
Noname manuscript No.
(will be inserted by the editor)

The Augmented Lagrange Multiplier Method for
Exact Recovery of Corrupted Low-Rank Matrices

Zhouchen Lin ⋅ Minming Chen ⋅ Leqin Wu ⋅
Yi Ma

Received: date / Accepted: date

Abstract This paper proposes scalable and fast algorithms for solving the Robust

PCA problem, namely recovering a low-rank matrix with an unknown fraction of its

entries being arbitrarily corrupted. This problem arises in many applications, such as

image processing, web data ranking, and bioinformatic data analysis. It was recently

shown that under surprisingly broad conditions, the Robust PCA problem can be ex-

actly solved via convex optimization that minimizes a combination of the nuclear norm

and the ℓ1-norm . In this paper, we apply the method of augmented Lagrange multi-

pliers (ALM) to solve this convex program. As the objective function is non-smooth,

we show how to extend the classical analysis of ALM to such new objective functions

and prove the optimality of the proposed algorithms and characterize their convergence

rate. Empirically, the proposed new algorithms can be more than five times faster than

the previous state-of-the-art algorithms for Robust PCA, such as the accelerated proxi-

mal gradient (APG) algorithm. Moreover, the new algorithms achieve higher precision,

yet being less storage/memory demanding. We also show that the ALM technique can

be used to solve the (related but somewhat simpler) matrix completion problem and

obtain rather promising results too. Matlab code of all algorithms discussed are avail-

able at http://perception.csl.illinois.edu/matrix-rank/home.html

Keywords Low-rank matrix recovery or completion ⋅ Robust principal component

analysis ⋅ Nuclear norm minimization ⋅ ℓ1-norm minimization ⋅ Proximal gradient

algorithms ⋅ Augmented Lagrange multipliers

Zhouchen Lin
Visual Computing Group, Microsoft Research Asia, Beijing 100190, China.
E-mail: zhoulin@microsoft.com

Minming Chen
Institute of Computing Technology, Chinese Academy of Sciences, China.

Leqin Wu
Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese
Academy of Sciences, China.

Yi Ma
Visual Computing Group, Microsoft Research Asia, Beijing 100190, China, and Electrical &
Computer Engineering Department, University of Illinois at Urbana-Champaign, USA.



2

1 Introduction

Principal Component Analysis (PCA), as a popular tool for high-dimensional data

processing, analysis, compression, and visualization, has wide applications in scientific

and engineering fields [13]. It assumes that the given high-dimensional data lie near

a much lower-dimensional linear subspace. To large extent, the goal of PCA is to

efficiently and accurately estimate this low-dimensional subspace.

Suppose that the given data are arranged as the columns of a large matrix D ∈
ℝm×n. The mathematical model for estimating the low-dimensional subspace is to find

a low rank matrix A, such that the discrepancy between A and D is minimized, leading

to the following constrained optimization:

min
A,E

∥E∥F , subject to rank(A) ≤ r, D = A+ E, (1)

where r ≪ min(m,n) is the target dimension of the subspace and ∥⋅∥F is the Frobenius

norm, which corresponds to assuming that the data are corrupted by i.i.d. Gaussian

noise. This problem can be conveniently solved by first computing the Singular Value

Decomposition (SVD) of D and then projecting the columns of D onto the subspace

spanned by the r principal left singular vectors of D [13].

As PCA gives the optimal estimate when the corruption is caused by additive

i.i.d. Gaussian noise, it works well in practice as long as the magnitude of noise is

small. However, it breaks down under large corruption, even if that corruption affects

only very few of the observations. In fact, even if only one entry of A is arbitrarily

corrupted, the estimated Â obtained by classical PCA can be arbitrarily far from the

true A. Therefore, it is necessary to investigate whether a low-rank matrix A can still

be efficiently and accurately recovered from a corrupted data matrix D = A+E, where

some entries of the additive errors E may be arbitrarily large.

Recently, Wright et al. [22] have shown that under rather broad conditions the

answer is affirmative: as long as the error matrix E is sufficiently sparse (relative to

the rank of A), one can exactly recover the low-rank matrix A from D = A + E by

solving the following convex optimization problem:

min
A,E

∥A∥∗ + ¸ ∥E∥1, subject to D = A+ E, (2)

where ∥⋅∥∗ denotes the nuclear norm of a matrix (i.e., the sum of its singular values), ∥⋅
∥1 denotes the sum of the absolute values of matrix entries, and ¸ is a positive weighting

parameter. Due to the ability to exactly recover underlying low-rank structure in the

data, even in the presence of large errors or outliers, this optimization is referred to as

Robust PCA (RPCA) in [22] (a popular term that has been used by a long line of work

that aim to render PCA robust to outliers and gross corruption). Several applications

of RPCA, e.g. background modeling and removing shadows and specularities from face

images, have been demonstrated in [23] to show the advantage of RPCA.

The optimization (2) can be treated as a general convex optimization problem

and solved by any off-the-shelf interior point solver (e.g., CVX [12]), after being re-

formulated as a semidefinite program [10]. However, although interior point methods

normally take very few iterations to converge, they have difficulty in handling large

matrices because the complexity of computing the step direction is O(m6), where m is

the dimension of the matrix. As a result, on a typical personal computer (PC) generic

interior point solvers cannot handle matrices with dimensions larger than m = 102.



3

In contrast, applications in image and video processing often involve matrices of di-

mension m = 104 to 105; and applications in web search and bioinformatics can easily

involve matrices of dimension m = 106 and beyond. So the generic interior point solvers

are too limited for Robust PCA to be practical for many real applications.

That the interior point solvers do not scale well for large matrices is because they

rely on second-order information of the objective function. To overcome the scalability

issue, we should use the first-order information only and fully harness the special prop-

erties of this class of convex optimization problems. For example, it has been recently

shown that the (first-order) iterative thresholding (IT) algorithms can be very efficient

for ℓ1-norm minimization problems arising in compressed sensing [24,4,25,8]. It has

also been shown in [7] that the same techniques can be used to minimize the nuclear

norm for the matrix completion (MC) problem, namely recovering a low-rank matrix

from an incomplete but clean subset of its entries [18,9].

As the matrix recovery (Robust PCA) problem (2) involves minimizing a combina-

tion of both the ℓ1-norm and the nuclear norm, in the original paper [22], the authors

have also adopted the iterative thresholding technique to solve (2) and obtained simi-

lar convergence and scalability properties. However, the iterative thresholding scheme

proposed in [22] converges extremely slowly. Typically, it requires about 104 iterations

to converge, with each iteration having the same cost as one SVD. As a result, even for

matrices with dimensions as small as m = 800, the algorithm has to run 8 hours on a

typical PC. To alleviate the slow convergence of the iterative thresholding method [22],

Lin et al. [15] have proposed two new algorithms for solving the problem (2), which

in some sense complementary to each other: The first one is an accelerated proximal

gradient (APG) algorithm applied to the primal, which is a direct application of the

FISTA framework introduced by [4], coupled with a fast continuation technique1; The

second one is a gradient-ascent algorithm applied to the dual of the problem (2). From

simulations with matrices of dimension up to m = 1, 000, both methods are at least 50

times faster than the iterative thresholding method (see [15] for more details).

In this paper, we present novel algorithms for matrix recovery which utilize tech-

niques of augmented Lagrange multipliers (ALM). The exact ALM (EALM) method

to be proposed here is proven to have a pleasing Q-linear convergence speed, while the

APG is in theory only sub-linear. A slight improvement over the exact ALM leads an

inexact ALM (IALM) method, which converges practically as fast as the exact ALM,

but the required number of partial SVDs is significantly less. Experimental results show

that IALM is at least five times faster than APG, and its precision is also higher. In

particular, the number of non-zeros in E computed by IALM is much more accurate

(actually, often exact) than that by APG, which often leave many small non-zero terms

in E.

In the rest of the paper, for completeness, we will first sketch the previous work in

Section 2. Then we present our new ALM based algorithms and analyze their conver-

gence properties in Section 3 (while leaving all technical proofs to Appendix A). We

will also quickly illustrate how the same ALM method can be easily adapted to solve

the (related but somewhat simpler) matrix completion (MC) problem. We will then

discuss some implementation details of our algorithms in Section 4. Next in Section 5,

we compare the new algorithms and other existing algorithms for both matrix recovery

and matrix completion, using extensive simulations on randomly generated matrices.

Finally we give some concluding remarks in Section 6.

1 Similar techniques have been applied to the matrix completion problem by [19].



4

2 Previous Algorithms for Matrix Recovery

In this section, for completeness as well as purpose of comparison, we briefly introduce

and summarize other existing algorithms for solving the matrix recovery problem (2).

2.1 The Iterative Thresholding Approach

The IT approach proposed in [22] solves a relaxed convex problem of (2):

min
A,E

∥A∥∗ + ¸ ∥E∥1 +
1

2¿
∥A∥2F +

1

2¿
∥E∥2F , subject to A+ E = D, (3)

where ¿ is a large positive scalar so that the objective function is only perturbed

slightly. By introducing a Lagrange multiplier Y to remove the equality constraint, one

has the Lagrangian function of (3):

L(A,E, Y ) = ∥A∥∗ + ¸ ∥E∥1 +
1

2¿
∥A∥2F +

1

2¿
∥E∥2F +

1

¿
⟨Y,D −A− E⟩. (4)

Then the IT approach updates A, E and Y iteratively. It updates A and E by minimiz-

ing L(A,E, Y ) with respect to A and E, with Y fixed. Then the amount of violation

of the constraint A+ E = D is used to update Y .

For convenience, we introduce the following soft-thresholding (shrinkage) operator:

S"[x]
.
=

⎧
⎨
⎩

x− ", if x > ",

x+ ", if x < −",

0, otherwise,

(5)

where x ∈ ℝ and " > 0. This operator can be extended to vectors and matrices by

applying it element-wise. Then the IT approach works as described in Algorithm 1,

where the thresholdings directly follow from the well-known analysis [7,24]:

US"[S]V
T = argmin

X
"∥X∥∗+ 1

2
∥X −W∥2F , S"[W ] = argmin

X
"∥X∥1+ 1

2
∥X −W∥2F ,

(6)

where USV T is the SVD of W . Although being extremely simple and provably correct,

the IT algorithm requires a very large number of iterations to converge and it is difficult

to choose the step size ±k for speedup, hence its applicability is limited.

Algorithm 1 (RPCA via Iterative Thresholding)

Input: Observation matrix D ∈ ℝm×n, weights ¸ and ¿ .
1: while not converged do
2: (U, S, V ) = svd(Yk−1),
3: Ak = US¿ [S]V T ,
4: Ek = S¸¿ [Yk−1],
5: Yk = Yk−1 + ±k(D −Ak − Ek).
6: end while
Output: A Ã Ak, E Ã Ek.



5

2.2 The Accelerated Proximal Gradient Approach

A general theory of the accelerated proximal gradient approach can be found in [21,4,

17]. To solve the following unconstrained convex problem:

min
X∈ℋ

F (X)
.
= g(X) + f(X), (7)

whereℋ is a real Hilbert space endowed with an inner product ⟨⋅, ⋅⟩ and a corresponding

norm ∥ ⋅ ∥, both g and f are convex and f is further Lipschitz continuous: ∥∇f(X1)−
∇f(X2)∥ ≤ Lf∥X1 −X2∥, one may approximate f(X) locally as a quadratic function

and solve

Xk+1 = arg min
X∈ℋ

Q(X,Yk)
.
= f(Yk) + ⟨∇f(Yk),X − Yk⟩+

Lf

2
∥X − Yk∥2 + g(X), (8)

which is assumed to be easy, to update the solution X. The convergence behavior of

this iteration depends strongly on the points Yk at which the approximations Q(X,Yk)

are formed. The natural choice Yk = Xk (proposed, e.g., by [11]) can be interpreted

as a gradient algorithm, and results in a convergence rate no worse than O(k−1) [4].

However, for smooth g Nesterov showed that instead setting Yk = Xk +
tk−1−1

tk
(Xk −

Xk−1) for a sequence {tk} satisfying t2k+1−tk+1 ≤ t2k can improve the convergence rate

to O(k−2) [17]. Recently, Beck and Teboulle extended this scheme to the nonsmooth g,

again demonstrating a convergence rate of O(k−2), in a sense that F (Xk)− F (X∗) ≤
Ck−2 [4].

The above accelerated proximal gradient approach can be directly applied to a

relaxed version of the RPCA problem, by identifying

X = (A,E), f(X) =
1

¹
∥D −A− E∥2F , and g(X) = ∥A∥∗ + ¸∥E∥1,

where ¹ is a small positive scalar. A continuation technique [19], which varies ¹, starting

from a large initial value ¹0 and decreasing it geometrically with each iteration until

it reaches the floor ¹̄, can greatly speed up the convergence. The APG approach for

RPCA is described in Algorithm 2 (for details see [15,23]).

Algorithm 2 (RPCA via Accelerated Proximal Gradient)

Input: Observation matrix D ∈ ℝm×n, ¸.
1: A0 = A−1 = 0; E0 = E−1 = 0; t0 = t−1 = 1; ¹̄ > 0; ´ < 1.
2: while not converged do

3: Y A
k = Ak +

tk−1−1

tk
(Ak −Ak−1), Y

E
k = Ek +

tk−1−1

tk
(Ek − Ek−1).

4: GA
k = Y A

k − 1
2

(
Y A
k + Y E

k −D
)
.

5: (U, S, V ) = svd(GA
k ), Ak+1 = US¹k

2
[S]V T .

6: GE
k = Y E

k − 1
2

(
Y A
k + Y E

k −D
)
.

7: Ek+1 = S¸¹k
2

[GE
k ].

8: tk+1 =
1+

√
4t2

k
+1

2
; ¹k+1 = max(´ ¹k, ¹̄).

9: k Ã k + 1.
10: end while
Output: A Ã Ak, E Ã Ek.



6

2.3 The Dual Approach

The dual approach proposed in our earlier work [15] tackles the problem (2) via its

dual. That is, one first solves the dual problem

max
Y

⟨D,Y ⟩, subject to J(Y ) ≤ 1, (9)

for the optimal Lagrange multiplier Y , where

⟨A,B⟩ = tr(ATB), J(Y ) = max
(
∥Y ∥2, ¸−1∥Y ∥∞

)
, (10)

and ∥ ⋅ ∥∞ is the maximum absolute value of the matrix entries. A steepest ascend

algorithm constrained on the surface {Y ∣J(Y ) = 1} can be adopted to solve (9), where

the constrained steepest ascend direction is obtained by projecting D onto the tangent

cone of the convex body {Y ∣J(Y ) ≤ 1}. It turns out that the optimal solution to

the primal problem (2) can be obtained during the process of finding the constrained

steepest ascend direction. For details of the final algorithm, one may refer to [15].

A merit of the dual approach is that only the principal singular space associated

to the largest singular value 1 is needed. In theory, computing this special principal

singular space should be easier than computing the principal singular space associated

to the unknown leading singular values. So the dual approach is promising if an efficient

method for computing the principal singular space associated to the known largest

singular value can be obtained.

3 The Methods of Augmented Lagrange Multipliers

In [5], the general method of augmented Lagrange multipliers is introduced for solving

constrained optimization problems of the kind:

min f(X), subject to ℎ(X) = 0, (11)

where f : ℝn → ℝ and ℎ : ℝn → ℝm. One may define the augmented Lagrangian

function:

L(X,Y, ¹) = f(X) + ⟨Y, ℎ(X)⟩+ ¹

2
∥ℎ(X)∥2F , (12)

where ¹ is a positive scalar, and then the optimization problem can be solved via the

method of augmented Lagrange multipliers, outlined as Algorithm 3 (see [6] for more

details).

Algorithm 3 (General Method of Augmented Lagrange Multiplier)

1: ½ ≥ 1.
2: while not converged do
3: Solve Xk+1 = argmin

X
L(X,Yk, ¹k).

4: Yk+1 = Yk + ¹kℎ(Xk+1);
5: ¹k+1 = ½¹k.
6: end while
Output: Xk.



7

Under some rather general conditions, when {¹k} is an increasing sequence and

both f and ℎ are continuously differentiable functions, it has been proven in [5] that the

Lagrange multipliers Yk produced by Algorithm 3 converge Q-linearly to the optimal

solution when {¹k} is bounded and super-Q-linearly when {¹k} is unbounded. This

superior convergence property of ALM makes it very attractive. Another merit of ALM

is that the optimal step size to update Yk is proven to be the chosen penalty parameter

¹k, making the parameter tuning much easier than the iterative thresholding algorithm.

A third merit of ALM is that the algorithm converges to the exact optimal solution,

even without requiring ¹k to approach infinity [5]. In contrast, strictly speaking both

the iterative thresholding and APG approaches mentioned earlier only find approximate

solutions for the problem. Finally, the analysis (of convergence) and the implementation

of the ALM algorithms are relatively simple, as we will demonstrate on both the matrix

recovery and matrix completion problems.

3.1 Two ALM Algorithms for Robust PCA (Matrix Recovery)

For the RPCA problem (2), we may apply the augmented Lagrange multiplier method

by identifying:

X = (A,E), f(X) = ∥A∥∗ + ¸∥E∥1, and ℎ(X) = D −A− E.

Then the Lagrangian function is:

L(A,E, Y, ¹)
.
= ∥A∥∗ + ¸∥E∥1 + ⟨Y,D −A− E⟩+ ¹

2
∥D −A− E∥2F , (13)

and the ALM method for solving the RPCA problem can be described in Algorithm 4,

which we will refer to as the exact ALM (EALM) method, for reasons that will soon

become clear.

The initialization Y ∗
0 = sgn(D)/J(sgn(D)) in the algorithm is inspired by the dual

problem (9) as it is likely to make the objective function value ⟨D,Y ∗
0 ⟩ reasonably

large.

Although the objective function of the RPCA problem (2) is non-smooth and hence

the results in [5] do not directly apply here, we can still prove that Algorithm 4 has the

same excellent convergence property. More precisely, we have established the following

statement.

Theorem 1 For Algorithm 4, any accumulation point (A∗, E∗) of (A∗
k, E

∗
k) is an op-

timal solution to the RPCA problem and the convergence rate is at least O(¹−1
k ) in the

sense that ∣∣∥A∗
k∥∗ + ¸∥E∗

k∥1 − f∗
∣∣ = O(¹−1

k−1),

where f∗ is the optimal value of the RPCA problem.

Proof See Appendix A.3.

From Theorem 1, we see that if ¹k grows geometrically, the EALMmethod will converge

Q-linearly; and if ¹k grows faster, the EALMmethod will also converge faster. However,

numerical tests show that for larger ¹k, the iterative thresholding approach to solve

the sub-problem (A∗
k+1, E

∗
k+1) = argmin

A,E
L(A,E, Y ∗

k , ¹k) will converge slower. As the



8

Algorithm 4 (RPCA via the Exact ALM Method)

Input: Observation matrix D ∈ ℝm×n, ¸.
1: Y ∗

0 = sgn(D)/J(sgn(D)); ¹0 > 0; ½ > 1; k = 0.
2: while not converged do
3: // Lines 4-12 solve (A∗

k+1, E
∗
k+1) = argmin

A,E
L(A,E, Y ∗

k , ¹k).

4: A0
k+1 = A∗

k, E
0
k+1 = E∗

k , j = 0;
5: while not converged do

6: // Lines 7-8 solve Aj+1
k+1 = argmin

A
L(A,Ej

k+1, Y
∗
k , ¹k).

7: (U, S, V ) = svd(D − Ej
k+1 + ¹−1

k Y ∗
k );

8: Aj+1
k+1 = US

¹−1
k

[S]V T ;

9: // Line 10 solves Ej+1
k+1 = argmin

E
L(Aj+1

k+1, E, Y ∗
k , ¹k).

10: Ej+1
k+1 = S

¸¹−1
k

[D −Aj+1
k+1 + ¹−1

k Y ∗
k ];

11: j Ã j + 1.
12: end while
13: Y ∗

k+1 = Y ∗
k + ¹k(D −A∗

k+1 − E∗
k+1); ¹k+1 = ½¹k.

14: k Ã k + 1.
15: end while
Output: (A∗

k, E
∗
k).

SVD accounts for the majority of the computational load, the choice of {¹k} should

be judicious so that the total number of SVDs is minimal.

Fortunately, as it turns out, we do not have to solve the sub-problem

(A∗
k+1, E

∗
k+1) = argmin

A,E
L(A,E, Y ∗

k , ¹k)

exactly. Rather, updating Ak and Ek once when solving this sub-problem is sufficient

for Ak and Ek to converge to the optimal solution of the RPCA problem. This leads

to an inexact ALM (IALM) method, described in Algorithm 5.

Algorithm 5 (RPCA via the Inexact ALM Method)

Input: Observation matrix D ∈ ℝm×n, ¸.
1: Y0 = D/J(D); E0 = 0; ¹0 > 0; ½ > 1; k = 0.
2: while not converged do
3: // Lines 4-5 solve Ak+1 = argmin

A
L(A,Ek, Yk, ¹k).

4: (U, S, V ) = svd(D − Ek + ¹−1
k Yk);

5: Ak+1 = US
¹−1
k

[S]V T .

6: // Line 7 solves Ek+1 = argmin
E

L(Ak+1, E, Yk, ¹k).

7: Ek+1 = S
¸¹−1

k
[D −Ak+1 + ¹−1

k Yk].

8: Yk+1 = Yk + ¹k(D −Ak+1 − Ek+1); ¹k+1 = ½¹k.
9: k Ã k + 1.
10: end while
Output: (Ak, Ek).

The validity and optimality of Algorithm 5 is guaranteed by the following theorem.



9

Theorem 2 For Algorithm 5, if ¹k does not increase too rapidly, so that
+∞∑
k=1

¹−2
k ¹k+1 <

+∞ and lim
k→+∞

¹k(Ek+1 − Ek) = 0, then (Ak, Ek) converges to an optimal solution

(A∗, E∗) to the RPCA problem.

Proof See Appendix A.4.

Note that, unlike Theorem 1 for the exact ALM method, the above statement only

guarantees convergence but does not specify the rate of convergence for the inexact

ALM method. Although the exact convergence rate of the inexact ALM method is

difficult to obtain in theory, extensive numerical experiments have shown that for

geometrically growing ¹k, it still converges Q-linearly. Nevertheless, when ½ is too

large such that the condition lim
k→+∞

¹k(Ek+1 − Ek) = 0 is violated, Algorithm 5 may

no longer converge to the optimal solution of (2). Thus, in the use of this algorithm,

one has to choose ¹k properly in order to ensure both optimality and fast convergence.

We will provide some choices in Section 4 where we discuss implementation details.

3.2 An ALM Algorithm for Matrix Completion

The matrix completion (MC) problem can be viewed as a special case of the matrix

recovery problem, where one has to recover the missing entries of a matrix, given limited

number of known entries. Such a problem is ubiquitous, e.g., in machine learning [1–

3], control [16] and computer vision [20]. In many applications, it is reasonable to

assume that the matrix to recover is of low rank. In a recent paper [9], Candès and

Recht proved that most matrices A of rank r can be perfectly recovered by solving the

following optimization problem:

min
A

∥A∥∗, subject to Aij = Dij , ∀(i, j) ∈ ­, (14)

provided that the number p of samples obeys p ≥ Crn6/5 lnn for some positive constant

C, where ­ is the set of indices of samples. This bound has since been improved by the

work of several others. The state-of-the-art algorithms to solve the MC problem (14)

include the APG approach [19] and the singular value thresholding (SVT) approach

[7]. As the RPCA problem is closely connected to the MC problem, it is natural to

believe that the ALM method can be similarly effective on the MC problem.

We may formulate the MC problem as follows

min
A

∥A∥∗, subject to A+ E = D, ¼­(E) = 0, (15)

where ¼­ : ℝm×n → ℝm×n is a linear operator that keeps the entries in ­ unchanged

and sets those outside ­ (i.e., in ­̄) zeros. As E will compensate for the unknown entries

of D, the unknown entries of D are simply set as zeros. Then the partial augmented

Lagrangian function (Section 2.4 of [5]) of (15) is

L(A,E, Y, ¹) = ∥A∥∗ + ⟨Y,D −A− E⟩+ ¹

2
∥D −A− E∥2F . (16)

Then similarly we can have the exact and inexact ALM approaches for the MC problem,

where for updating E the constraint ¼­(E) = 0 should be enforced when minimizing

L(A,E, Y, ¹). The inexact ALM approach is described in Algorithm 6.



10

Algorithm 6 (Matrix Completion via the Inexact ALM Method)

Input: Observation samples Dij , (i, j) ∈ ­, of matrix D ∈ ℝm×n.
1: Y0 = 0; E0 = 0; ¹0 > 0; ½ > 1; k = 0.
2: while not converged do
3: // Lines 4-5 solve Ak+1 = argmin

A
L(A,Ek, Yk, ¹k).

4: (U, S, V ) = svd(D − Ek + ¹−1
k Yk);

5: Ak+1 = US
¹−1
k

[S]V T .

6: // Line 7 solves Ek+1 = arg min
¼­(E)=0

L(Ak+1, E, Yk, ¹k).

7: Ek+1 = ¼­̄(D −Ak+1 + ¹−1
k Yk).

8: Yk+1 = Yk + ¹k(D −Ak+1 − Ek+1); ¹k+1 = ½¹k.
9: k Ã k + 1.
10: end while
Output: (Ak, Ek).

Note that due to the choice of Ek, ¼­̄(Yk) = 0 holds throughout the iteration,

i.e., the values of Yk at unknown entries are always zeros. Theorems 1 and 2 are also

true for the matrix completion problem. As the proofs are similar to those for matrix

recovery in Appendix A, we hence omit them here.

4 Implementation Details

Predicting the Dimension of Principal Singular Space. It is apparent that computing

the full SVD for the RPCA and MC problems is unnecessary: we only need those

singular values that are larger than a particular threshold and their corresponding

singular vectors. So a software package, PROPACK [14], has been widely recommended

in the community. To use PROPACK, one have to predict the dimension of the principal

singular space whose singular values are larger than a given threshold. For Algorithm

5, the prediction is relatively easy as the rank of Ak is observed to be monotonically

increasing and become stable at the true rank. So the prediction rule is:

svk+1 =

{
svpk + 1, if svpk < svk,

min(svpk + round(0.05d), d), if svpk = svk,
(17)

where d = min(m,n), svk is the predicted dimension and svpk is the number of singular

values in the svk singular values that are larger than ¹−1
k , and sv0 = 10. Algorithm

4 also uses the above prediction strategy for the inner loop that solves (A∗
k+1, E

∗
k+1).

For the outer loop, the prediction rule is simply svk+1 = min(svpk + round(0.1d), d).

As for Algorithm 6, the prediction is much more difficult as the ranks of Ak are often

oscillating. It is also often that for small k’s the ranks of Ak are close to d and then

gradually decrease to the true rank, making the partial SVD inefficient2. To remedy this

issue, we initialize both Y and A as zero matrices, and adopt the following truncation

strategy which is similar to that in [19]:

svk+1 =

{
svnk + 1, if svnk < svk,

min(svnk + 10, d), if svnk = svk,
(18)

2 Numerical tests show that when we want to compute more than 0.2d principal singular
vectors/values, using PROPACK is often slower than computing the full SVD.



11

where sv0 = 5 and

svnk =

{
svpk, if maxgapk ≤ 2,

min(svpk,maxidk), if maxgapk > 2,
(19)

in which maxgapk and maxidk are the largest ratio between successive singular values

(arranging the computed svk singular values in a descending order) and the corre-

sponding index, respectively. We utilize the gap information because we have observed

that the singular values are separated into two groups quickly, with large gap between

them, making the rank revealing fast and reliable. With the above prediction scheme,

the rank of Ak becomes monotonically increasing and be stable at the true rank.

Order of Updating A and E. Although in theory updating whichever of A and E first

does not affect the convergence rate, numerical tests show that this does result in

slightly different number of iterations to achieve the same accuracy. Considering the

huge complexity of SVD for large dimensional matrices, such slight difference should

also be considered. Via extensive numerical tests, we suggest updating E first in Al-

gorithms 4 and 5. What is equally important, updating E first also makes the rank of

Ak much more likely to be monotonically increasing, which is critical for the partial

SVD to be effective, as having been elaborated in the previous paragraph.

Memory Saving for Algorithm 6. In the real implementation of Algorithm 6, sparse

matrices are used to store D and Yk, and as done in [19] A is represented as A = LRT ,

where both L and R are matrices of size m × svpk. Ek is not explicitly stored by

observing

Ek+1 = ¼­̄(D −Ak+1 + ¹−1
k Yk) = ¼­(Ak+1)−Ak+1. (20)

In this way, only ¼­(Ak) is required to compute Yk and D − Ek + ¹−1
k Yk. So much

memory can be saved due to the small percentage of samples.

Choosing Parameters. For Algorithm 4, we set ¹0 = 0.5/∥ sgn(D)∥2 and ½ = 6. The

stopping criterion for the inner loop is ∥Aj+1
k − Aj

k∥F /∥D∥F < 10−6 and ∥Ej+1
k −

Ej
k∥F /∥D∥F < 10−6. The stopping criterion for the outer iteration is ∥D − A∗

k −
E∗
k∥F /∥D∥F < 10−7. For Algorithm 5, we set ¹0 = 1.25/∥D∥2 and ½ = 1.5. For

Algorithm 6, we set ¹0 = 0.3/∥D∥2 and ½ = 1.1 + 2.5½s, where ½s = ∣­∣/(mn) is the

sampling density. The stopping criteria for Algorithms 5 and Algorithm 6 are both

∥D −Ak − Ek∥F /∥D∥F < 10−7.

5 Simulations

In this section, using numerical simulations, for the RPCA problem we compare the

proposed ALM algorithms with the APG algorithm proposed in [15]; for the MC prob-

lem, we compare the inexact ALM algorithm with the SVT algorithm [7] and the APG

algorithm [19]. All the simulations are conducted and timed on the same workstation

with an Intel Xeon E5540 2.53GHz CPU that has 4 cores and 24GB memory3, running

Windows 7 and Matlab (version 7.7).4

3 But on a Win32 system only 3GB can be used by each thread.
4 Matlab code for all the algorithms compared are available at http://perception.csl.

illinois.edu/matrix-rank/home.html



12

I. Comparison on the Robust PCA Problem. For the RPCA problem, we use randomly

generated square matrices for our simulations. We denote the true solution by the

ordered pair (A∗, E∗) ∈ ℝm×m × ℝm×m. We generate the rank-r matrix A∗ as a

product LRT , where L and R are independent m × r matrices whose elements are

i.i.d. Gaussian random variables with zero mean and unit variance.5 We generate E∗

as a sparse matrix whose support is chosen uniformly at random, and whose non-zero

entries are i.i.d. uniformly in the interval [−500, 500]. The matrix D
.
= A∗ +E∗ is the

input to the algorithm, and (Â, Ê) denotes the output. We choose a fixed weighting

parameter ¸ = m−1/2 for a given problem.

We use the latest version of the code for Algorithm 2, provide by the authors of

[15], and also apply the prediction rule (17), with sv0 = 5, to it so that the partial

SVD can be utilized6. With the partial SVD, APG is faster than the dual approach in

Section 2.3. So we need not involve the dual approach for comparison.

A brief comparison of the three algorithms is presented in Tables 1 and 2. We can

see that both APG and IALM algorithms stop at relatively constant iteration numbers

and IALM is at least five times faster than APG. Moreover, the accuracies of EALM

and IALM are higher than that of APG. In particular, APG often over estimates ∥E∗∥0,
the number of non-zeros in E∗, quite a bit. While the estimated ∥E∗∥0 by EALM and

IALM are always extremely close to the ground truth.

II. Comparison on the Matrix Completion Problem. For the MC problem, the true

low-rank matrix A∗ is first generated as that for the RPCA problem. Then we sample

p elements uniformly from A∗ to form the known samples in D. A useful quantity for

reference is dr = r(2m − r), which is the number of degrees of freedom in an m × m

matrix of rank r [19].

The SVT and APGL (APG with line search7) codes are provided by the authors

of [7] and [19], respectively. A brief comparison of the three algorithms is presented in

Table 3. One can see that IALM is always faster than SVT. It is also advantageous

over APGL when the sampling density p/m2 is relatively high, e.g., p/m2 > 10%. This

phenomenon is actually consistent with the results on the RPCA problem, where most

samples of D are assumed accurate, although the positions of accurate samples are not

known apriori.

6 Conclusions

In this paper, we have proposed two augmented Lagrange multiplier based algorithms,

namely EALM and IALM, for solving the Robust PCA problem (2). Both algorithms

are faster than the previous state-of-the-art APG algorithm [15]. In particular, in all

simulations IALM is consistently over five times faster than APG.

We have also applied the method of augmented Lagrange multiplier to the matrix

completion problem. The corresponding IALM algorithm is considerably faster than the

famous SVT algorithm [7]. It is also faster than the state-of-the-art APGL algorithm

[19] when the percentage of available entries is not too low, say > 10%.

5 It can be shown that A∗ is distributed according to the random orthogonal model of rank
r, as defined in [9].

6 Such a prediction scheme was not proposed in [15]. So the full SVD was used therein.
7 For the MC problem, APGL is faster than APG without line search. However, for the

RPCA problem, APGL is not faster than APG [15].



13

Compared to accelerated proximal gradient based methods, augmented Lagrange

multiplier based algorithms are simpler to analyze and easier to implement. Moreover,

they are also of much higher accuracy as the iterations are proven to converge to the

exact solution of the problem, even if the penalty parameter does not approach infinity

[5]. In contrast, APG methods normally find a close approximation to the solution by

solving a relaxed problem. Finally, ALM algorithms require less storage/memory than

APG for both the RPCA and MC problems8. For large-scale applications, such as web

data analysis, this could prove to be a big advantage for ALM type algorithms.

To help the reader to compare and use all the algorithms, we have posted our

Matlab code of all the algorithms at the website:

http://perception.csl.illinois.edu/matrix-rank/home.html

Acknowledgements We thank the authors of [19] for kindly sharing with us their code of
APG and APGL for matrix completion. We also also like to thank Arvind Ganesh of UIUC
and Dr. John Wright of MSRA for providing the code of APG for matrix recovery.

A Proofs and Technical Details for Section 3

In this appendix, we provide the mathematical details in Section 3. To prove Theorems 1 and
2, we have to prepare some results in Sections A.1 and A.2.

A.1 Relationship between Primal and Dual Norms

Our convergence theorems require the boundedness of some sequences, which results from the
following theorem.

Theorem 3 Let ℋ be a real Hilbert space endowed with an inner product ⟨⋅, ⋅⟩ and a corre-
sponding norm ∥ ⋅ ∥, and y ∈ ∂∥x∥, where ∂f(x) is the subgradient of f(x). Then ∥y∥∗ = 1 if
x ∕= 0, and ∥y∥∗ ≤ 1 if x = 0, where ∥ ⋅ ∥∗ is the dual norm of ∥ ⋅ ∥.

Proof As y ∈ ∂∥x∥, we have

∥w∥ − ∥x∥ ≥ ⟨y, w − x⟩ , ∀ w ∈ ℋ. (21)

If x ∕= 0, choosing w = 0, 2x, we can deduce that

∥x∥ = ⟨y, x⟩ ≤ ∥x∥∥y∥∗. (22)

So ∥y∥∗ ≥ 1. On the other hand, we have

∥w − x∥ ≥ ∥w∥ − ∥x∥ ≥ ⟨y, w − x⟩ , ∀ w ∈ ℋ. (23)

So 〈
y,

w − x

∥w − x∥

〉
≤ 1, ∀ w ∕= x.

8 By smart reuse of intermediate matrices (and accordingly the codes become hard to read),
for the RPCA problem APG still needs one more intermediate (dense) matrix than IALM;
for the MC problem, APG needs two more low rank matrices (for representing Ak−1) and
one more sparse matrix than IALM. Our numerical simulation testifies this too: for the MC
problem, on our workstation IALM was able to handle A∗ with size 104 × 104 and rank 102,
while APG could not.



14

Therefore ∥y∥∗ ≤ 1. Then we conclude that ∥y∥∗ = 1.
If x = 0, then (21) is equivalent to

⟨y, w⟩ ≤ 1, ∀ ∥w∥ = 1. (24)

By the definition of dual norm, this means that ∥y∥∗ ≤ 1.

A.2 Boundedness of Some Sequences

With Theorem 3, we can prove the following lemmas.

Lemma 1 The sequences {Y ∗
k }, {Yk} and {Ŷk} are all bounded, where Ŷk = Yk−1+¹k−1(D−

Ak − Ek−1).

Proof By the optimality of A∗
k+1 and E∗

k+1 we have that:

0 ∈ ∂AL(A∗
k+1, E

∗
k+1, Y

∗
k , ¹k), 0 ∈ ∂EL(A∗

k+1, E
∗
k+1, Y

∗
k , ¹k), (25)

i.e.,
0 ∈ ∂∥A∗

k+1∥∗ − Y ∗
k − ¹k(D −A∗

k+1 − E∗
k+1),

0 ∈ ∂
(
∥¸E∗

k+1∥1
)
− Y ∗

k − ¹k(D −A∗
k+1 − E∗

k+1).
(26)

So we have that
Y ∗
k+1 ∈ ∂∥A∗

k+1∥∗, Y ∗
k+1 ∈ ∂

(∥¸E∗
k+1∥1

)
. (27)

Then by Theorem 3 the sequences {Y ∗
k } is bounded9 by observing the fact that the dual norms

of ∥ ⋅ ∥∗ and ∥ ⋅ ∥1 are ∥ ⋅ ∥2 and ∥ ⋅ ∥∞ [7,15], respectively. The boundedness of {Yk} and {Ŷk}
can be proved similarly (cf. (40)).

Lemma 2 If ¹k satisfies
+∞∑
k=1

¹−2
k ¹k+1 < +∞, then the sequences {Ak}, {Ek}, {A∗

k} and

{E∗
k} are all bounded.

Proof From the iteration procedure, we have that

L(Ak+1, Ek+1, Yk, ¹k) ≤ L(Ak+1, Ek, Yk, ¹k) ≤ L(Ak, Ek, Yk, ¹k)

= L(Ak, Ek, Yk−1, ¹k−1) +
1

2
¹−2
k−1(¹k−1 + ¹k)∥Yk − Yk−1∥2F

(28)

So {L(Ak+1, Ek+1, Yk, ¹k)} is upper bounded thanks to the boundedness of {Yk} and

+∞∑

k=1

¹−2
k−1(¹k−1 + ¹k) ≤ 2

+∞∑

k=1

¹−2
k−1¹k < +∞.

Then

∥Ak∥∗ + ¸∥Ek∥1 = L(Ak, Ek, Yk−1, ¹k−1)−
1

2¹k−1

(∥Yk∥2F − ∥Yk−1∥2F
)

(29)

is upper bounded.
Similarly, we deduce

L(A∗
k+1, E

∗
k+1, Y

∗
k , ¹k)

≤ L(A∗
k, E

∗
k , Y

∗
k , ¹k)

= L(A∗
k, E

∗
k , Y

∗
k−1, ¹k−1) +

1

2
¹−2
k−1(¹k−1 + ¹k)∥Y ∗

k − Y ∗
k−1∥2F

(30)

to obtain the upper boundedness of ∥A∗
k∥∗ + ¸∥E∗

k∥1. So the lemma is proved.

9 A stronger result is that ∥Y ∗
k ∥2 = ¸−1∥Y ∗

k ∥∞ = 1 if A∗
k ∕= 0 and E∗

k ∕= 0.



15

A.3 Proof of Theorem 1

Proof By
L(A∗

k+1, E
∗
k+1, Y

∗
k , ¹k) = min

A,E
L(A,E, Y ∗

k , ¹k)

≤ min
A+E=D

L(A,E, Y ∗
k , ¹k)

= min
A+E=D

(∥A∥∗ + ¸∥E∥1) = f∗,
(31)

we have
∥A∗

k+1∥∗ + ¸∥E∗
k+1∥1

= L(A∗
k+1, E

∗
k+1, Y

∗
k , ¹k)−

1

2¹k

(∥Y ∗
k+1∥2F − ∥Y ∗

k ∥2F
)

≤ f∗ − 1

2¹k

(∥Y ∗
k+1∥2F − ∥Y ∗

k ∥2F
)
.

(32)

By the boundedness of {Y ∗
k }, we see that

∥A∗
k+1∥∗ + ¸∥E∗

k+1∥1 ≤ f∗ +O(¹−1
k ). (33)

By letting k → +∞, we have that

∥A∗∥∗ + ¸∥E∗∥1 ≤ f∗. (34)

As D −A∗
k+1 −E∗

k+1 = ¹−1
k (Y ∗

k+1 − Y ∗
k ), by the boundedness of Y ∗

k and letting k → +∞ we
see that

A∗ + E∗ = D. (35)

Therefore, (A∗, E∗) is an optimal solution to the RPCA problem.
On the other hand, by the triangular inequality of norms,

∥A∗
k+1∥∗ + ¸∥E∗

k+1∥1 ≥ ∥D − E∗
k+1∥∗ + ¸∥E∗

k+1∥1 − ∥D −A∗
k+1 − E∗

k+1∥∗
≥ f∗ − ∥D −A∗

k+1 − E∗
k+1∥∗

= f∗ − ¹−1
k ∥Y ∗

k+1 − Y ∗
k ∥∗.

(36)

So
∥A∗

k+1∥∗ + ¸∥E∗
k+1∥1 ≥ f∗ −O(¹−1

k ). (37)

This together with (33) proves the convergence rate.

A.4 Proof of Theorem 2

Proof By D −Ak+1 − Ek+1 = ¹−1
k (Yk+1 − Yk) and the boundedness of Yk we see that

lim
k→+∞

D −Ak − Ek = 0. (38)

So (Ak, Ek) approaches to a feasible solution. Moreover, by the boundedness of {Ŷk} and {Yk}
we have

∥Ek+1 − Ek∥ = ¹−1
k ∥Ŷk+1 − Yk+1∥ = O(¹−1

k ). (39)

By the assumption,
+∞∑
k=1

¹−1
k < +∞. So {Ek} is a Cauchy sequence, hence it has a limit E∗.

Then by (38), we have that {Ak} also has a limit A∗. So (A∗, E∗) is a feasible solution.
On the other hand, the optimality of Ak+1 and Ek+1 gives

Ŷk+1 ∈ ∂∥Ak+1∥∗, Yk+1 ∈ ∂ (¸∥Ek+1∥1) . (40)



16

Then by the convexity of norms we have that

∥Ak+1∥∗ + ¸∥Ek+1∥1
≤ ∥A∗

k+1∥∗ + ¸∥E∗
k+1∥1 − ⟨Ŷk+1, A

∗
k+1 −Ak+1⟩ − ⟨Yk+1, E

∗
k+1 − Ek+1⟩

= ∥A∗
k+1∥∗ + ¸∥E∗

k+1∥1 − ¹−1
k ⟨Yk+1, Yk+1 − Yk⟩+ ¹−1

k ⟨Yk+1, Y
∗
k+1 − Y ∗

k ⟩
−⟨¹k(Ek+1 − Ek), A

∗
k+1 −Ak+1⟩.

(41)

By Theorem 1, ∥A∗
k+1∥∗ + ¸∥E∗

k+1∥1 → f∗. The next two terms approaches to zeros due to

the boundedness of {Yk} and {Y ∗
k }. The last term tends to vanish due to the boundedness of

{Ak} and {A∗
k} and the assumption that ¹k(Ek+1 − Ek) → 0. So letting k → +∞ in (41)

gives
∥A∗∥∗ + ¸∥E∗∥1 ≤ f∗.

So (A∗, E∗) is an optimal solution to the RPCA problem.

References

1. Abernethy, J., Bach, F., Evgeniou, T., Vert, J.P.: Low-rank matrix factorization with
attributes. Ecole des Mines de Paris, Technical report, N24/06/MM (2006)

2. Amit, Y., Fink, M., Srebro, N., Ullman, S.: Uncovering shared structures in multiclass
classification. In: Proceedings of the Twenty-fourth International Conference on Machine
Learning (2007)

3. Argyriou, A., Evgeniou, T., Pontil, M.: Multi-task feature learning. In: Proceedings of
Advances in Neural Information Processing Systems (2007)

4. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences 2(1), 183–202 (2009)

5. Bertsekas, D.: Constrained Optimization and Lagrange Multiplier Method. Academic
Press (1982)

6. Bertsekas, D.: Nonlinear Programming. Athena Scientific (1999)
7. Cai, J., Candès, E., Shen, Z.: A singular value thresholding algorithm for matrix comple-

tion. preprint, code available at http://svt.caltech.edu/code.html (2008)
8. Cai, J.F., Osher, S., Shen, Z.: Linearized Bregman iterations for compressed sensing. Math.

Comp. 78, 1515–1536 (2009)
9. Candès, E., Recht, B.: Exact matrix completion via convex optimization. preprint (2008)

10. Chandrasekharan, V., Sanghavi, S., Parillo, P., Wilsky, A.: Rank-sparsity incoherence for
matrix decomposition. preprint (2009)

11. Fukushima, M., Mine, H.: A generalized proximal gradient algorithm for certain nonconvex
minimization problems. International Journal of Systems Science 12, 989–1000 (1981)

12. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming (web page
and software). http://stanford.edu/∼boyd/cvx (2009)

13. Jolliffe, I.T.: Principal Component Analysis. Springer-Verlag (1986)
14. Larsen, R.M.: Lanczos bidiagonalization with partial reorthogonalization. Department of

Computer Science, Aarhus University, Technical report, DAIMI PB-357, code available at
http://soi.stanford.edu/∼rmunk/PROPACK/ (1998)

15. Lin, Z., Ganesh, A., Wright, J., Wu, L., Chen, M., Ma, Y.: Fast convex optimization
algorithms for exact recovery of a corrupted low-rank matrix. SIAM J. Optimization
(submitted)

16. Mesbahi, M., Papavassilopoulos, G.P.: On the rank minimization problem over a positive
semidefinite linear matrix inequality. IEEE Transactions on Automatic Control 42(2),
239–243 (1997)

17. Nesterov, Y.: A method of solving a convex programming problem with convergence rate
O(1/k2). Soviet Mathematics Doklady 27(2), 372–376 (1983)

18. Recht, B., Fazel, M., Parillo, P.: Guaranteed minimum rank solution of matrix equations
via nuclear norm minimization. submitted to SIAM Review (2008)

19. Toh, K.C., Yun, S.: An accelerated proximal gradient algorithm for nuclear norm regular-
ized least squares problems. preprint (2009)

20. Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: a
factorization method. International Journal of Computer Vision 9(2), 137–154 (1992)



17

21. Tseng, P.: On accelerated proximal gradient methods for convex-concave optimization.
submitted to SIAM Journal on Optimization (2008)

22. Wright, J., Ganesh, A., Rao, S., Ma, Y.: Robust principal component analysis: Exact
recovery of corrupted low-rank matrices via convex optimization. submitted to Journal of
the ACM (2009)

23. Wright, J., Ganesh, A., Rao, S., Peng, Y., Ma, Y.: Robust principal component analysis:
Exact recovery of corrupted low-rank matrices via convex optimization. In: Proceedings
of Advances in Neural Information Processing Systems (2009)

24. Yin, W., Hale, E., Zhang, Y.: Fixed-point continuation for ℓ1-minimization: methodology
and convergence. preprint (2008)

25. Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for ℓ1-
minimization with applications to compressed sensing. SIAM Journal on Imaging Sciences
1(1), 143–168 (2008)



18

m algorithm
∥Â−A∗∥F
∥A∗∥F rank(Â) ∥Ê∥0 #SVD time (s)

rank(A∗) = 0.05m, ∥E∗∥0 = 0.05m2

500 APG 1.12e-5 25 12542 127 11.01
EALM 3.99e-7 25 12499 28 4.08
IALM 5.21e-7 25 12499 20 1.72

800 APG 9.84e-6 40 32092 126 37.21
EALM 1.47e-7 40 32002 29 18.59
IALM 3.29e-7 40 31999 21 5.87

1000 APG 8.79e-6 50 50082 126 57.62
EALM 7.85e-8 50 50000 29 33.28
IALM 2.67e-7 50 49999 22 10.13

1500 APG 7.16e-6 75 112659 126 163.80
EALM 7.55e-8 75 112500 29 104.97
IALM 1.86e-7 75 112500 22 30.80

2000 APG 6.27e-6 100 200243 126 353.63
EALM 4.61e-8 100 200000 30 243.64
IALM 9.54e-8 100 200000 22 68.69

3000 APG 5.20e-6 150 450411 126 1106.22
EALM 4.39e-8 150 449998 30 764.66
IALM 1.49e-7 150 449993 22 212.34

rank(A∗) = 0.05m, ∥E∗∥0 = 0.10m2

500 APG 1.41e-5 25 25134 129 14.35
EALM 8.72e-7 25 25009 34 4.75
IALM 9.31e-7 25 25000 21 2.52

800 APG 1.12e-5 40 64236 129 37.94
EALM 2.86e-7 40 64002 34 20.30
IALM 4.87e-7 40 64000 24 6.69

1000 APG 9.97e-6 50 100343 129 65.41
EALM 6.07e-7 50 100002 33 30.63
IALM 3.78e-7 50 99996 22 10.77

1500 APG 8.18e-6 75 225614 129 163.36
EALM 1.45e-7 75 224999 33 109.54
IALM 2.79e-7 75 224996 23 35.71

2000 APG 7.11e-6 100 400988 129 353.30
EALM 1.23e-7 100 400001 34 254.77
IALM 3.31e-7 100 399993 23 70.33

3000 APG 5.79e-6 150 901974 129 1110.76
EALM 1.05e-7 150 899999 34 817.69
IALM 2.27e-7 150 899980 23 217.39

Table 1 Comparison between APG, EALM and IALM on the Robust PCA prob-
lem. We present typical running times for randomly generated matrices. Corresponding to
each triplet {m, rank(A∗), ∥E∗∥0}, the RPCA problem was solved for the same data matrix
D using three different algorithms. For APG and IALM, the number of SVDs is equal to the
number of iterations.



19

m algorithm
∥Â−A∗∥F
∥A∗∥F rank(Â) ∥Ê∥0 #SVD time (s)

rank(A∗) = 0.10m, ∥E∗∥0 = 0.05m2

500 APG 9.36e-6 50 13722 129 13.99
EALM 5.53e-7 50 12670 41 7.35
IALM 6.05e-7 50 12500 22 2.32

800 APG 7.45e-6 80 34789 129 67.54
EALM 1.13e-7 80 32100 40 30.56
IALM 3.08e-7 80 32000 22 10.81

1000 APG 6.64e-6 100 54128 129 129.40
EALM 4.20e-7 100 50207 39 50.31
IALM 2.61e-7 100 50000 22 20.71

1500 APG 5.43e-6 150 121636 129 381.52
EALM 1.22e-7 150 112845 41 181.28
IALM 1.76e-7 150 112496 24 67.84

2000 APG 4.77e-6 200 215874 129 888.93
EALM 1.15e-7 200 200512 41 423.83
IALM 2.49e-7 200 199998 23 150.35

3000 APG 3.98e-6 300 484664 129 2923.90
EALM 7.92e-8 300 451112 42 1444.74
IALM 1.30e-7 300 450000 23 485.70

rank(A∗) = 0.10m, ∥E∗∥0 = 0.10m2

500 APG 9.78e-6 50 27478 133 13.90
EALM 1.14e-6 50 26577 52 9.46
IALM 7.64e-7 50 25000 25 2.62

800 APG 8.66e-6 80 70384 132 68.12
EALM 3.59e-7 80 66781 51 41.33
IALM 4.77e-7 80 64000 25 11.88

1000 APG 7.75e-6 100 109632 132 130.37
EALM 3.40e-7 100 104298 49 77.26
IALM 3.73e-7 100 99999 25 22.95

1500 APG 6.31e-6 150 246187 132 383.28
EALM 3.55e-7 150 231438 49 239.62
IALM 5.42e-7 150 224998 24 66.78

2000 APG 5.49e-6 200 437099 132 884.86
EALM 2.81e-7 200 410384 51 570.72
IALM 4.27e-7 200 399999 24 154.27

3000 APG 4.50e-6 300 980933 132 2915.40
EALM 2.02e-7 300 915877 51 1904.95
IALM 3.39e-7 300 899990 24 503.05

Table 2 Comparison between APG, EALM and IALM on the Robust PCA prob-
lem. Continued from Table 2 with different parameters of {m, rank(A∗), ∥E∗∥0}.



20

m r p/dr p/m2 algorithm #iter rank(Â) time (s)
∥Â−A∗∥F
∥A∗∥F

1000 10 6 0.12 SVT 208 10 18.23 1.64e-6
APGL 69 10 4.46 3.16e-6
IALM 69 10 3.73 1.40e-6

1000 50 4 0.39 SVT 201 50 126.18 1.61e-6
APGL 76 50 24.54 4.31e-6
IALM 38 50 12.68 1.53e-6

1000 100 3 0.57 SVT 228 100 319.93 1.71e-6
APGL 81 100 70.59 4.40e-6
IALM 41 100 42.94 1.54e-6

3000 10 6 0.04 SVT 218 10 70.14 1.77e-6
APGL 88 10 15.63 2.33e-6
IALM 131 10 27.18 1.41e-6

3000 50 5 0.165 SVT 182 50 370.13 1.58e-6
APGL 78 50 101.04 5.74e-6
IALM 57 50 82.68 1.31e-6

3000 100 4 0.26 SVT 204 100 950.01 1.68e-6
APGL 82 100 248.16 5.18e-6
IALM 50 100 188.22 1.52e-6

5000 10 6 0.024 SVT 231 10 141.88 1.79e-6
APGL 81 10 30.52 5.26e-6
IALM 166 10 68.38 1.37e-6

5000 50 5 0.10 SVT 188 50 637.97 1.62e-6
APGL 88 50 208.08 1.93e-6
IALM 79 50 230.73 1.30e-6

5000 100 4 0.158 SVT 215 100 2287.72 1.72e-6
APGL 98 100 606.82 4.42e-6
IALM 64 100 457.79 1.53e-6

8000 10 6 0.015 SVT 230 10 283.94 1.86e-6
APGL 87 10 66.45 5.27e-6
IALM 235 10 186.73 2.08e-6

8000 50 5 0.06 SVT 191 50 1095.10 1.61e-6
APGL 100 50 509.78 6.16e-6
IALM 104 50 559.22 1.36e-6

10000 10 6 0.012 SVT 228 10 350.20 1.80e-6
APGL 89 10 96.10 5.13e-6
IALM 274 10 311.46 1.96e-6

10000 50 5 0.05 SVT 192 50 1582.95 1.62e-6
APGL 105 50 721.96 3.82e-6
IALM 118 50 912.61 1.32e-6

Table 3 Comparison between SVT, APG and IALM on the matrix completion
problem. We present typical running times for randomly generated matrices. Corresponding
to each triplet {m, rank(A∗), p/dr}, the MC problem was solved for the same data matrix D
using the three different algorithms.


