This

approach performs almost perfectly for upto 30% occlusion.

individual blocks are then aggregated, for example, by voting, while discarding blocks believed

to be occluded (using, say, the outlier rejection rule introduced above). The major difficulty

with this approach is that the occlusion cannot be expected to respect any fixed partition of

the image; while only a few blocks are assumed to be completely occluded, some or all of the

remaining blocks may be partially occluded. Thus, in such a scheme there is still a need for

robust techniques within each block.

If the amount of occlusion is known to be less than EBP(B), Algorithm 1 can and should be

directly applied, as it will achieve superior performance. If, however, this cannot be guaranteed,

performing an `1 minimization within each block can increase the level of occlusion the algorithm

tolerates, at the expense of generality. Moreover, such an approach strictly improves existing

block techniques based on non-robust methods such as PCA.

August 12, 2007 DRAFT



MANUSCRIPT SUBMITTED TO IEEE TRANS. PAMI, AUGUST 2007. 25

Holistic
0 100 200 300 400 500 600 700 800

−5

0

5

10

15

20

25

30

Partitioned

��

��

HH

0 100 200 300 400 500 600 700 800
−5

0

5

10

15

20

25

0 100 200 300 400 500 600 700 800
0

5

10

15

20

25

30

0 100 200 300 400 500 600 700 800
−2

0

2

4

6

8

10

12

0 100 200 300 400 500 600 700 800
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

��*

HHj

A B C D
Fig. 13. A partition scheme to tackle contiguous disguise. If the occlusion is known to be contiguous, one can partition the

image into multiple smaller blocks, apply Algorithm 1 to each of the blocks and then aggregate the results by voting. This process

is illustrated by the figure to the left. (A) Test image, occluded by scarf. (B) Estimated sparse error ê1. (C) Estimated sparse

coefficients x̂1. Small images pictured are the training images corresponding to large coefficients. (D) Reconstructed image.

The top row visualizes the performance of Algorithm 1 on the whole image (holistic) notice that the two largest coefficients

correspond to a bearded man and a screaming woman, two images whose mouth region resembles the occluding scarf. The

second row visualizes the partition-based scheme described above. The table shows the performance of all the algorithms for

both types of occlusion.

We partition each of the training images into L blocks of size a × b, producing a set of

matrices A(1), . . . , A(L) ∈ Rp×n, where p
.
= ab. We similarly partition the test image y into

y(1), . . . ,y(L) ∈ Rp. We write the l-th block of the test image as a sparse linear combination

A(l)x(l) of l-th blocks of the training images, plus a sparse error e(l) ∈ Rp: y(l) = A(l)x(l) +e(l).

We can recover can again recover a sparse w(l) = [x(l) e(l)] ∈ Rn+p by `1 minimization:

ŵ
(l)
1

.
= argmin

w∈Rn+p
‖w‖1 subject to

[
A(l) I

]
w = y(l). (12)

We apply the classifier from Algorithm 1 within each block12 and then aggregate the results by

voting.

12Totally occluded blocks can also be rejected via Equation (11). In practice, we find that this does not significantly increase

the recognition rate.
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TABLE IV

Performance on the AR database. GENDER/CONDITION BREAKDOWN OF RECOGNITION RATES USING ALGORITHM 1 WITH

PARTITIONING.

Cases Rec. rate Cases Rec. rate

Sunglasses 97.5% Scarves 93.5%

Men 97.5% Women 93.5%

Men, sunglasses 100% Women, sunglasses 95%

Men, scarves 95% Women, scarves 92%

We verify the efficacy of this scheme on the AR database for faces disguised with sunglasses

or scarves. We partition the images into eight (4×2) blocks, each of size 20×30 pixels. Doing so

increases the overall recognition rate on scarf images from 59.5% to 93.5%, and also improves

the recognition rate on sunglasses images from 87.0% to 97.5%. This performance exceeds the

best known results on the AR dataset [11] to date. That work obtains 84% on the sunglasses and

93% on the scarfs, on only 50 subjects, using more sophisticated random sampling techniques.

Table IV shows a more complete breakdown of the new recognition rate by gender and type of

occlusion. Interestingly, females are consistently more difficult to recognize on this dataset. We

conjecture that this may be due to the presence of additional distinguishing features (e.g. beard)

on the male face, as well as increased within-class variability in female hairstyles.

C. Designing the Training Set for Robustness

An important consideration in designing recognition systems is selecting the number of training

images as well as the conditions (viewpoint, expression, lighting) under which they are to be

taken. The set of training images should obviously be extensive enough to span the conditions that

occur in the test set, i.e., they should be “sufficient” from a pattern recognition standpoint. The

notion of equivalence breakdown point discussed in Section 2 provides a different, quantitative

measure of the goodness of the training set: higher EBP implies greater robustness to occlusion.

In fact, these two concerns, sufficiency and robustness, are complementary. Figure 14 shows the

estimated breakdown point for the four subsets of the Extended Yale B database. Notice that the

highest EBP, ≈ 1, 330, is achieved with Subset 4, the most extreme lighting conditions. Figure 15
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Subset 1 Subset 2 Subset 3 Subset 4

Training 1 2 3 4

Est. EBP 1,124 1,122 1,190 1,330

Fig. 14. Robust design: illumination Top: four subsets of Extended Yale B, containing increasingly extreme lighting conditions.

Bottom: equivalence breakdown point EBP(B) for each subset.

Neutral (N) Happy (H) Angry (A) Screaming(S)

Training N+H N+A N+S H+A H+S A+S

Est. EBP 585 421 545 490 550 510

Fig. 15. Robust design: facial expression. Top: four facial expressions in the AR database. Bottom: equivalence breakdown

point EBP(B) when taking the training set from different pairs of expressions.

shows the breakdown point for subsets of the AR database with different facial expressions. The

dataset contains four facial expressions, Neutral, Happy, Angry, and Scream, pictured in Figure

15. We generate training sets from all pairs of expressions and compute the EBP of each. The

highest breakdown points are achieved by the Neutral+Happy and Happy+Scream combinations,

while the lowest comes from Neutral+Angry. Notice that the Neutral and Angry images are quite

similar in appearance, while (for example) Happy and Scream are very dissimilar.

Thus, both for varying lighting (Figure 14) and expression (Figure 15), training sets with wider

variation in the images allow greater robustness to occlusion. Designing a training set that allows

recognition under widely varying conditions does not hinder our algorithm; in fact it helps it.

However, the training set should not contain too many similar images, as in the Neutral+Angry

example of Figure 15. In the language of signal representation, the training images should form

an incoherent dictionary [15].
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V. DISCUSSION AND FUTURE WORK

In this paper, we have shown how the theory of sparse representation and `1 minimization

significantly improves the robustness of computational face recognition. Furthermore, results

from compressed sensing13 [30] suggest an important role for sparsity in the choice of features

for face recogntion without occlusion. This issue is discussed in detail in the companion paper

[20], which advocates that if the sparsity in the recognition problem is properly harnessed, details

of feature selection become less important. In addition, in both papers, we witness that sparsity

of the representation provides an effective cue for validating the test image. It advocates the

importance of the global, or joint-class, representation in validation, as opposed to representation

by individual classes.

This paper and its companion [20] have introduced a novel and comprehensive approach

to face recognition which has provided new understandings on many fundamental issues such

as feature selection, occlusion, and outlier rejection. The formulation of the problem via the

perspective of sparse representation also leads to simple, efficient, and robust algorithms based

on the mathematical theory of compressed sensing. We strongly believe that this new approach

and framework may provide new solutions to many other problems in the general area of pattern

analysis and object recognition.

An intriguing problem for future work is whether this framework can be useful for object

detection, in addition to recognition. The usefulness of sparsity in detection has been noticed

in the work of [17] and more recently explored in [31]. We believe that the full potential of

sparsity in object detection and recognition together is yet to be uncovered. From a practical

standpoint, it would also be useful to extend the algorithm to handle less constrained conditions,

such as variations in object pose. Robustness to occlusion allows the algorithm to tolerate minor

pose variation or misalignment. In the companion paper [20], we have discussed that sparse

representation can potentially adapt to a nonlinear distribution that could be used to model face

images with varying pose. However, it remains open problems how effective sparse representation

will still be in this case and how many more training images it may require.

13Especially the broad equivalence properties of random matrices.
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