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Abstract—In the literature, most existing graph-based semi-1

supervised learning (SSL) methods only use the label information2

of observed samples in the label propagation stage, while ignoring3

such valuable information when learning the graph. In this paper,4

we argue that it is beneficial to consider the label information in5

the graph learning stage. Specifically, by enforcing the weight6

of edges between labeled samples of different classes to be7

zero, we explicitly incorporate the label information into the8

state-of-the-art graph learning methods, such as the Low-Rank9

Representation (LRR), and propose a novel semi-supervised10

graph learning method called Semi-Supervised Low-Rank Rep-11

resentation (SSLRR). This results in a convex optimization12

problem with linear constraints, which can be solved by the13

linearized alternating direction method. Though we take LRR14

as an example, our proposed method is in fact very general15

and can be applied to any self-representation graph learning16

methods. Experiment results on both synthetic and real datasets17

demonstrate that the proposed graph learning method can better18

capture the global geometric structure of the data, and therefore19

is more effective for semi-supervised learning tasks.20

Index Terms—Semi-supervised Graph Learning, Low-Rank21

Representation, Label Information.22

I. INTRODUCTION23

IN computer vision and machine learning research commu-24

nities, semi-supervised learning (SSL) [1]–[3] has attracted25

numerous attention over the past decade because of its ability26

to make use of rich unlabeled data for training. It has been27

demonstrated that unlabeled data, when used in conjunction28

with a small set of labeled data, can often considerably29

improve the learning accuracy. Among the current methods,30

graph-based SSL is an appealing approach due to its low31

computation complexity and flexibility in practice.32

In general, a graph-based SSL method consists of two key33

steps. First, a graph is built from all data samples (including34

both labeled and unlabeled samples) to model the relationships35

among the points. Then, label information of the labeled36

samples is propagated to the unlabeled samples over the37

graph. Though different graph-based SSL methods formulate38
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Fig. 1: Visualization of the unsupervised LRR-graph and semi-
supervised SSLRR-graph with 10%, 30%, and 60% labeled
data in a synthetic dataset. The “block-diagonal structure” of
the graph is best preserved by the SSLRR-graph with 60%
labeled data samples.

the label propagation process via different objective functions, 39

all of them share one common assumption (i.e., the cluster 40

assumption), that is, points on the same structure (such as a 41

cluster, a subspace, or a manifold) are likely to have the same 42

label. Since one normally does not have an explicit model 43

for the underlying structures, a graph constructed from the 44

data samples often serves as an approximation to it. Therefore, 45

constructing a good graph that best captures the essential data 46

structure is critical for all graph-based SSL methods. 47

This paper proposes a novel framework to address the graph 48

construction problem in SSL. Our key insight is that most 49

graph-based SSL methods do not take advantage of label 50

information when building a graph from the data samples, 51

which limits their performance. Leveraging powerful tools 52

from high-dimensional statistics and optimization, we success- 53

fully mitigate this issue by constructing the graph in a semi- 54

supervised manner. Our framework is quite general and can 55

be applied to many existing graph learning methods. As an 56

example, Figure 1 compares the SSLRR-graphs constructed 57

by our method to the original LRR-graph [4] on a synthetic 58

dataset (see Section V-A about synthetic data generation). 59
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A. Background and Motivations60

Intuitively, a good graph should reveal the true intrinsic61

complexity or dimensionality of the data points by capturing62

the global structures of the data (i.e., multiple clusters, sub-63

spaces, or manifolds). Traditional methods such as k-nearest64

neighbors (kNN) and Locality Linear Embedding (LLE) [3],65

[5], [6], however, mainly rely on pair-wise Euclidean distance66

to build such a graph, thus are unable to capture the global67

data structures. As a result, these methods tend to be sensitive68

to local data noise and errors. Moreover, traditional methods69

always use fixed global parameters to determine the graph70

structure and the edge weights, thus may fail to offer any71

datum-adaptive neighborhoods.72

Recently, motivated by the advance in fast computational73

methods in signal processing (particularly, in the areas of74

compressive sensing, sparse representation, and low-rank ma-75

trix recovery [7]–[11]), several methods [4], [12]–[15] have76

been proposed to construct undirected graphs that exploit77

the global structures of the data. Different from traditional78

methods, these methods seek a representation of each datum as79

a linear combination of all the other data samples. By solving a80

high-dimensional convex optimization problem, these methods81

automatically select the most informative “neighbors” for82

each datum, and simultaneously obtain the graph adjacency83

structure and weights in a nearly parameter-free fashion. We84

call these methods self-representation methods.85

While the self-representation methods are datum-adaptive86

and robust to local errors, they also suffer from some problems87

in practice. In particular, in the ideal case, the linear coeffi-88

cients recovered via convex optimization should be “structure-89

sparse”, that is, only those points belonging to the same90

structure as the target point should have nonzero coefficients.91

Unfortunately, this assumption only holds true if all the92

points lie in a union of independent or disjoint subspaces93

and are noiseless [16]. In other words, in the presence of94

dependent subspaces, nonlinear manifolds and/or data errors,95

these methods may select points from different structures (i.e.,96

classes) to represent a data point, making the representation97

less informative.98

To overcome this difficulty, our key insight is that all the99

aforementioned self-representation methods are unsupervised.100

That is, they do not utilize label information to learn the101

graph. Thus, when applied within the SSL framework, they102

could be further improved. To see why the label information103

provides valuable cues to the graph construction, consider104

the extreme case where the label information of all samples105

is available. In such case, one can directly enforce the co-106

efficients belonging to different classes to be zero, so that107

the resulting representation is naturally structure-sparse. In108

fact, some researchers have explored the label information in109

graph construction [17]–[19]. However, these works are based110

on traditional graph construction methods, hence inevitably111

inherit the limits of traditional methods as mentioned above.112

B. Our Contributions113

Inspired by the above observations, we propose to explicitly114

incorporate label information into the self-representation meth-115

ods. Specifically, we show that one can seamlessly integrate 116

the label information of a subset of the samples into the 117

state-of-the-art self-representation methods, such as the LRR- 118

graph [4], by restricting the representation coefficients between 119

labeled points from different classes to be zero. Intuitively, 120

this information helps us prevent the structure-sparsity of the 121

coefficients from being destroyed in challenging real world 122

scenarios, i.e., small signal-to-noise ratio, dependent subspaces 123

and/or nonlinear manifolds. Thus, by solving a convex op- 124

timization problem with linear constraints, we can obtain a 125

new linear representation for each data point which respects 126

the label information, and subsequently construct a graph that 127

better captures the global data structures. 128

To verify the effectiveness of our method, we conduct 129

extensive experiments on both simulation datasets and public 130

real datasets for two important tasks, namely nonlinear mani- 131

folds clustering and semi-supervised classification. The exper- 132

imental results clearly demonstrate that, compared to graphs 133

constructed via existing unsupervised self-representation meth- 134

ods, the graphs constructed by our method are more robust 135

to data errors, and more informative and discriminative in 136

practice, especially in the cases of complex data structures 137

(e.g., dependent subspaces and nonlinear manifolds). 138

In summary, we make the following contributions in this 139

paper: 140

1) We present a novel semi-supervised graph learning 141

framework which seamlessly integrates the label infor- 142

mation of data samples into the state-of-the-art graph 143

learning methods. Compared with the graphs learned 144

by existing methods, graphs learned by our method 145

better capture the global structure of the data, especially 146

when the data is subject to noises, the subspaces are 147

not independent, or the data points lie in nonlinear 148

manifolds. 149

2) We apply our method to both manifold clustering and 150

semi-supervised learning tasks, and empirically demon- 151

strate that the label information helps preserve the block- 152

diagonal structure of the coefficient matrix, so that the 153

learned graph is more informative and robust to data 154

noises in practice. 155

3) While we use LRR as a representative example to 156

illustrate our semi-supervised graph learning method, 157

our method is in fact quite general and can be eas- 158

ily applied to other self-representation graph learning 159

methods. To this end, we conduct experiments with 160

three existing graph learning methods, namely LRR- 161

graph, `1-graph [12] and non-negative low rank and 162

sparse graph (NNLRS-graph) [14]. We demonstrate that 163

one can significantly improve the performance of these 164

methods by incorporating the label information. 165

The remainder of this paper is organized as follows. In 166

Section III, we present our semi-supervised graph learning 167

framework. We give details about how to construct the graph 168

weight matrix in Section IV. Experiment results and analysis 169

are presented in Section V. Finally, Section VI concludes our 170

paper. 171
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II. RELATED WORK172

Compared to label inference, graph construction has attract-173

ed much less attention in the machine learning community174

until recent years [5], [20]–[23]. Traditionally, ε-neighborhood175

and k-Nearest Neighbors (kNN) are commonly used in graph176

based SSL methods. An ε-neighborhood graph is built by177

connecting all the data points whose distance are smaller than178

the threshold ε. These graphs are often sensitive to the chosen179

parameter ε and produce undesirable degree distribution (e.g.,180

disconnected components or almost-complete graph). On the181

other hand, a kNN graph links each node to its k nearest182

neighbors. Compared to ε-neighborhood graphs, kNN graphs183

enjoy some favorable properties in choosing the parameters,184

and tend to perform better than ε-neighborhood graphs in prac-185

tice [5]. Various unsupervised methods have been proposed to186

improve the kNN graph construction [5], [6], [22]–[26]. For187

example, Wang et al. [24] estimated the graph edge weights188

in a manner of multi-wise edges instead of pairwise edges.189

Jebara et al. [5] proposed to use b-matching to produce a190

balanced or regular graph, which ensures that each node in191

the graph has the same number of edges. Other works focus192

on efficient algorithms to find the k nearest neighbors [27]–193

[31]. But a common limitation of all above methods is that the194

neighbors are selected “locally” – the decision is only based195

on the individual relation between the reconstructed data point196

and the other data points. Such neighbors can only capture the197

local data structure and thus greatly limit the performance of198

graph based SSL methods.199

To remedy the above issue, self-representation methods [4],200

[12], [13], [32]–[36] have become increasingly popular in201

recent years. For example, `1-graph [12] proposes to encode202

each datum as a sparse representation of the other samples.203

It is shown to have several advantages in practice, includ-204

ing robustness to noise, sparsity for efficiency, and datum-205

adaptive neighborhood [12]. Since `1-graph is purely based206

on numerical solutions, Zhou et al. [35] propose to exploit207

the geometric data structure via a kNN fused lasso graph.208

Additionally, Fang et al. [32] impose the auto-grouped effect209

in the `1-graph by applying two sparse regularizations: Elastic210

net and Octagonal Shrinkage and Clustering Algorithm for211

Regression (OSCAR). Han et al. [34], [36] use a reduced size212

dictionary to preserve the locality and the geometry structure213

for data clustering applications. Yang et al. [33] use the Graph214

Laplacian regularization to improve the quality of `1-graph.215

To further capture the global data structure, Liu et al. [4]216

propose the LRR-graph, which seeks a low-rank representa-217

tion of the data. By jointly obtaining the representation of218

all the data under the low-rankness assumption, LRR-graph219

effectively impose global constraints on the data structure (e.g.,220

multiple subspaces). Moreover, since each sample can be used221

to represent itself, there always exist a feasible solution for222

LRR-graph even if the data sampling is insufficient. These223

properties make LRR-graph a good candidate for various224

learning tasks including SSL. Extensions to the original LRR-225

graph include [14], [37], which further impose non-negative226

and sparse constraints on the low-rank representation, [38],227

which incorporates a block-diagonal prior, and [39], which228

combines the low-rank representation with the kernel trick. 229

Other works introduce various regularized terms so as to 230

explicitly consider the cases where the data lie on non-linear 231

manifolds [40]–[43]. 232

However, most self-representation methods ignore the label 233

information of the data samples during graph construction. 234

In this paper, we demonstrate how the label information can 235

be integrated into the construction of LRR-graph, resulting 236

in significant improvement on the performance of existing 237

SSL methods. Further, our framework can be readily applied 238

to other self-representation methods such as `1-graph, Least 239

Squares Representation [44], Correlation Adaptive Subspace 240

Segmentation [45], Correntropy Induced `2-graph [46], and 241

the Smooth Representation [47]. 242

III. SEMI-SUPERVISED GRAPH LEARNING 243

In this section, we use the LRR-graph [4] as a representa- 244

tive example to describe our semi-supervised graph learning 245

framework. For completeness, we first give a brief overview 246

of LRR. 247

A. Low-Rank Representation: An Overview 248

Low-Rank Representation (LRR) was originally proposed 249

in [4] to segment data drawn from a union of multiple linear 250

(or affine) subspaces. Specifically, given a set of sufficiently 251

dense data vectors X = [x1,x2, · · · ,xn] ∈ Rd×n (each 252

column is a sample) drawn from a union of k subspaces, LRR 253

seeks the lowest-rank representation among all the candidates 254

that represent each data vector as the linear combination of 255

the data themselves. It proposes to solve the following high- 256

dimensional convex optimization problem: 257

min
Z,E

‖Z‖∗ + λ‖E‖2,1

s.t. X = XZ + E,
(1)

where Z = [z1, z2, · · · , zn] is the coefficient matrix with 258

each zi being the coefficients of xi. In addition, ‖ · ‖∗ is 259

the nuclear norm, i.e., sum of singular values. The `2,1-norm 260

of E, ‖E‖2,1 =
∑n

j=1

√∑d
i=1(eij)2 where eij is the (i, j)- 261

th element of matrix E, is used to model the sample-specific 262

corruptions and outliers. Finally, the parameter λ > 0 is used 263

to balance the effects of the two terms. It can be chosen 264

according to properties of the two norms, or tuned empirically. 265

As shown in [4], when data are clean and sampled from 266

independent subspaces, the optimal solution Z∗ of (1) is 267

block-diagonal (ignoring the E term). That is, for each xi, 268

only those entries of zi which correspond to data points in 269

the same subspace as xi have nonzero values. In this way, 270

LRR is able to capture the global structure (i.e., multiple 271

subspaces) of the data. Further, by introducing the error term 272

‖E‖2,1, LRR achieves robust subspace segmentation results 273

despite of corrupted data vectors or outliers. After solving 274

the problem (1), we can define the affinity matrix W of an 275

undirected graph as W = (|Z∗| + |Z∗T |)/2. Consequently, 276

the undirected graph (called the LRR-graph) also captures the 277

global structure of the data. 278
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However, in real applications, the data is alway subject to279

noises, the subspaces could be dependent, and the data could280

even lie in nonlinear manifolds. In these cases, the block-281

diagonal structure of Z∗ is often destroyed. To overcome this282

difficulty and improve the performance of the LRR-graph, we283

next propose a novel method to generalize the LRR model284

within the SSL framework by taking into account the label285

information of observed samples.286

B. Semi-Supervised Low-Rank Representation287

In this subsection, we incorporate the label information288

of observed samples into the original LRR framework, and289

propose a new model called Semi-Supervised Low-Rank Rep-290

resentation (SSLRR). The key idea of SSLRR is to preserve291

the known global geometric structure of data when solving292

the LRR problem. Specially, since we still aim to group293

the samples into one cluster if and only if they lie on294

the same subspace, the collection of all coefficient vectors295

Z = [z1, z2, · · · , zn] should remain low-rank and have a296

block-diagonal structure as in LRR. As we have some labeled297

samples, we can directly enforce the coefficients Zij between298

two labeled data points from different clusters to be zero.299

Therefore, the SSLRR model solves the following problem:300

min
Z,E

‖Z‖∗ + λ‖E‖2,1

s.t. X = XZ + E,

ZT1 = 1,

Zij = 0, ∀(i, j) ∈ Ω,

(2)

where 1 is an all-one vector, Ω is the set of edges between301

two labeled samples from different classes, whereby (i, j) ∈ Ω302

indicates that xi and xj are not in the same class. As we can303

see from (2), similar to LRR, SSLRR also seeks the lowest-304

rank representation Z∗ among all the data points. Meanwhile,305

by enforcing Zij = 0,∀(i, j) ∈ Ω, it makes use of the label306

information to help prevent the block-diagonal structure of Z∗307

from being destroyed in real world scenarios. By enforcing the308

sum-to-one constraint on the rows of the weight matrix, we309

hope to obtain the invariance to translations. The same trick is310

also used by existing methods, such as the popular Locally311

Linear Embedding (LLE) [3]. Since the SSLRR problem312

(2) is convex, it can be efficiently solved by fast first-order313

optimization methods, as we describe next.314

C. Solving SSLRR via LADMAP315

Recently, various methods have been proposed to solve316

the low-rank and sparse matrix recovery problem. In this317

paper, we adopt the Linearized Alternating Direction Method318

with Adaptive Penalty (LADMAP) [48] for its efficiency.319

LADMAP is a general method for solving convex programs320

with linear constraints. At each iteration, it first approximates321

the augmented Lagrangian function by linearizing the quadrat-322

ic term and adding a proximal term. Then, it minimizes over323

the approximated function to update variables alternately. To324

apply LADMAP to our problem, we first define the linear325

mappings: 326

A(Z) =

 vec(XZ)
ZT1
PΩ(Z)

 , B(E) =

 vec(E)
0
0

 ,

c =

 vec(X)
1
0

 ,

where vec(·) is the vectorization operator that stacks columns 327

of a matrix into a vector. PΩ(Z) is the projection operator that 328

extracts the entries in Z whose indices are in Ω. Then, Eq. (2) 329

can be rewritten as: 330

min
Z,E

‖Z‖∗ + λ‖E‖2,1

s.t. A(Z) + B(E) = c.
(3)

Then, applying LADMAP (Algorithm 1 in [48]) to the stan- 331

dard form (3) yields the following updating rules. 332

Updating Z. First, we update Z as: 333

Zk+1 = argminZ ‖Z‖∗ +
βkηA

2
‖Z − Z̃k‖2F , (4)

where k is the iteration number,

Z̃k = Zk −A∗ (yk + βk[A(Zk) + B(Ek)− c]) /(βkηA),

βk > 0 is the penalty parameter, ηA is a relaxation pa- 334

rameter that satisfies ηA > ‖A‖2, in which ‖A‖2 = 335

max
Z 6=0
‖A(Z)‖F /‖Z‖F is the operator norm of A, and A∗ is 336

the adjoint operator of A. 337

Here, we note that ‖A‖2 ≤
√
‖X‖22 + n+ 1 and A∗(w) =

XT mtx(w1) + 1wT
2 + P∗Ω(w3), where

w =

w1

w2

w3


and the lengths of w1, w2, and w3 are dn, n, and |Ω|, 338

respectively. Additionally, mtx(·) is the operator that reshapes 339

an dn × 1 vector into a d × n matrix, P∗Ω(·) is the adjoint 340

operator of PΩ(·) which maps a |Ω| × 1 vector to an n × n 341

matrix by inserting the entries of the vector at places of the 342

matrix whose indices are in Ω. The rest of the entries of the 343

matrix are all zeros. Roughly speaking, mtx and P∗Ω can be 344

viewed as the inverse operations of vec and PΩ, respectively. 345

Finally, the subproblem (4) has a closed form solution given 346

by singular value thresholding (SVT) [49]: 347

Zk+1 = Ũk max
(

Σ̃k − (βkηA)−1I, 0
)
Ṽ T
k , (5)

where ŨkΣ̃kṼ
T
k is the singular value decomposition (SVD) of 348

Z̃k. 349

Updating E. Next, we update E as: 350

Ek+1 = argminE λ‖E‖2,1 +
βkηB

2
‖E − Ẽk‖2F , (6)

where

Ẽk = Ek − B∗(yk + βk[A(Zk+1) + B(Ek)− c]/(βkηB)),

and ηB > 0 is a relaxation parameter that satisfies ηB > ‖B‖2, 351

in which ‖B‖2 = max
E 6=0
‖B(E)‖F /‖E‖F is the operator norm 352
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Algorithm 1 LADMAP for Solving the SSLRR Problem

Input: Data matrix X = [x1,x2, · · · ,xn] ∈ Rd×n, balance
parameter λ, and indices set Ω.

Steps:
1: Set parameters 0 < ε1 � 1, 0 < ε2 � 1, βmax, ρ0 ∈

[1, 1.5], ηA = ‖X‖22 + n+ 1, ηB = 1.
2: Initialize Z0 = 0, E0 = 0, y0 = 0, β0 ∈ (0, 1), k ← 0.
3: Do
4: Update Z by (5).
5: Update E by (7).
6: Update y by (8).
7: Update β by (9).
8: While ‖A(Zk+1) + B(Ek+1) − c‖2 > ε1 or
βk max(

√
ηA‖Zk+1−Zk‖F ,

√
ηB‖Ek+1−Ek‖)/‖c‖2 >

ε2

Output: The optimal solution (Zk+1, Ek+1).

of B, and B∗ is the adjoint operator of B. We note that ‖B‖2 ≤353

1 and B∗(w) = mtx(w1), where w1 is the sub-vector of w354

consisting of the first dn entries of w.355

Finally, the subproblem (6) also has a closed form solution356

[4]. Let ek+1,i and ẽk,i be the i-th column of Ek+1 and Ẽk,357

respectively, we have:358

ek+1,i = max (1− λ/(βkηB‖ẽk,i‖2), 0) ẽk,i. (7)

Updating y. Third, the Lagrange multiplier y is updated as:359

yk+1 = yk + βk[A(Zk+1) + B(Ek+1)− c]. (8)

Updating β. Fourth, the penalty β is updated adaptively as360

follows:361

βk+1 = min(βmax, ρβk), (9)

where362

ρ =

 ρ0, βk max(
√
ηA‖Zk+1 − Zk‖F ,√

ηB‖Ek+1 − Ek‖)/‖c‖2 ≤ ε2,
1, otherwise,

(10)

where ρ0 ≥ 1 is a constant and 0 < ε2 � 1 is a threshold.363

The algorithm is summarized in Algorithm 1, in which the364

above iteration stops when the convergence criteria are met.365

More details about LADMAP can be referenced to [48].366

Computational Complexity. Though label information is367

integrated, our SSLRR model has the same computational368

cost as the original LRR model. Specially, the computational369

cost of Algorithm 1 is mainly determined by updating the370

variables Z, E, and y. For ease of analysis, let rX be the371

lowest rank for X we can find with our algorithm, and k372

denote the number of iterations. Without loss of generality,373

we assume the sizes of X are d×n (d < n) in the following.374

In each iteration, SVT is used to update the low-rank matrix375

whose total complexity is O(rXn
2) when we use partial SVD.376

Then we compute XZk+1 as ((XÛk)
∑̂

k)V̂ T
k and employ377

soft thresholding to update the sparse error matrix E with378

the total complexity of O(rXn
2). The complexity of updating379

the Lagrange multiplier y is O(dn). So, the total cost of380

Algorithm 1 is O(2krXn
2 + dn) = O(krXn

2).381

IV. GRAPH CONSTRUCTION VIA SEMI-SUPERVISED 382

LOW-RANK REPRESENTATION 383

Given a data matrix X , let G = (V,E) be a graph associated 384

with a weight matrix W = {wij}, where V = {vi}ni=1 is the 385

node set, E = {eij} is the edge set, and wij is the weight of 386

edge eij linking two nodes vi and vj . The problem of graph 387

construction is to determine the graph weight matrix W . In 388

this paper, we are primarily concerned about the estimation of 389

an undirected graph with nonnegative weights. 390

After solving problem (2), we may obtain the optimal 391

coefficient matrix Z∗. Since each data point is represented 392

by all the other samples, Z∗ naturally characterizes the re- 393

lationships among samples. Further, the low rank term of 394

(2) encourages the coefficients of samples coming from the 395

same affine subspace to be highly correlated and fall into the 396

same cluster, so that Z∗ captures the global structure (i.e. the 397

subspaces) of the whole data. However, the immediate output 398

of SSLRR is a directed graph (asymmetric similarity between 399

nodes). In order to make use of existing graph-based semi- 400

supervised classification algorithms, a simple symmetrization 401

step is often employed to convert the directed graph to an 402

undirected one: 403

W = (|Z∗|+ |Z∗|T )/2. (11)

However, the above step discards useful information con- 404

veyed by the edge directions. To preserve the valuable struc- 405

tural information from directed pairwise relationship between 406

vertices, we adopt the Co-linkage Similarity (CS) [50], which 407

considers a second-order random walk on the directed graph. 408

The key idea is that, if from node i, a random walker has 409

a higher probability to reach node j, then there is a larger 410

similarity between i and j. To this end, [50] defines four types 411

of process, i.e, co-citation, co-reference, passage (i→ j) and 412

passage (j → i) on a directed graph, as shown in Figure 2. 413

Each type defines a similarity between vertex pairs on a 414

directed graph. Thus, the effective similarity between two

Fig. 2: Four fundamental second order processes on a directed
graph [50]. From left to right: vertices i and j are co-cited by
vertex k; vertices i and j co-reference vertex k; passage from
vertices i to j; passage from vertices j to i.

415

nodes on the directed graph is given by 416

W = Z∗TZ∗ + Z∗Z∗T + Z∗Z∗ + Z∗TZ∗T , (12)

where the four terms represent co-citation, co-reference, pas- 417

sage (i → j), and passage (j → i), respectively. Clearly, 418

the obtained graph weight matrix is symmetrical. Further, in 419

this way we enhance the pairwise relationships between the 420

vertices by taking into account the mutual link reinforcement 421

and make the topological structure more lucid. We refer 422

readers to Section V-C for an empirical comparison of the 423
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Algorithm 2 Graph Construction via SSLRR

Input: Data matrix X = [x1,x2, · · · ,xn] ∈ Rd×n, balance
parameter λ.

Steps:
1: Normalize all the samples x̂i = xi/‖xi‖2 to obtain X̂ =
{x̂1, x̂2, · · · , x̂n}.

2: Assign the adjacency matrix Ω according to the label
information of observed samples.

3: Solve the following problem by Algorithm 1:

(Z∗, E∗) = arg min
Z,E
‖Z‖∗ + λ‖E‖1,

s.t. X̂ = X̂Z + E,1T = 1TZ,

Zij = 0, (i, j) ∈ Ω.

4: Construct the graph weight matrix W by

W = Z∗TZ∗ + Z∗Z∗T + Z∗Z∗ + Z∗TZ∗T .

Output: The weight matrix W of SSLRR-graph.

graph weight matrix construction methods. More details about424

Co-linkage Similarity can be found in [50].425

Finally, we summarize our method for constructing the426

SSLRR-graph in Algorithm 2.427

V. EXPERIMENTS428

To demonstrate the effectiveness of the proposed method,429

we conduct benchmark experiments in two scenarios, namely,430

manifold clustering on synthetic data and semi-supervised431

classification on real image data. Besides LRR, to fur-432

ther show the good generalization ability of the proposed433

semi-supervised graph learning framework, we adapt our434

method into two other existing self-representation methods: `1-435

graph [12], and NNLRS-graph [14]. For these two methods,436

the label information is incorporated in the same way as in437

the LRR-graph.1 We term the resultant methods as Semi-438

supervised `1-graph (denoted as SSL1-graph) and Semi-439

supervised NNLRS-graph (denoted as SSNNLRS-graph), re-440

spectively. As a result, we have six graph learning methods in441

our experiments (three unsupervised methods and three semi-442

supervised methods), as shown in Table I.443

Note that each semi-supervised graph learning method444

shares the same parameter as its corresponding unsupervised445

version. Specifically, for `1-graph and SSL1-graph, as well as446

LRR-graph and SSLRR-graph, one needs to choose the weight447

λ for the error term. For NNLRS-graph and SSNNLRS-graph,448

the parameters for the two error terms, β and λ, need to449

be determined. Compared to the unsupervised method, the450

only difference in the semi-supervised version is the additional451

constraint on the label information. Therefore, to better study452

the benefits of considering the label information in the graph453

learning stage, we decide to use the same parameter values454

for both methods in each experiment, and tune the parameters455

according to each dataset. Further, for fair comparison, we first456

1Though there are other self-presentation methods (such as [13], [15]), most
of them are derived from `1-graph and LRR-graph. Therefore, we choose `1-
graph, LRR-graph and NNLRS-graph as our reference methods.

tune the parameters for each unsupervised learning method, 457

and then apply the same parameters to its semi-supervised 458

version. In this way, we make sure that the choices of pa- 459

rameters do not favor our proposed semi-supervised methods. 460

Unsupervised `1-graph LRR-graph NNLRS-graph
Semi-Supervised SSL1-graph SSLRR-graph SSNNLRS-graph

TABLE I: The six graphs used in our experiments.
461

A. Manifold Clustering on Synthetic Data 462

We consider the manifold clustering application by applying 463

standard spectral clustering algorithm to the learned weight 464

matrix W . The experiment is conducted on a series of synthet- 465

ic data sets which contain Gaussian noises and data corruption. 466

First, we evenly sample 900 noise-free points from three 467

sinusoid manifolds. Then, the sample points are embedded into 468

a 100-dimensional space and occupy the first two dimensions. 469

We further add Gaussian noise with zero mean and variance 470

0.01 in all the 100 dimensions. Finally, we randomly select 471

10% of the samples and corrupt each sample with a much 472

higher Gaussian noise with zero mean and variance 0.3‖x‖2, 473

where ‖x‖2 is the `2-norm of the sample. One example of the 474

noisy data is shown in Figure 3.

Fig. 3: An example of 900 points sampled in R2 and embedded
in 100-D space with added noise and corruption.

475

After building six graphs with different methods, Normal- 476

ized Cuts [51] is used for data segmentation. To apply the 477

semi-supervised graph learning methods, we randomly select 478

and label 30% of the observed samples from each cluster. 479

As clustering methods do not provide the class label of each 480

cluster, we use a post-processing step to assign each cluster a 481

label: Given the ground truth classification results, the label of 482

a cluster is the index of the ground truth class that contributes 483

the maximum number of samples to the cluster. In this way, 484

we can obtain the segmentation accuracy by computing the 485

percentage of correctly classified samples, which is shown in 486

Figure 4. It shows that the semi-supervised learning meth- 487

ods significantly outperform their unsupervised counterparts, 488
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Fig. 4: Clustering results on the synthetic data.

suggesting that the label information can indeed improve the489

performance of self-representation graph learning methods.490

Sensitivity to the percentage of labeled samples. To further491

evaluate the influence of label information, we vary the492

percentage of labeled samples from 10% to 60% for both493

LRR-graph and SSLRR-graph. As shown in Figure 5, SSLRR-494

graph consistently outperforms LRR-graph. In addition, the495

segmentation accuracy of SSLRR-graph increases steadily as496

the percentage of labeled samples increases, resulting a larger497

performance gap between these two methods. This suggests498

that adding more label information can help better preserve499

the underlying global data structures while we construct the500

graph. In Figure 1, we further visualize the graph weight501

matrix obtained by the LRR-graph and the SSLRR-graph. As502

one can see, with the increase of the percentage of labeled503

samples, block-diagonal structure of the constructed graph504

becomes more evident.

10% 20% 30% 40% 50% 60%
Labeled Percentage
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Fig. 5: Clustering results on the synthetic data with the
variation of labeled percentage.

505

B. Semi-supervised Classification on Real Image Datasets506

Besides synthetic data, we also evaluate our proposed semi-507

supervised graph-learning methods in applications including508

face recognition, handwritten digit recognition, and object509

recognition under the transductive learning setting. We adopt510

(a) PIE face images

(b) YaleB face images

Fig. 6: Sample images in the PIE and YaleB face datasets.

the popular Local and Global Consistency (LGC) [2] as the 511

classification framework. Specifically, LGC builds upon an 512

undirected graph, and utilizes the graph and known labels to 513

recovery a continuous classification function F ∈ R|V |×c by 514

optimizing the following energy function: 515

min
F∈R|V |×c

tr{FTLWF + µ(F − Y )T (F − Y )}, (13)

where c is the number of classes, Y ∈ R|V |×c is the label 516

matrix, in which Yij = 1 if sample xi is associated with label 517

j for j ∈ {1, 2, · · · , c}, and Yij = 0 otherwise. LW is the 518

normalized graph Laplacian LW = D−1/2(D − W )D−1/2, 519

in which D is a diagonal matrix with Dij =
∑

j Wij . The 520

weight µ ∈ [0,∞) balances the local fitting and the global 521

smoothness of the function F . As suggested in [2], we fix 522

µ = 0.01 in all the experiments. 523

1) Evaluation on Face Recognition: We investigate the 524

performance of our semi-supervised graph learning for face 525

recognition on two well-known public face datasets: YaleB and 526

CMU PIE. In the literature, both datasets have been frequently 527

used to evaluate the performance of semi-supervised learning 528

methods. The YaleB face database consists of 38 individuals, 529

and each subject has around 64 near frontal images under 530

different illuminations. We use the cropped images of first 15 531

individuals for our experiment, and resize them to 32 × 32 532

pixels. The PIE face database contains 41368 images of 68 533

people, each person under 13 different poses, 43 different 534

illumination conditions and with 4 different expressions. In 535

our experiments, we only use the frontal images with neural 536

expression of the first 20 individual. The images are cropped 537

using affine transformations based on locations of the eyes and 538

nose, and resize them to 100×100 pixels. Sample images from 539

these two face datasets are shown in Figure 6. Empirically, we 540

have found that images of each subject in YaleB and PIE has 541

a roughly linear subspace structure. 542
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Fig. 7: Face recognition error rates on the YaleB dataset.
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Fig. 8: Face recognition error rates on the PIE dataset.

In Figure 7 and Figure 8, we report the classification543

accuracy based on six different graph learning methods on544

YaleB and PIE datasets. The percentage of the labeled samples545

varies from 10% to 60%. As expected, in most cases, the546

classification error rates for all methods decrease with the547

increase of the percentage of labeled samples. More important-548

ly, in all cases, the semi-supervised graph learning methods549

outperform their unsupervised counterparts. For example, by550

incorporating the labels of 10% data samples in YaleB into the551

`1-graph, the classification error rate is reduced from 31.2%552

to 13.2%. This demonstrates the importance of incorporating553

label information in graph construction.554

2) Evaluation on Handwritten Digit Recognition: In this555

experiment, we address the handwritten digit recognition prob-556

lem on the USPS dataset. The dataset contains normalized grey557

scale images of size 16×16, divided into a training set of 7291558

images and a test set of 2007 images. Following the setting559

of previous works, we only use the images of digits 1, 2, 3,560

and 4 as the four classes, which have 1296, 926, 824 and 852561

samples, respectively. Some sample images from USPS digit562

dataset are shown in Figure 9.563

Figure 10 shows the recognition error rates of all the six564

methods on the USPS dataset. As we can see, the proposed565

semi-supervised graph learning methods consistently outper-566

form the unsupervised versions. Moreover, as the percentage567

of labeled samples increases, the classification error rates for568

SSL1-graph, SSLRR-graph, and SSNNLRR-graph decreases569

monotonically. This suggests that labeled samples help recover570

the underlying data structure of the learned graphs. In Fig-571

ure 11, we further compare the weight matrices obtained by572

Fig. 9: Sample images in the USPS dataset.

the LRR-graph and SSLRR-graph on USPS dataset. We can 573

see that, with the increase of the number of labeled samples, 574

the block-diagonal structure of the graphs is indeed better 575

preserved. 576

3) Evaluation on Visual Object Recognition: We verify 577

the importance of label information for graph learning for 578

nonlinear manifolds by conducting visual object recognition 579

experiments on the COIL20 dataset. The dataset contains 20 580

objects. The images of each objects were taken 5 degrees 581

apart as the object is rotated on a turntable, resulting in 72 582

images for each object. The size of the grayscale image is 583

32 × 32 pixels. Figure 12 shows some sample images in the 584

COIL20 dataset. We have empirically found that data samples 585

in the COIL20 dataset lie on non-linear manifolds. This makes 586

the graph learning and classification tasks more challenging, 587

because most self-representation methods (such as `1-graph, 588

LRR-graph, NNLRS-graph) are based on linear models. 589

Figure 13 reports the classification results of the six graph 590

learning methods. As we can see, as the percentage of labeled 591

samples increases, the classification error rates for our semi- 592
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Fig. 10: Handwritten digit recognition error rates on the USPS dataset.
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Fig. 13: Visual object recognition error rates on the COIL20 dataset.
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Fig. 11: Visualization of unsupervised LRR-graph and semi-
supervised SSLRR-graph with 10%, 30%, and 60% of labeled
data from USPS database.

supervised learning methods decrease. Further, they signifi-593

cantly outperform their corresponding unsupervised versions.594

For example, the error rate for LRR-graph on the COIL20595

dataset with 60% labeled samples is 9.10%, whereas the error596

rate for SSLRR-graph is only 2.68%. This again demonstrates597

the importance of the incorporating label information in graph598

learning. By enforcing the weights between points from dif-599

ferent categories to be zero, we can preserve part of the global600

data structure.601

Fig. 12: Sample images in the COIL dataset.

C. Influence of the Graph Construction Methods 602

In this subsection, we evaluate the influence of Co- 603

linkage Similarity (CS) [50] on the graph construction. Tak- 604

ing SSLRR-graph as example, we use the classic method 605

(i.e., Eq. (11)) and the Co-linkage Similarity (i.e., Eq. 606

(12)) to symmetrize the directed graph, and obtain SSLRR- 607

graphclassic and SSLRR-graphCS , respectively. We evaluate 608

SSLRR-graphclassic and SSLRR-graphCS under the same 609

settings on both the USPS dataset and the PIE dataset. The 610

classification error rate on these two datasets are shown in 611

Figure 14. As we can see that, the Co-linkage Similarity does 612

improve the performance of SSLRR-graph, especially when 613

the percentage of labeled samples is small. Generally, as the 614
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Fig. 14: Classification error rates using different graph weight
matrix construction methods.

labeled percentage increases, the influence becomes weaker.615

VI. CONCLUSION616

In this paper, we propose a new graph learning framework,617

which is able to obtain highly informative graphs for graph-618

based SSL methods. Different from existing graph learning619

methods, our method explicitly takes advantage of label in-620

formation in both the graph learning and label propagation621

stages. In particular, by restricting the coefficient between any622

two labeled samples from different classes to be zero, our623

method seamlessly incorporates the label information of the624

data samples into any self-representation methods (e.g., `1-625

graph, LRR-graph, and NNLRR-graph), and keep the same626

computational cost. As a result, the new graphs can better627

capture the global geometric structure of the data, therefore628

is more informative and discriminative, especially when the629

data is subject to noise, the subspaces are not independent,630

or the data points lie in nonlinear manifolds. Experiment631

results on both synthetic and real datasets demonstrate that632

the label information indeed helps preserve the block-diagonal633

structure of the coefficient matrices, and significantly improves634

the performance of existing graph learning methods.635

As for future work, we plan to further investigate efficient636

algorithms for constructing large-scale SSLRR-graphs. Also,637

current methods conduct label propagation for classification638

after graph construction. It is interesting to develop principled639

method to solve the graph construction and label propagation640

problems at the same time.641

REFERENCES642

[1] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image643

segmentation,” International Journal of Computer Vision, vol. 59, no. 2,644

pp. 888–905, 2004. 1645

[2] D. Zhou, O. Bousquet, T. Lal, J. Weston, and B. Schölkopf, “Learning646

with local and global consistency,” in NIPS, 2004, pp. 595–602. 1, 7647

[3] S. Roweis and L. Saul, “Nonlinear dimensionality reduction by locality648

linear embedding,” Science, vol. 290, no. 5500, pp. 2323–2326, 2000.649

1, 2, 4650

[4] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, “Robust recovery of651

subspace structures by low-rank representation,” IEEE TPAMI, vol. 35,652

no. 1, pp. 171–184, January 2013. 1, 2, 3, 5653

[5] T. Jebara, J. Wang, and S. Chang, “Graph construction and b-matching 654

for semi-supervised learning,” in ICML, 2009, pp. 441–448. 2, 3 655

[6] D. Kong, C. H. Ding, H. Huang, and F. Nie, “An iterative locally 656

linear embedding algorithm,” in Proceedings of the 29th International 657

Conference on Machine Learning (ICML-12), New York, NY, USA, 658

2012, pp. 1647–1654. 2, 3 659

[7] E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE 660

Transactions on Information Theory, vol. 51, no. 12, pp. 4203–4215, 661

2005. 2 662

[8] D. L. Donoho, “Compressed sensing,” IEEE Transactions on Informa- 663

tion Theory, vol. 52, no. 4, pp. 1289–1306, 2006. 2 664

[9] M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and 665

R. Baranuik, “Single-pixel imaging via compressed sampling,” IEEE 666

Signal Process. Mag., vol. 25, no. 2, pp. 83–91, 2008. 2 667

[10] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma, “Robust face 668

recognition via sparse representation,” IEEE TPAMI, vol. 31, no. 2, pp. 669

210–227, 2008. 2 670

[11] E. Candés, X. Li, Y. Ma, and J. Wright, “Robust principal component 671

analysis,” Journal of the ACM, vol. 58, no. 3, 2011. 2 672

[12] B. Cheng, J. Yang, S. Yan, Y. Fu, and T. Huang, “Learning with `1-graph 673

for image analysis,” IEEE TIP, vol. 19, no. 4, 2010. 2, 3, 6 674

[13] R. He, W.-S. Zheng, B.-G. Hu, and X.-W. Kong, “Nonnegative sparse 675

coding for discriminative semi-supervised learning,” in CVPR, 2011, pp. 676

792–801. 2, 3, 6 677

[14] L. Zhuang, H. Gao, Z. Liu, Y. Ma, X. Zhang, and N. Yu, “Non-negative 678

low rank and sparse graph for semi-supervised learning,” in CVPR, 2012. 679

2, 3, 6 680

[15] Y. Zheng, X. Zhang, S. Yang, and L. Jiao, “Low-rank representation 681

with local constraint for graph construction,” Neurocomputing, vol. 122, 682

no. 24, pp. 398–405, December 2013. 2, 6 683

[16] R. Vidal, “Subspace clustering,” IEEE Signal Process. Mag., vol. 28, 684

no. 2, pp. 52–68, 2011. 2 685

[17] M. Rohban and H. R. Rabiee, “Supervised neighborhood graph construc- 686

tion for semi-supervised classification,” Pattern Recognition, vol. 45, pp. 687

1362–1372, April 2012. 2 688

[18] L. Berton and A. de Andrade Lopes, “Graph construction based on 689

labeled instances for semi-supervised learning,” in 22nd International 690

Conference on Pattern Recognition (ICPR), 2014. 2 691

[19] P. S. Dhillon, P. P. Talukdar, and K. Crammer, “Inference driven metric 692

learning (idml) for graph construction,” 2010, university of Pennsylvania 693

Department of Computer and Information Science Technical Report 694

No.MS-CIS-10-18. 2 695

[20] M. Maier, U. von Luxburg, and M. Hein, “Influence of graph construc- 696

tion on graph-based clustering measures,” in NIPS, 2008. 3 697

[21] P. P. Tlukdar, “Topics in graph construction for semi-supervised 698

learning,” Department of Computer & Information Science, University 699

of Pennsylvania, Tech. Rep. MS-CIS-09-13, August 2009. [Online]. 700

Available: http://repository.upenn.edu/cis reports/936 3 701

[22] D. A. Vega-Oliveros, L. Berton, A. Mantini Eberle, A. de An- 702

drade Lopes, and L. Zhao, “Regular graph construction for semi- 703

supervised learning,” 2nd International Conference on Mathematical 704

Modeling in Physical Sciences 2013, vol. 490, no. 1, 2014. 3 705

[23] L. Berton and A. de Andrade Lopes, “Graph construction for semi- 706

superivsed learning,” in Proceedings of the Twenty-Fourth International 707

Joint Conference on Artificial Intelligence (IJCAI 2015), 2015, pp. 4343– 708

4344. 3 709

[24] J. Wang, F. Wang, C. Zhang, H. Shen, and L. Quan, “Linear neighbor- 710

hood propagation and its applications,” IEEE TPAMI, vol. 31, no. 9, pp. 711

1600–1615, 2009. 3 712

[25] K. Ozaki, M. Shimbo, M. Komachi, and Y. Matsumoto, “Using the 713

mutual k-nearest neighbor graphs for semi-supervised classification of 714

natural language data,” in Proceedings of the Fifteenth Conference on 715

Computational Natural Language Learning, 2011, pp. 154–162. 3 716

[26] M. Zhang, C. Ding, and D. Kong, “Collective kernel construction in 717

noisy environment,” in SIAM International Conference on Data Mining 718

2013 (SMD 2013), Austin, USA, 2013, pp. 64–72. 3 719

[27] Y.-M. Zhang, K. Huang, G. Geng, and C.-L. Liu, Fast kNN Graph 720

Construction with Locality Sensitive Hashing. Berlin, Heidelberg: 721

Springer Berlin Heidelberg, 2013, pp. 660–674. [Online]. Available: 722

http://dx.doi.org/10.1007/978-3-642-40991-2 42 3 723

[28] W. Dong, C. Moses, and K. Li, “Efficient k-nearest neighbor graph 724

construction for generic similarity measures,” in Proceedings of the 20th 725

international conference on World wide web, 2011, pp. 577–586. 3 726

[29] D. C. Anastasiu and G. Karypis, “L2knng: Fast exact k-nearest neighbor 727

graph construction with l2-norm pruning,” in Proceedings of the 24th 728

ACM International Conference on Information and Knowledge Manage- 729

ment(CIKM), 2015. 3 730

http://repository.upenn.edu/cis_reports/936
http://dx.doi.org/10.1007/978-3-642-40991-2_42


11

[30] Y. Park, S. Park, S.-g. Lee, and W. Jung, “Scalable k-nearest neighbor731

graph construction based on greedy filtering,” in Proceedings of the 22th732

international conference on World wide web, 2013, pp. 227–228. 3733

[31] J. Wang, J. Wang, G. Zeng, Z. Tu, R. Gan, and S. Li, “Scalable k-nn734

graph construction for visual descriptors,” in CVPR, 2012. 3735

[32] Y. Fang, R. Wang, B. Dai, and X. Wu, “Graph-based learning via auto-736

grouped sparse regularization and kernelized extension,” TKDE, vol. 27,737

no. 1, pp. 142–154, 2015. 3738

[33] Y. Yang, Z. Wang, J. Yang, J. Wang, S. Chang, and T. S. Huang, “Data739

clustering by laplacian regularized l1-graph,” in AAAI, 2014, pp. 3148–740

3149. 3741

[34] S. Han, H. Huang, H. Qin, and D. Yu, “Locality-preserving l1-graph and742

its application in clustering,” in Proceedings of the 30th Annual ACM743

Symposium on Applied Computing, 2015, pp. 813–818. 3744

[35] G. Zhou, Z. Lu, and Y. Peng, “L1-graph construction using structured745

sparsity,” Neurocomputing, vol. 120, pp. 441–452, 2013. 3746

[36] S. Han and H. Qin, “Structure aware l1-ggraph for data clustering,” in747

AAAI, 2016, pp. 4214–4215. 3748

[37] L. Zhuang, S. Gao, J. Tang, J. Wang, Z. Liu, Y. Ma, and N. Yu,749

“Constructing a nonnegative low-rank and sparse graph with data-750

adaptive features,” IEEE TIP, vol. 24, no. 11, pp. 3717–3728, 2015.751

3752

[38] J. Feng, Z. Lin, H. Xu, and S. Yan, “Robust subspace segmentation with753

block-diagonal prior,” in CVPR, 2014, pp. 3818–3825. 3754

[39] S. Yang, Z. Feng, H. Liu, and L. Jiao, “Semi-supervised classification755

via kernel low-rank representation graph,” Knowledge-Based Systems,756

vol. 69, pp. 150–158, 2014. 3757

[40] Y. Zheng, X. Zhang, S. Yang, and L. Jiao, “Low-rank representation758

with local constraint for graph construction,” Neurocomputing, vol. 122,759

pp. 398–405, 2013. 3760

[41] X. Lu, Y. Wang, and Y. Yuan, “Graph-regularized low-rank representa-761

tion for destriping of hyperspectral images,” Neurocomputing, vol. 51,762

no. 7, pp. 4009–4018, 2013. 3763

[42] Y. Peng, B.-L. Lu, and S. Wang, “Enhanced low-rank representation764

via sparse manifold adaption for semi-supervised learning,” Neural765

Networks, vol. 65, pp. 1–17, 2015. 3766

[43] L. Zhuang, J. Wang, Z. Liu, A. Yang, Y. Ma, and N. Yu, “Locality-767

preserving low-rank representation for graph construction from nonlinear768

manifolds,” Neurocomputing, vol. 175, pp. 715–722, 2016. 3769

[44] C. Lu, H. Min, Z. Zhao, L. Zhu, D. Huang, and S. Yan, “Robust and770

efficient subspace segmentation via least squares regression,” in ECCV,771

2012, pp. 347–360. 3772

[45] C. Lu, J. Feng, Z. Lin, and S. Yan, “Correlation adaptive subspace773

segmentation by trace lasso,” in ICCV, 2013, pp. 1345–1352. 3774

[46] C. Lu, J. Tang, M. Lin, L. Lin, S. Yan, and Z. Lin, “Correntropy induced775

L2 graph for robust subspace clustering,” in IEEE International Con-776

ference on Computer Vision, ICCV 2013, Sydney, Australia, December777

1-8, 2013, 2013, pp. 1801–1808. 3778

[47] H. Hu, Z. Lin, J. Feng, and J. Zhou, “Smooth representation clustering,”779

in CVPR, 2014, pp. 3834–3841. 3780

[48] Z. Lin, R. Liu, and Z. Su, “Linearized alternating direction method with781

adaptive penalty for low rank representation,” in NIPS, 2011. 4, 5782

[49] J.-F. Cai, E. J. Candés, and Z. Shen, “A singular value thresholding783

algorithm for matrix completion,” SIAM J. on Optimization, vol. 20,784

no. 4, pp. 1956–1982, 2010. 4785

[50] H. Wang, H. Huang, and C. Ding, “Image categorization using directed786

graphs,” in ECCV, 2010, pp. 762–775. 5, 6, 9787

[51] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE788

TPAMI, vol. 22, no. 8, pp. 888–905, August 2000. 6789

Liansheng ZHUANG is an associate professor in790

the School of Information Science and Technology,791

USTC. He received his Ph.D. degree and bache-792

lor’s degree respectively in 2006 and 2001, from793

University of Science and Technology of China794

(USTC), China. During 2012-2013, he was a visiting795

research scientist in Dept. of EECS at University of796

California, Berkeley. His main research interesting797

is in computer vision, and machine learning. He is798

a member of ACM, IEEE, and CCF.799

800

Zihan ZHOU is currently a faculty member in the 801

College of Information Sciences and Technology 802

at the Pennsylvania State University. His research 803

interest lies in computer vision, image processing 804

and machine learning. He received the bachelor’s 805

degree in Automation from Tsinghua University in 806

2007, and Ph.D degree in Electrical and Computer 807

Engineering from University of Illinois at Urbana- 808

Champaign in 2013. He is a member of IEEE. 809

810

Shenghua GAO is an assistant professor in Shang- 811

haiTech University, China. He received the B.E. 812

degree from the University of Science and Tech- 813

nology of China in 2008 (outstanding graduates), 814

and received the Ph.D. degree from the Nanyang 815

Technological University in 2012. From Jun 2012 816

to Aug 2014, he worked as a research scientist in 817

Advanced Digital Sciences Center, Singapore. From 818

Jan 2015 to June 2015, he visited UC Berkeley 819

as a visiting scholar. His research interests include 820

computer vision and machine learning. He has pub- 821

lished more than 30 papers on object and face recognition related topics in 822

many international conferences and journals, including IEEE T-PAMI,IJCV, 823

IEEE TIP, IEEE TNNLS, IEEE TMM, IEEE TCSVT, CVPR, ECCV, etc. He 824

has organized tutorials in VCIP2015 and ACCV2014. He was awarded the 825

Microsoft Research Fellowship in 2010, and ACM Shanghai Young Research 826

Scientist in 2015, and he is a recipient of National 1000 Young Talents 827

Program in 2016. 828

Jingwen Yin is currently a undergraduate students 829

in the School of the Gifted Young at University 830

of Science and Technology of China. Her research 831

interest lies in computer vision and data mining. 832

833

Zhouchen LIN (M’00-SM’08) received the Ph.D. 834

degree in applied mathematics from Peking Uni- 835

versity in 2000. Currently, he is a professor at the 836

Key Laboratory of Machine Perception (Ministry 837

of Education), School of Electronics Engineering 838

and Computer Science, Peking University. He was a 839

chair professor at Northeast Normal University. His 840

research interests include computer vision, image 841

processing, machine learning, pattern recognition, 842

and numerical optimization. He is an associate ed- 843

itor of IEEE Transactions on Pattern Analysis and 844

Machine Intelligence and International Journal of Computer Vision. He is an 845

IAPR Fellow. 846



12

Yi Ma (F13) is a Professor and Executive Dean of847

the School of Information and Science and Technol-848

ogy, ShanghaiTech University, China. From 2009 to849

early 2014, he was a Principal Researcher and the850

Research Manager of the Visual Computing group at851

Microsoft Research in Beijing. From 2000 to 2011,852

he was an Associate Professor at the Electrical &853

Computer Engineering Department of the University854

of Illinois at Urbana-Champaign. His main research855

interest is in computer vision, high-dimensional data856

analysis, and systems theory. He has written two857

textbooks “An Invitation to 3-D Vision” published by Springer in 2004, and858

“Generalized Principal Component Analysis” published by Springer in 2016.859

Yi Ma received his Bachelors degree in Automation and Applied Mathematics860

from Tsinghua University (Beijing, China) in 1995, a Master of Science degree861

in EECS in 1997, a Master of Arts degree in Mathematics in 2000, and a PhD862

degree in EECS in 2000, all from the University of California at Berkeley. Yi863

Ma received the David Marr Best Paper Prize at the International Conference864

on Computer Vision 1999, the Longuet-Higgins Best Paper Prize (honorable865

mention) at the European Conference on Computer Vision 2004, and the Sang866

Uk Lee Best Student Paper Award with his students at the Asian Conference867

on Computer Vision in 2009. He also received the CAREER Award from868

the National Science Foundation in 2004 and the Young Investigator Award869

from the Office of Naval Research in 2005. He was an associate editor of870

IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), the871

International Journal of Computer Vision (IJCV), and IEEE transactions on872

Information Theory. He is currently an associate editor of the IMA journal on873

Information and Inference, SIAM journal on Imaging Sciences, IEEE Signal874

Processing Magazine. He served as a Program Chair for ICCV 2013 and is875

a General Chair for ICCV 2015. He is a Fellow of IEEE. He is ranked the876

World’s Highly Cited Researchers of 2016 by Clarivate Analytics of Thomson877

Reuters.878


