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Abstract

We consider the problem of recovering a matrix M that is the sum of a low-rank
matrix L and a sparse matrix S from a small set of linear measurements of the
form y = A(M) = A(L + S). This model subsumes three important classes
of signal recovery problems: compressive sensing, affine rank minimization, and
robust principal component analysis. We propose a natural optimization problem
for signal recovery under this model and develop a new greedy algorithm called
SpaRCS to solve it. SpaRCS inherits a number of desirable properties from the
state-of-the-art CoSaMP and ADMiRA algorithms, including exponential conver-
gence and efficient implementation. Simulation results with video compressive
sensing, hyperspectral imaging, and robust matrix completion data sets demon-
strate both the accuracy and efficacy of the algorithm.

1 Introduction

The explosion of digital sensing technology has unleashed a veritable data deluge that has pushed
current signal processing algorithms to their limits. Not only are traditional sensing and processing
algorithms increasingly overwhelmed by the sheer volume of sensor data, but storage and transmis-
sion of the data itself is also increasingly prohibitive without first employing costly compression
techniques. This reality has driven much of the recent research on compressive data acquisition, in
which data is acquired directly in a compressed format [2]. Recovery of the data typically requires
finding a solution to an undetermined linear system, which becomes feasible when the underly-
ing data possesses special structure. Within this general paradigm, three important problem classes
have received significant recent attention: compressive sensing, affine rank minimization, and robust
principal component analysis (PCA).

Compressive sensing (CS): CS is concerned with the recovery a vector x that is sparse in some
transform domain [2]. Data measurements take the form y = A(x), whereA is an underdetermined
linear operator. To recover x, one would ideally solve

min ‖x‖0 subject to y = A(x), (1)

where ‖x‖0 is the number of non-zero components in x. This problem formulation is non-convex,
CS recovery is typically accomplished either via convex relaxation or greedy approaches.

Affine rank minimization: The CS concept extends naturally to low-rank matrices. In the affine
rank minimization problem [14, 23], we observe the linear measurements y = A(L), where L is a
low-rank matrix. One important sub-problem is that of matrix completion [5, 6, 22], where A takes
the form of a sampling operator. To recover L, one would ideally solve

min rank(L) subject to y = A(L). (2)

As with CS, this problem is non-convex and so several algorithms based on convex relaxation and
greedy methods have been developed for finding solutions.
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Robust PCA: In the robust PCA problem [4,9], we wish to decompose a matrix M into a low-rank
matrix L and a sparse matrix S such that M = L + S. This problem is known to have a stable
solution provided L and S are sufficiently incoherent [4]. To date, this problem has been studied
only in the non-compressive setting, i.e, when M is fully available. A variety of convex relaxation
methods have been proposed for solving this case.

The work of this paper stands at the intersection of these three problems. Specifically, we aim to
recover the entries of a matrix M in terms of a low-rank matrix L and sparse matrix S from a small
set of compressive measurements y = A(L+S). This problem is relevant in several application set-
tings. A first application is the recovery of a video sequence obtained from a static camera observing
a dynamic scene under changing illumination. Here, each column of M corresponds to a vectorized
image frame of the video. The changing illumination has low-rank properties, while the foreground
innovations exhibit sparse structures [4]. In such a scenario, neither sparse nor low-rank models
are individually sufficient for capturing the underlying information of the signal. Models that com-
bine low-rank and sparse components, however, are well suited for capturing such phenomenon. A
second application is hyperspectral imaging, where each column of M is the vectorized image of a
particular spectral band; a low-rank plus sparse model arises naturally due to material properties [8].
A third application is robust matrix completion [11], which can be cast as a compressive low-rank
and sparse recovery problem.

The natural optimization problem that unites the above three problem classes above is

(P1) min ‖y −A(L + S)‖2 subject to rank(L) ≤ r, ‖vec(S)‖0 ≤ K. (3)

The main contribution of this paper is a novel greedy algorithm for solving (P1), which we dub
SpaRCS for SPArse and low Rank decomposition via Compressive Sensing. To the best of our
knowledge, we are the first to propose a computationally efficient algorithm for solving a prob-
lem like (P1). SpaRCS combines the best aspects of CoSaMP [20] for sparse vector recovery and
ADMiRA [18] for low-rank matrix recovery.

2 Background

Here we introduce the relevant background information regarding signal recovery from CS measure-
ments. Our definition of signal is broadened to include both vectors and matrices.

Restricted isometry and rank-restricted isometry properties: Signal recovery for a K-sparse
vector from CS measurements is possible when the measurement operator A obeys the so-called
restricted isometry property (RIP) [3] with constant δK

(1− δK)‖x‖22 ≤ ‖A(x)‖22 ≤ (1 + δK)‖x‖22, ∀‖x‖0 ≤ K. (4)

This property implies that the information in x is nearly preserved after being measured byA. Anal-
ogous to CS, it has been shown that a low-rank matrix can be recovered from a set of CS measure-
ments when the measurement operator A obeys the rank-restricted isometry (RRIP) property [23]
with constant δ∗r

(1− δ∗r )‖L‖2F ≤ ‖A(L)‖2F ≤ (1 + δ∗r )‖L‖2F , ∀ rank(L) ≤ r. (5)

Recovery algorithms: Recovery of sparse vectors and low-rank matrices can be accomplished
when the measurement operator A satisfies the appropriate RIP or RRIP condition. Recovery algo-
rithms typically fall into one of two broad classes: convex optimization and greedy iteration. Convex
optimization techniques recast (1) or (2) in a form that can be solved efficiently using convex pro-
gramming [4, 27]. In the case of CS, the `0 norm is relaxed to the `1 norm; for low-rank matrices,
the rank operator is relaxed to the nuclear norm.

In contrast, greedy algorithms [18, 20] operate iteratively on the signal measurements, constructing
a basis for the signal and attempting signal recovery restricted to that basis. Compared to convex
approaches, these algorithms often have superior speed and scale better to large problems. We
highlight the CoSaMP algorithm [20] for sparse vector recovery and the ADMiRA algorithm [18]
for low-rank matrix recovery in this paper. Both algorithms have strong convergence guarantees
when the measurement operator A satisfies the appropriate RIP or RRIP condition, most notably
exponential convergence to the true signal.
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3 SpaRCS: CS recovery of low-rank and sparse matrices

We now present the SpaRCS algorithm to solve (P1) and develop its theoretical guarantees. Assume
that we are interested in a matrix M ∈ RN1×N2 such that M = L + S, with rank(L) ≤ r and
‖S‖0 ≤ K. Further assume that a linear operator A : RN1×N2 → Rp provides us with p compres-
sive measurements y of M. Let A∗ denote the adjoint of the operator A and, given the index set
T ⊂ {1, . . . , N1N2}, let A|T denote the restriction of the operator to T . Given y = A(M) + e,
where e denotes measurement noise, our goal is to estimate a low rank matrix L̂ and a sparse matrix
Ŝ such that y ≈ A(L̂ + Ŝ).

3.1 Algorithm

SpaRCS iteratively estimates L and S; the estimation of L is closely related to ADMiRA [18], while
the estimation of S is closely related to CoSaMP [20]. At each iteration, SpaRCS computes a signal
proxy and then proceeds through four steps to update its estimates of L and S. These steps are laid
out in Algorithm 1. We use the notation supp(X;K) to denote the restriction of A to the largest
K-term support of the matrix X . This forms a natural basis for sparse signal approximation. We
use the notation svd(X; r) to denote the computation of the truncated singular value decomposition
(SVD) of rank r and its arrangement into an orthonormal set of atoms consisting of rank-1 matrices.
This forms a natural basis for low-rank matrix approximation.

Algorithm 1: (L̂, Ŝ) = SpaRCS (y,A,A∗,K, r, ε)

Initialization: k ← 1, L̂0 ← 0, Ŝ0 ← 0, ΨL ← ∅,ΨS ← ∅,w0 ← y
while ‖wk−1‖2 ≥ ε do

Compute signal proxy:
P← A∗(wk−1)

Support identification:
Ψ̂L ← svd(P; 2r); Ψ̂S ← supp(P; 2K)

Support merger:
Ψ̃L ← Ψ̂L

⋃
ΨL; Ψ̃S ← Ψ̂S

⋃
ΨS

Least squares estimation:
BL ← Ψ̃†L(y −A(Ŝk−1)); BS ← Ψ̃†S(y −A(L̂k−1))

Support pruning:
(L̂k , ΨL)← svd(BL; r); (Ŝk , ΨS)← supp(BS;K)

Update residue:
wk ← y −A(L̂k + Ŝk)

k ← k + 1
end
L̂ = L̂k−1; Ŝ = Ŝk−1

3.2 Performance guarantees

SpaRCS inherits its performance guarantees from CoSaMP and ADMiRA with some noteworthy
modifications. The key difference is that the sparse and low-rank estimation problems are coupled.
While CoSaMP and ADMiRA operate solely in the presence of the measurement noise, SpaRCS,
in contrast, must estimate L in the presence of the residual error of S, and vice-versa. Proving
convergence in the presence of the additional residual terms is non-trivial; simply lumping these
additional residual errors together with the measurement noise e is insufficient for analysis.

As a concrete example, consider the support identification step Ψ̂S ← supp(P; 2K), with

P = A∗(wk−1) = A∗(A(S− Ŝk−1) +A(L− L̂k−1) + e),

that estimates the support set of S. CoSaMP relies on high correlation between supp(P; 2K) and
supp(S− Ŝk−1; 2K); to achieve the same in SpaRCS, (L− L̂k−1) must be well behaved.
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The key to developing the convergence guarantees is exploiting the incoherency between sparse
matrices and dense low rank matrices [4]. In particular, it is known that the decomposition of a
matrix into low-rank and sparse components makes sense when the low rank matrix is non-sparse.
This incoherency enables us to prove that the key steps in SpaRCS are well-behaved in spite of the
additional residual errors. We first describe a model for non-sparse low rank matrices.

Definition 3.1 (Uniformly bounded matrix [6]) An N × N matrix L of rank r is uniformly
bounded if its singular vectors {uj ,vj , 1 ≤ j ≤ r} obey

‖uj‖∞, ‖vj‖∞ ≤
√
µB/N,

with µB = O(1), where ‖uj‖∞ and ‖vj‖∞ denote the largest entries of uj and vj , respectively.

When µB is small (note that µB ≥ 1), this model for the low rank matrix L ensures that its singular
vectors are not sparse. We now state the key lemma that we use to establish the main theoretical
result of this paper.

Lemma 3.2 Given an arbitrary support set T and a uniformly bounded matrix L with constant µB ,
|T | ≤ K, and rank(L) ≤ r ≤ K, we have

‖A∗|TAL‖F ≤ (δK+r + 2(1 + δK+r)(K + r)rµB/N) ‖L‖F .
When N � K � r, this reduces to ‖A∗|TAL‖F ≤ δK+r‖L‖F .

Using Lemma 3.2, we can establish the following result concerning the performance of SpaRCS.

Theorem 3.3 (Convergence guarantee for SpaRCS) Suppose that the measurement operator A
has restricted isometry constant δ4K ≤ 0.075 and rank-restricted isometry constant δ∗4r ≤ 0.04.
Given measurements y = A(L + S) + e, where ‖vec(S)‖0 ≤ K, rank(L) ≤ r, and L is uniformly
bounded, the SpaRCS signal approximation errors decay as

‖L− L̂k‖F ≤ 0.479‖L− L̂k−1‖F + 0.470‖S− Ŝk−1‖F + 6.68‖e‖2, (6)

‖S− Ŝk‖F ≤ 0.324‖S− Ŝk−1‖F + 0.474‖L− L̂k−1‖F + 6.88‖e‖2. (7)

We can write the iteration equations (6)–(7) as a dynamical system. Solving this system establishes
the following joint result:[

‖L− L̂k‖F
‖S− Ŝk‖F

]
≤
[
0.479 0.470
0.474 0.324

]k [ ‖L‖F
‖S‖F

]
+

[
60
53

]
‖e‖2.

The proofs of Lemma 3.2 and Theorem 3.3 are provided in [26]. These results naturally lead to
rigorous statements concerning the performance of SpaRCS on compressible signals as well as the
maximum number of iterations required to reach convergence, the presentation of which we reserve
for an extended version of this paper.

Phase transition: While the guarantees of Theorem 3.3 are phrased in terms of the RIP and
RRIP for the measurement operator A, in practice the RIP and RRIP are only sufficient conditions.
The empirical performance of SpaRCS can be charted using phase transition plots, which predicts
sufficient and necessary conditions on its success/failure. Figure 1 shows phase transition results on
a problem of sizeN1 = N2 = 512 for various values of p, r, andK. As expected, SpaRCS degrades
gracefully as we decrease p or increase r and K.

Computational cost: SpaRCS is highly computationally efficient and scales well as N1, N2 grow
large. The largest computational cost is that of computing the two truncated SVDs per iteration. The
SVDs can be performed efficiently via the Lanczos algorithm or similar method. The least squares
estimation can be solved efficiently using conjugate gradient or Richardson iterations. Support es-
timation for the sparse vector merely entails sorting the signal proxy magnitudes and choosing the
largest 2K elements.

Figure 2 compares the performance of SpaRCS with two alternate recovery algorithms. We imple-
ment CS versions of the SVT-IST [1] and APG [19] algorithms, which solve the problems

min τ (‖L‖F + λ‖vec(S)‖1) +
1

2
‖L + S‖F s.t. y = A(L + S)
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Figure 1: Phase transitions for a recovery problem of size N1 = N2 = N = 512. Shown are
aggregate results over 20 Monte-Carlo runs at each specification of r,K, and p. Black indicates
recovery failure, while white indicates recovery success.

and
min ‖L‖F + λ‖vec(S)‖1 s.t. y = A(L + S),

respectively. We endeavor to tune the parameters of these algorithms (which we refer to as CS
SVT and CS APG, respectively) to optimize their performance. Details of our implementation can
be found in [26]. In all experiments, we consider matrices of size N × N with rank(L) = 2
and ‖S‖0 = 0.02N2 and use permuted noiselets [12] for the measurement operator A. As a first
experiment, we generate convergence plots for matrices with N = 128 and vary the measurement
ratio p/N2 from 0.05 to 0.5. We then recover L̂ and Ŝ and measure the recovered signal to noise
ratio (RSNR) for M̂ = L̂ + Ŝ via 20 log10

(
‖M‖F

‖M−L̂−Ŝ‖F

)
. These results are displayed in Figure

2(a), where we see that SpaRCS provides the best recovery. As a second experiment, we vary the
problem size N ∈ {128, 256, 512, 1024} while holding the number of measurements constant at
p = 0.2N2. We measure the recovery time required by each algorithm to reach a residual error
‖y−A(L̂+Ŝ)‖2

‖y‖2 ≤ 5 × 10−4. These results are displayed in Figure 2(b), which demonstrate that
SpaRCS converges significantly faster than the two other recovery methods.

0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

p/N2

R
S

N
R

 (
dB

)

 

 

SpaRCS
CS APG
CS SVT

(a) Performance

1 2 3 4

10
1

10
2

10
3

10
4

10
5

log
2
(N)

C
on

ve
rg

en
ce

 T
im

e 
(s

ec
)

 

 
SpaRCS
CS APG
CS SVT

(b) Timing plot

Figure 2: Performance and run-time comparisons between SpaRCS, CS SVT, and CS APG. Shown
are average results over 10 Monte-Carlo runs for problems of sizeN1 = N2 = N with rank(L) = 2
and ‖S‖0 = 0.02N2. (a) Performance for a problem with N = 128 for various values of the
measurement ratio p/N2. SpaRCS exhibits superior recovery over the alternate approaches. (b)
Timing plot for problems of various sizesN . SpaRCS converges in time several orders of magnitude
faster than the alternate approaches.

4 Applications

We now present several experiments that validate SpaRCS and showcase its performance in several
applications. In all experiments, we use permuted noiselets for the measurement operator A; these
provide both a fast transform as well as save memory, since we do not have to store A explicitly.
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Details
128x128x201 Video
Compression 6.6656
SNR = 31.1637

Parameters
Col-only measurement matrix
M per col = 2458
Overall K = 49398
Rank = 1 
Rho = 0.15

(a)

(b)

(c)

Figure 3: SpaRCS recovery results on a 128 × 128 × 201 video sequence. The video sequence is
reshaped into an N1 × N2 matrix with N1 = 1282 and N2 = 201. (a) Ground truth for several
frames. (b) Estimated low-rank component L. (c) Estimated sparse component S. The recovery
SNR is 31.2 dB at the measurement ratio p/(N1N2) = 0.15. The recovery is accurate in spite of the
measurement operator A working independently on each frame.

(a)

(b)

Figure 4: SpaRCS recovery results on a 64 × 64 × 234 video sequence. The video sequence is
reshaped into anN1×N2 matrix withN1 = 642 andN2 = 234. (a) Ground truth for several frames.
(b) Recovered frames. The recovery SNR is 23.9 dB at the measurement ratio of p/(N1N2) = 0.33.
The recovery is accurate in spite of the changing illumination conditions.

Video compressive sensing: The video CS problem is concerned with recovering multiple image
frames of a video sequence from CS measurements [7,21,24]. We consider a 128×128×201 video
sequence consisting of a static background with a number of people moving in the foreground. We
aim to not only recover the original video but also separate the background and foreground. We
resize the data cube into a 1282 × 201 matrix M, where each column corresponds to a (vectorized)
image frame. The measurement operator A operates on each column of M independently, simulat-
ing acquisition using a single pixel camera [13]. We acquire p = 0.15 × 1282 measurements per
image frame. We recover with SpaRCS using r = 1 and K = 20,000. The results are displayed in
Figure 3, where it can be seen that SpaRCS accurately estimates and separates the low-rank back-
ground and the sparse foreground. Figure 4 shows recovery results on a more challenging sequence
with changing illumination. In contrast to SpaRCS, existing video CS algorithms do not work well
with dramatically changing illumination.

Hyperspectral compressive sensing: Low-rank/sparse decomposition has an important physical
relevance in hyperspectral imaging [8]. Here we consider a hyperspectral cube, which contains a
vector of spectral information at each image pixel. A measurement device such as [25] can provide
compressive measurements of such a hyperspectral cube. We employ SpaRCS on a hyperspectral
cube of size 128 × 128 × 128 rearranged as a matrix of size 1282 × 128 such that each column
corresponds to a different spectral band. Figure 5 demonstrates recovery using p = 0.15 × 1282 ×
128 total measurements of the entire data cube with r = 8, K = 3000. SpaRCS performs well
in terms of residual error (Figure 5(c)) despite the number of rows being much larger than the
number of columns. Figure 5(d) emphasizes the utility the sparse component. Using only a low-
rank approximation (corresponding to traditional PCA) causes a significant increase in residual error
over what is achieved by SpaRCS.
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Datasize: 128x128x128 == 128^2 x 128 matrix.
Measurement matrix takes inner product with the WHOLE data matrix.
Rank = 4. Measurement = 15%. K = 3000. Wavelet transformed data– db4.

Recons SNR with Xhat = 27.3 dB
Recons SNR with Lhat = 21.9 dB

(a)

(b)

(c)

(d)

Figure 5: SpaRCS recovery results on a 128×128×128 hyperspectral data cube. The hyperspectral
data is reshaped into an N1 × N2 matrix with N1 = 1282 and N2 = 128. Each image pane
corresponds to a different spectral band. (a) Ground truth. (b) Recovered images. (c) Residual
error using both the low-rank and sparse component. (d) Residual error using only the low-rank
component. The measurement ratio is p/(N1N2) = 0.15.

(d) 
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Figure 6: Hyperspectral data recovery for various values of the rank r of the low-rank matrix L. The
data used is the same as in Figure 5. (a) r = 1, SNR = 12.81 dB. (b) r = 2, SNR = 19.42 dB. (c)
r = 4, SNR = 27.46 dB. (d) Comparison of compression ratio (N1N2)/p and recovery SNR using
r = 4 and r = 8. All results were obtained with K = 3000.

Parameter mismatch: In Figure 6, we analyze the influence of incorrect selection of the parame-
ters r using the hyperspectral data as an example. We plot the recovered SNR that can be obtained
at various levels of the measurement ratio p/(N1N2) for both the case of r = 8 and r = 4. There
are interesting tradeoffs associated with the choice of parameters. Larger values of r and K enable
better approximation to the unknown signals. However, by increasing r and K, we also increase the
number of independent parameters in the problem, which is given by (2 max(N1, N2)r− r2 +2K).
An empirical rule-of-thumb for greedy recovery algorithms is that the number of measurements p
should be 2–5 times the number of independent parameters. Consequently, there exists a tradeoff
between the values of r, K, and p to ensure stable recovery.

Robust matrix completion: We apply SpaRCS to the robust matrix completion problem [11]

min ‖L‖∗ + λ‖s‖1 subject to LΩ + s = y (8)

where s models outlier noise and Ω denotes the set of observed entries. This problem can be cast as
a compressive low-rank and sparse matrix recovery problem by using a sparse matrix S in place of
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Figure 7: Comparison of several algorithms for the robust matrix completion problem. (a) RSNR
averaged over 10 Monte-Carlo runs for an N × N matrix completion problem with N = 128,
r = 1, and p/N2 = 0.2. Non-robust formulations, such OptSpace, fail. SpaRCS acheives perfor-
mance close to that of the convex solver (CVX). (b) Comparison of convergence times for the various
algorithms. SpaRCS converges in only a fraction of the time required by the other algorithms.

the outlier noise s and realizing that the support of S is a subset of Ω. This enables recovery of both
L and S from samples of their sum L + S.

Matrix completion under outlier noise [10,11] has received some attention and, in many ways, is the
work that is closest to this paper. There are, however, several important distinctions. Chen et al. [11]
analyze the convex problem of (8) to provide performance guarantees. Yet, convex optimization
methods often do not scale well with the size of the problem. SpaRCS, by contrast, is computation-
ally efficient and scales well with problem size. Furthermore, [10] is tied to the case when A is a
sampling operator; it is not immediately clear whether the analysis extends to the more general case
of (P1), where the sparse component cannot be modeled as outlier noise in the measurements.

In our robust matrix completion experiments we compare SpaRCS with CS SVT, OptSpace [17] (a
non-robust matrix completion algorithm), and a convex solution using CVX [15,16]. Figure 7 shows
the performance of these algorithms. OptSpace, being non-robust, fails as expected. The accuracy
of SpaRCS is closest to that of CVX, although SpaRCS is several orders of magnitude faster.

5 Conclusion

We have considered the problem of recovering low-rank and sparse matrices given only a few linear
measurements. Our proposed greedy algorithm, SpaRCS, is both fast and accurate even for large
matrix sizes and enjoys strong theoretical guarantees in its convergence to the true solution. We
have demonstrated the applicability of SpaRCS to video CS, hyperspectral imaging, and robust
matrix completion.

There are many avenues for future work. Model-based extensions of SpaRCS are important di-
rections. Both low-rank and sparse matrices exhibit rich structure in practice, including low-rank
Hankel matrices in system identification and group sparsity in background subtraction. The use
of models could significantly enhance the performance of the algorithm. This would be especially
useful in applications such as video CS, where the measurement operator is typically constrained to
operate on each image frame individually.
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