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Abstract—This paper studies algorithms for solving the prob-
lem of recovering a low-rank matrix with a fraction of its entries
arbitrarily corrupted. This problem can be viewed as a robust
version of classical PCA, and arises in a number of application
domains, including image processing, web data ranking, and
bioinformatic data analysis. It was recently shown that under
surprisingly broad conditions, it can be exactly solved via a
convex programming surrogate that combines nuclear norm
minimization and `1-norm minimization. This paper develops
and compares two complementary approaches for solving this
convex program. The first is an accelerated proximal gradient
algorithm directly applied to the primal; while the second is
a gradient algorithm applied to the dual problem. Both are
several orders of magnitude faster than the previous state-
of-the-art algorithm for this problem, which was based on
iterative thresholding. Simulations demonstrate the performance
improvement that can be obtained via these two algorithms, and
clarify their relative merits.

I. INTRODUCTION

Principal Component Analysis (PCA) is a popular tool
for high-dimensional data analysis, with applications ranging
across a wide variety of scientific and engineering fields
[1]. It relies on the basic assumption that the given high-
dimensional data lie near a much lower-dimensional linear
subspace. Correctly estimating this subspace is crucial for
reducing the dimension of the data and facilitating tasks such
as processing, analyzing, compressing, or visualizing the data
[1], [2].

More formally, suppose that the given data are arranged
as the columns of a large matrix D ∈ Rm×n. Suppose that
D = A + E, where A is a rank-r matrix and E is a matrix
whose entries are i.i.d. Gaussian random variables. In this
setting, PCA seeks an optimal estimate of A, via the following
constrained optimization:

min
A,E
‖E‖F , subject to rank(A) ≤ r, D = A+ E, (1)

where ‖ · ‖F is the Frobenius norm.
Although PCA offers the optimal estimate of the subspace

when the data are corrupted by small Gaussian noise, it breaks
down under large corruption, even if that corruption affects
only a few of the observations. For example, even with just a
single entry corrupted, the estimated Â obtained by classical

PCA can be arbitrarily far from the true A. This undesirable
behavior has motivated the study of the problem of recovering
a low-rank matrix A from a corrupted data matrix D = A+E,
where some entries of E may be of arbitrarily large magnitude.

Recently, [3] showed that under surprisingly broad condi-
tions, one can exactly recover the low-rank matrix A from
D = A + E with gross but sparse errors E by solving the
following convex optimization problem:

min
A,E
‖A‖∗ + λ |E|1, subject to D = A+ E. (2)

Here, ‖ · ‖∗ represents the nuclear norm of a matrix (the
sum of its singular values), | · |1 denotes the sum of the
absolute values of matrix entries, and λ is a positive weighting
parameter. In [3], this optimization is dubbed Robust PCA
(RPCA), because it enables one to correctly recover underlying
low-rank structure in the data, even in the presence of gross
errors or outlying observations. This optimization can be easily
recast as a semidefinite program and solved by an off-the-shelf
interior point solver (e.g., [4]), see also [5]. However, although
interior point methods offer superior convergence rates, the
complexity of computing the step direction is O(m6). So they
do not scale well with the size of the matrix.

In recent years, the search for more scalable algorithms for
high-dimensional convex optimization problems has prompted
a return to first-order methods. One striking example of this is
the current popularity of iterative thresholding algorithms for
`1-norm minimization problems arising in compressed sensing
[6]–[9]. Similar iterative thresholding techniques [10] can be
applied to the problem of recovering a low-rank matrix from
an incomplete (but clean) subset of its entries [11], [12]. This
optimization is closely related to the RPCA problem (2), and
the algorithm and convergence proof extend quite naturally
to RPCA [3]. However, the iterative thresholding scheme
proposed in [3] exhibits extremely slow convergence: solving
one instance requires about 104 iterations, each of which has
the same cost as one singular value decomposition. Hence,
even for matrix sizes as small as 800 × 800, the algorithm
requires more than 8 hours on a typical PC.

In this paper, we propose two fast and scalable algorithms
to solve (2). In section II, we propose a first-order accelerated



proximal gradient algorithm to directly solve the primal prob-
lem. Section III develops an entirely new algorithm to solve
problem (2) via its dual. We believe that the two algorithms
presented in Sections II and III represent the fastest algorithms
known today for Robust PCA. We compare both algorithms in
Section IV with extensive simulations on randomly generated
matrices. Finally in Section V, we discuss future directions
of research that could further boost the performance of the
proposed algorithms.

II. THE ACCELERATED PROXIMAL GRADIENT APPROACH

We consider the following relaxed version of the RPCA
optimization problem (2):

min
A,E

µ ‖A‖∗ + µλ |E|1 +
1
2
‖D −A− E‖2F , (3)

where f(A,E) .= 1
2 ‖D−A−E‖

2
F penalizes violations of the

equality constraint, and µ > 0 is a relaxation parameter. As µ
approaches 0, any solution to (3) approaches the solution set
of (2). Since f(A,E) is convex, smooth, and has a Lipschitz
continuous gradient (with Lipschitz constant 2), the optimiza-
tion problem (3) is amenable to efficient optimization by a
family of optimization algorithms known as proximal gradient
algorithms [7], [13], [14]. These algorithms iteratively form
separable quadratic approximations to the smooth penalty term
f(A,E) at specially chosen points Yk

.= (Y Ak , Y
E
k ).

The main motivation for forming the separable quadratic
approximation is that in many cases of interest, the iterates
(Ak, Ek) have a simple, or even closed-form expression. In
[3], this property was exploited to give an iterative threshold-
ing algorithm for RPCA. However, the iterative thresholding
algorithm proposed there requires a very large number of
iterations to converge, and hence has only limited applicability.
Recently, [15] demonstrated significant improvements for ma-
trix completion [11], [12] by combining the judicious choice
of Yk suggested by [7], [16] with continuation techniques.

Here, we will see that a very similar iterative thresholding
scheme, summarized as Algorithm 1, can achieve dramatically
better performance, in some cases cutting the number of
iterations by a factor of almost 100. The soft-thresholding
scalar operator S(.) in Algorithm 1 is defined as

Sε[x] .=
{

sign(x) (|x| − ε) if |x| > ε,
0, otherwise, (4)

and extended to vectors and matrices by applying it element-
wise.

Two key factors enable this performance gain. The first is
formulating the problem within the proximal gradient frame-
work and using the smoothed computation of Yk suggested
by [7], [16]. The second is the use of continuation techniques:
rather than applying the proximal gradient algorithm directly
to (3), we vary µ, starting from a large initial value µ0 and
decreasing it geometrically 1 with each iteration until it reaches
the floor µ̄. We observe that this greatly reduces the number
of iterations and therefore, the number of SVD computations.

1From our experiments, we observe that η = 0.9 is a good choice.

Since µk converges to µ̄ > 0, the proof of convergence of
Algorithm 1 is very similar to the one provided for FISTA in
[7]. We summarize the main result below:

Theorem 2.1: Let F (X) ≡ F (A,E) .= µ̄ ‖A‖∗ +
µ̄ λ |E|1 + 1

2 ‖D − A− E‖
2
F . Then, for all k > k0

.= C1

log( 1
η ) ,

we have

F (Xk)− F (X∗) ≤ 4 ‖Xk0 −X∗‖2F
(k − k0 + 1)2

, (5)

where C1 = log
(
µ0
µ̄

)
and X∗ is any solution to (3).

Thus, for any ε > 0, when k > k0 + 2‖Xk0−X
∗‖F√

ε
, we can

guarantee that F (Xk) < F (X∗) + ε.

Algorithm 1 (Robust PCA via Accelerated Proximal Gra-
dient)
Input: Observation matrix D ∈ Rm×n, λ.

1: A0, A−1 ← 0; E0, E−1 ← 0; t0, t−1 ← 1; µ̄← 10−5 µ0.
2: while not converged do
3: Y Ak ← Ak + tk−1−1

tk
(Ak −Ak−1)

Y Ek ← Ek + tk−1−1
tk

(Ek − Ek−1).
4: GAk ← Y Ak − 1

2

(
Y Ak + Y Ek −D

)
.

5: (U, S, V )← svd(GAk ), Ak+1 = USµk
2

[S]V T .
6: GEk ← Y Ek − 1

2

(
Y Ak + Y Ek −D

)
.

7: Ek+1 = Sλµk
2

[GEk ].

8: tk+1 ←
1+
√

4t2k+1

2 .
9: µk+1 ← max(η µk, µ̄).

10: k ← k + 1.
11: end while
Output: A← Ak, E ← Ek.

III. THE DUAL APPROACH

We now consider the following dual problem of (2),

max
Y
〈D,Y 〉, subject to J(Y ) ≤ 1, (6)

where

〈A,B〉 = tr(ATB), J(Y ) = max
(
‖Y ‖2, λ−1|Y |∞

)
, (7)

‖ · ‖2 represents the spectral norm, and | · |∞ is the maximum
absolute value of the matrix entries.

Constrained Steepest Ascent: Notice that since J(Y ) is
positive and homogeneous and the objective function is linear,
the optimal solution must lie on the manifold S = {Y |J(Y ) =
1}. We can therefore replace the inequality constraint with an
equality constraint, leading to an optimization problem on a
nonlinear and non-smooth manifold, which can be solved by
steepest ascent.2

More formally, let Yk denote our estimate of Y at iteration
k. The steepest ascent direction Wk at Yk can be obtained by
projecting the gradient D of the objective function (6) onto

2Note that the proximal gradient algorithm cannot be directly applied to
the dual problem because the sub-problem to solve is identical to the dual
problem.



the tangent cone of S.3 Then we may do line search along
direction Wk by solving

δk = arg max
δ≥0

〈
D,

Yk + δ ·Wk

J (Yk + δ ·Wk)

〉
, (8)

and updating the estimate of Y as

Yk+1 =
Yk + δk ·Wk

J (Yk + δk ·Wk)
, (9)

where the scaling by 1/J (Yk + δ ·Wk) ensures that the iterate
Yk+1 lies on the manifold S. This yields an algorithm that
provably terminates at the optimum of the dual problem.

Theorem 3.1: If the maximizing δk in (8) is equal to zero
at some point Yk, then Yk is the optimal solution to the dual
problem (6).

Proof: See [17].
The key step to solve the dual problem is to find the steepest

ascent direction Wk. To this end, we have the following result.
Lemma 3.2: If two cones C1 and C2 are polar cones to

each other, and π1 and π2 are the projection operators onto C1

and C2, respectively, then for all points P , we have π1(P ) +
π2(P ) = P .

Proof: See [17].
Based on this lemma, we may first find the projection Dk

of D onto the normal cone N(Yk) of S and obtain the steepest
ascent direction Wk as Wk = D −Dk.

Projection onto the Normal Cone: Thus, to solve the
dual problem by steepest ascent, the remaining problem
is to compute the projection Dk of D onto the normal
cone N(Yk). By [18] Corollary 23.7.1, the normal cone
N(Yk) = {aX : a ≥ 0, X ∈ ∂J(Yk)}, where ∂J(.) represents
the subgradient of J . A detailed description of the projection
algorithm can be found in [17]. It is interesting to note that
computing the projection only requires the principal singular
space that is associated with the largest singular value of Yk.

Back to the Primal Problem: With the solution Ŷ to (6)
in hand, the two remaining KKT conditions for the primal
problem (2) are Ŷ ∈ ∂‖A‖∗ and λ−1Ŷ ∈ ∂|E|1. It is easy
to see, either from the definition of these two subgradients or
from more general duality considerations, that if ‖Ŷ ‖2 < 1,
then the primal problem has a degenerate solution A = 0 and
E = D. Similarly, if λ−1|Ŷ |∞ < 1, the solution is A = D and
E = 0. In the remaining case when ‖Ŷ ‖2 = λ−1|Ŷ |∞ = 1,
we have the following result.

Theorem 3.3: Let Ŷ be the solution to the dual problem
(6), and suppose that ‖Ŷ ‖2 = λ−1|Ŷ |∞ = 1. Then any pair
of accumulation points Â, Ê generated by projecting D onto
N(Ŷ ) solve the primal problem (2).

Proof: See [17].
The complete optimization procedure is summarized as

Algorithm 2.

3The tangent cone and the normal cone in the following should be defined
for the convex set S = {Y |J(Y ) ≤ 1}. However, for simplicity we do not
make such distinction.

Algorithm 2 (Robust PCA via the Dual)
Input: Observation matrix D ∈ Rm×n, λ.

1: Y0 = sgn(D)/J(sgn(D)); k ← 0.
2: while not converged do
3: Compute the projection Dk of D onto N(Yk):
4: if ‖Yk‖2 > λ−1|Yk|∞ then
5: Dk ← π2(D), A← D, E ← 0.
6: else if λ−1|Yk|∞ > ‖Yk‖2 then
7: Dk ← π∞(D), A← 0, E ← D.
8: else
9: A← 0, E ← 0.

10: while not converged do
11: A← π2(D − E), E ← π∞(D −A).
12: end while
13: Dk ← A+ E.
14: end if
15: Do line search to determine a step size δk.
16: Yk+1 ← Yk+δk(D−Dk)

J(Yk+δk(D−Dk)) and k ← k + 1.
17: end while
Output: (A,E).

IV. SIMULATIONS

In this section, using numerical simulations, we compare
the two proposed algorithms. While the iterative thresholding
algorithm proposed in [3] takes about 8 hours to recover a
800 × 800 matrix, the proposed algorithms can recover a
1, 000 × 1, 000 matrix in less than an hour under similar
conditions.

Simulation Conditions: We use randomly generated
square matrices for our simulations. We denote the true
solution by the ordered pair (A0, E0) ∈ Rm×m × Rm×m.
We generate the rank-r matrix A0 as a product UV T , where
U and V are independent m × r matrices whose elements
are i.i.d. Gaussian random variables with zero mean and unit
variance.4 We generate E0 as a sparse matrix whose support
is chosen uniformly at random, and whose non-zero entries
are i.i.d. uniformly in the interval [−500, 500].5 The matrix
D

.= A0 + E0 is the input to the algorithm, and (Â, Ê)
denotes the output. We choose a fixed weighting parameter
λ = m−1/2 for a given problem. All the simulations are
conducted and timed on the same Mac Pro computer with a 2.8
GHz processor, eight cores, and 10 GB of memory. We present
in Table I the comparison between the proposed proximal
gradient algorithm and the dual method on their ability to
scale up with large matrices.

Observations and Comparisons: We observe that as the
dimension of the problem increases, the dual approach scales
better than the proximal gradient approach. This difference is
mainly due to the fact that the proximal gradient algorithm
does one full SVD computation per iteration, as against a
partial SVD (e.g., using PROPACK [19]) done by the dual

4It can be shown that A0 is distributed according to the random orthogonal
model of rank r, as defined in [12].

5This is identical to the distribution used in [3].



m rank(A0)
m

‖E0‖0
m2

‖Â−A0‖F
‖A0‖F

no. of iterations time (s)
APG Dual APG Dual APG Dual

1,000 0.05 0.05 8.6× 10−6 1.0× 10−4 126 316 1,600 1,740
1,000 0.05 0.1 9.9× 10−6 9.3× 10−5 129 312 1,640 2,440
1,000 0.1 0.1 7.6× 10−6 1.1× 10−4 132 573 1,590 7,590
1,500 0.05 0.05 7.1× 10−6 6.9× 10−5 126 284 5,750 4,270
1,500 0.05 0.1 8.1× 10−6 8.1× 10−5 129 374 5,900 6,920
1,500 0.1 0.1 6.2× 10−6 8.7× 10−5 132 556 5,720 21,600
2,000 0.05 0.05 6.2× 10−6 4.6× 10−5 126 336 14,300 10,000
2,000 0.05 0.1 7.0× 10−6 1.2× 10−4 129 495 14,700 15,100
2,000 0.1 0.1 5.4× 10−6 7.4× 10−5 132 622 14,300 51,100

TABLE I
Scalability of the APG and the Dual Methods. FOR ALL THE INSTANCES, THE MATRIX A IS CORRECTLY ESTIMATED WITH RELATIVELY HIGH

ACCURACY, AND THE RANK IS CORRECTLY RECOVERED.

method. This is because the rank of Ak during the iteration of
Algorithm 1 does not always increase monotonically, making
it difficult to predict the number of singular values that need
to be computed. On the other hand, the number of iterations
taken by the proximal gradient algorithm to optimality is less
vulnerable to changes in dimension and to the setting of the
problem (almost always around 128 iterations), which might
be attributed to its O(k−2) convergence rate. We also see in
Table I that the average number of iterations taken by the dual
approach is significantly increased when ‖E0‖0 or rank(A0)
increases.

V. CONCLUSION

In this paper, we have proposed two first-order algorithms
for solving the Robust PCA problem (2), one for the primal
and the other for the dual. The proposed algorithms and
techniques can be easily modified for solving the slightly
simpler matrix completion problem [11], [12]. Both algorithms
are significantly faster than the previous state-of-the-art algo-
rithms based on iterative thresholding [3]. Nevertheless, the
dual method is potentially more scalable than the proximal
gradient method as in principle it does not require a full
SVD computation at each iteration. In addition, although the
proximal gradient algorithm cannot be applied to the dual
method in its current form, it is possible that the proximal
gradient technique and the continuation technique, in other
forms, can be applied to speed up the dual method too.

The proposed algorithms are already sufficient to solve
robust PCA problems that arise in image processing and
computer vision, which typically involve matrices of sizes up
to a few thousand, in a reasonable amount of time. However,
both algorithms may be unsuitable for direct use in data
mining applications (like web search and ranking), involving
much larger matrices (say m ≥ 105). Problems of such
large scale demand better hardware and possibly an efficient
distributed algorithm to solve (2). There has been significant
progress recently in developing parallelized algorithms for
SVD computations (e.g., [20]). For the proximal gradient
method, the thresholding steps in each iteration are inherently
parallel. For the dual method, the computation of the principal
singular spaces is much more readily parallelizable than the
partial SVD. It remains to see which algorithm is more suitable

for parallel or distributed implementation for solving large-
scale Robust PCA problems.
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