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Abstract
Principal component analysis is a fundamental operation in computational data
analysis, with myriad applications ranging from web search to bioinformatics to
computer vision and image analysis. However, its performance and applicability
in real scenarios are limited by a lack of robustness to outlying or corrupted ob-
servations. This paper considers the idealized “robust principal component anal-
ysis” problem of recovering a low rank matrix A from corrupted observations
D = A + E. Here, the corrupted entries E are unknown and the errors can be
arbitrarily large (modeling grossly corrupted observations common in visual and
bioinformatic data), but are assumed to be sparse. We prove that most matrices
A can be efficiently and exactly recovered from most error sign-and-support pat-
terns by solving a simple convex program, for which we give a fast and provably
convergent algorithm. Our result holds even when the rank of A grows nearly
proportionally (up to a logarithmic factor) to the dimensionality of the observa-
tion space and the number of errors E grows in proportion to the total number of
entries in the matrix. A by-product of our analysis is the first proportional growth
results for the related problem of completing a low-rank matrix from a small frac-
tion of its entries. Simulations and real-data examples corroborate the theoretical
results, and suggest potential applications in computer vision.

1 Introduction
The problem of finding and exploiting low-dimensional structure in high-dimensional data is taking
on increasing importance in image, audio and video processing, web search, and bioinformatics,
where datasets now routinely lie in thousand- or even million-dimensional observation spaces. The
curse of dimensionality is in full play here: meaningful inference with limited number of obser-
vations requires some assumption that the data have low intrinsic complexity, e.g., that they are
low-rank [1], sparse in some basis [2], or lie on some low-dimensional manifold [3, 4]. Perhaps the
simplest useful assumption is that the observations all lie near some low-dimensional subspace. In
other words, if we stack all the observations as column vectors of a matrix M ∈ Rm×n, the matrix
should be (approximately) low rank. Principal component analysis (PCA) [1, 5] seeks the best (in
an `2-sense) such low-rank representation of the given data matrix. It enjoys a number of optimality
properties when the data are only mildly corrupted by small noise, and can be stably and efficiently
computed via the singular value decomposition.
∗For more information, see http://perception.csl.illinois.edu/matrix-rank/home.html.
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One major shortcoming of classical PCA is its brittleness with respect to grossly corrupted or outly-
ing observations [5]. Gross errors are ubiquitous in modern applications in imaging and bioinformat-
ics, where some measurements may be arbitrarily corrupted (e.g., due to occlusion or sensor failure)
or simply irrelevant to the structure we are trying to identify. A number of natural approaches to
robustifying PCA have been explored in the literature. These approaches include influence function
techniques [6, 7], multivariate trimming [8], alternating minimization [9], and random sampling
techniques [10]. Unfortunately, none of these existing approaches yields a polynomial-time algo-
rithm with strong performance guarantees.1

In this paper, we consider an idealization of the robust PCA problem, in which the goal is to recover a
low-rank matrix A from highly corrupted measurements D = A+E. The errors E can be arbitrary
in magnitude, but are assumed to be sparsely supported, affecting only a fraction of the entries
of D. This should be contrasted with the classical setting in which the matrix A is perturbed by
small (but densely supported) noise. In that setting, classical PCA, computed via the singular value
decomposition, remains optimal if the noise is Gaussian. Here, on the other hand, even a small
fraction of large errors can cause arbitrary corruption in PCA’s estimate of the low rank structure, A.

Our approach to robust PCA is motivated by two recent, and tightly related, lines of research. The
first set of results concerns the robust solution of over-determined linear systems of equations in the
presence of arbitrary, but sparse errors. These results imply that for generic systems of equations, it
is possible to correct a constant fraction of arbitrary errors in polynomial time [11]. This is achieved
by employing the `1-norm as a convex surrogate for the highly-nonconvex `0-norm. A parallel
(and still emerging) line of work concerns the problem of computing low-rank matrix solutions
to underdetermined linear equations [12, 13]. One of the most striking results concerns the exact
completion of low-rank matrices from only a small fraction of their entries [13, 14, 15, 16].2 There, a
similar convex relaxation is employed, replacing the highly non-convex matrix rank with the nuclear
norm (or sum of singular values).

The robust PCA problem outlined above combines aspects of both of these lines of work: we wish
to recover a low-rank matrix from large but sparse errors. We will show that combining the solutions
to the above problems (nuclear norm minimization for low-rank recovery and `1-minimization for
error correction) yields a polynomial-time algorithm for robust PCA that provably succeeds under
broad conditions:

With high probability, solving a simple convex program perfectly recovers a
generic matrix A ∈ Rm×m of rank as large as C m

log(m) , from errors affecting
up to a constant fraction of the m2 entries.

This conclusion holds with high probability as the dimensionality m increases, implying that in
high-dimensional observation spaces, sparse and low-rank structures can be efficiently and exactly
separated. This behavior is an example of the so-called the blessing of dimensionality [17].

However, this result would remain a theoretical curiosity without scalable algorithms for solving the
associated convex program. To this end, we discuss how a near-solution to this convex program can
be obtained relatively efficiently via proximal gradient [18, 19] and iterative thresholding techniques,
similar to those proposed for matrix completion in [20, 21]. For large matrices, these algorithms are
significantly faster and more scalable than general-purpose convex program solvers.

Our analysis also implies an extension of existing results for the low-rank matrix completion prob-
lem, and including the first results applicable to the proportional growth setting where the rank of
the matrix grows as a constant (non-vanishing) fraction of the dimensionality:

With overwhelming probability, solving a simple convex program perfectly re-
covers a generic matrix A ∈ Rm×m of rank as large as Cm, from observations
consisting of only a fraction ρm2 (ρ < 1) of its entries.

1Random sampling approaches guarantee near-optimal estimates, but have complexity exponential in the
rank of the matrixA0. Trimming algorithms have comparatively lower computational complexity, but guarantee
only locally optimal solutions.

2A major difference between robust PCA and low-rank matrix completion is that here we do not know
which entries are corrupted, whereas in matrix completion the support of the missing entries is given.

2



Organization of this paper. This paper is organized as follows. Section 2 formulates the robust
principal component analysis problem more precisely and states the main results of this paper, plac-
ing these results in the context of existing work. The proof (available in [22]) relies on standard ideas
from linear algebra and concentration of measure, but is beyond the scope of this paper. Section 3
extends existing proximal gradient techniques to give a simple, scalable algorithm for solving the
robust PCA problem. In Section 4, we perform simulations and experiments corroborating the theo-
retical results and suggesting their applicability to real-world problems in computer vision. Finally,
in Section 5, we outline several promising directions for future work.

2 Problem Setting and Main Results

We assume that the observed data matrix D ∈ Rm×n was generated by corrupting some of the
entries of a low-rank matrix A ∈ Rm×n. The corruption can be represented as an additive error
E ∈ Rm×n, so that D = A+E. Because the error affects only a portion of the entries of D, E is a
sparse matrix. The idealized (or noise-free) robust PCA problem can then be formulated as follows:
Problem 2.1 (Robust PCA). Given D = A + E, where A and E are unknown, but A is known to
be low rank and E is known to be sparse, recover A.

This problem formulation immediately suggests a conceptual solution: seek the lowest rank A that
could have generated the data, subject to the constraint that the errors are sparse: ‖E‖0 ≤ k. The
Lagrangian reformulation of this optimization problem is

min
A,E

rank(A) + γ‖E‖0 subj A+ E = D. (1)

If we could solve this problem for appropriate γ, we might hope to exactly recover the pair (A0, E0)
that generated the data D. Unfortunately, (1) is a highly nonconvex optimization problem, and
no efficient solution is known.3 We can obtain a tractable optimization problem by relaxing (1),
replacing the `0-norm with the `1-norm, and the rank with the nuclear norm ‖A‖∗ =

∑
i σi(A),

yielding the following convex surrogate:

min
A,E

‖A‖∗ + λ‖E‖1 subj A+ E = D. (2)

This relaxation can be motivated by observing that ‖A‖∗ + λ‖E‖1 is the convex envelope of
rank(A) + λ‖E‖0 over the set of (A,E) such that max(‖A‖2,2, ‖E‖1,∞) ≤ 1. Moreover, recent
advances in our understanding of the nuclear norm heuristic for low-rank solutions to matrix equa-
tions [12, 13] and the `1 heuristic for sparse solutions to underdetermined linear systems [11, 24],
suggest that there might be circumstances under which solving the tractable problem (2) perfectly
recovers the low-rank matrix A0. The main result of this paper will be to show that this is indeed
true under surprisingly broad conditions. A sketch of the result is as follows: For “almost all” pairs
(A0, E0) consisting of a low-rank matrix A0 and a sparse matrix E0,

(A0, E0) = arg min
A,E

‖A‖∗ + λ‖E‖1 subj A+ E = A0 + E0,

and the minimizer is uniquely defined. That is, under natural probabilistic models for low-rank and
sparse matrices, almost all observations D = A0 + E0 generated as the sum of a low-rank matrix
A0 and a sparse matrix E0 can be efficiently and exactly decomposed into their generating parts by
solving a convex program.4

Of course, this is only possible with an appropriate choice of the regularizing parameter λ > 0.
From the optimality conditions for the convex program (2), it is not difficult to show that for matrices
D ∈ Rm×m, the correct scaling is λ = O

(
m−1/2

)
. Throughout this paper, unless otherwise stated,

we will fix λ = m−1/2. For simplicity, all of our results in this paper will be stated for square
matrices D ∈ Rm×m, although there is little difficulty in extending them to non-square matrices.

3In a sense, this problem subsumes both the low rank matrix completion problem and the `0-minimization
problem, both of which are NP-hard and hard to approximate [23].

4Notice that this is not an “equivalence” result for (1) and (2) – rather than asserting that the solutions
of these two problems are equal with high probability, we directly prove that the convex program correctly
decomposes D = A0 + E0 into (A0, E0). A natural conjecture, however, is that under the conditions of our
main result, (A0, E0) is also the solution to (1) for some choice of γ.
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It should be clear that not all matrices A0 can be successfully recovered by solving the convex
program (2). Consider, e.g., the rank-1 case where U = [ei] and V = [ej ]. Without additional prior
knowledge, the low-rank matrixA = USV ∗ cannot be recovered from even a single gross error. We
therefore restrict our attention to matricesA0 whose row and column spaces are not aligned with the
standard basis. This can be done probabilistically, by asserting that the marginal distributions of U
and V are uniform on the Stiefel manifold Wm

r :
Definition 2.2 (Random orthogonal model [13]). We consider a matrix A0 to be distributed accord-
ing to the random orthogonal model of rank r if its left and right singular vectors are independent
uniformly distributedm×r matrices with orthonormal columns.5 In this model, the nonzero singular
values of A0 can be arbitrary.

Our model for errors is similarly natural: each entry of the matrix is independently corrupted with
some probability ρs, and the signs of the corruptions are independent Rademacher random variables.
Definition 2.3 (Bernoulli error signs and support). We consider an error matrixE0 to be drawn from
the Bernoulli sign and support model with parameter ρs if the entries of sign(E0) are independently
distributed, each taking on value 0 with probability 1 − ρs, and ±1 with probability ρs/2 each. In
this model, the magnitude of the nonzero entries in E0 can be arbitrary.

Our main result is the following (see [22] for a proof):
Theorem 2.4 (Robust recovery from non-vanishing error fractions). For any p > 0, there exist
constants (C?0 > 0, ρ?s > 0,m0) with the following property: if m > m0, (A0, E0) ∈ Rm×m ×
Rm×m with the singular spaces of A0 ∈ Rm×m distributed according to the random orthogonal
model of rank

r ≤ C?0
m

log(m)
(3)

and the signs and support of E0 ∈ Rm×m distributed according to the Bernoulli sign-and-support
model with error probability ≤ ρ?s , then with probability at least 1− Cm−p

(A0, E0) = arg min ‖A‖∗ +
1√
m
‖E‖1 subj A+ E = A0 + E0, (4)

and the minimizer is uniquely defined.

In other words, matrices A0 whose singular spaces are distributed according to the random orthogo-
nal model can, with probability approaching one, be efficiently recovered from almost all corruption
sign and support patterns without prior knowledge of the pattern of corruption.

Our line of analysis also implies strong results for the matrix completion problem studied in [13, 15,
14, 16]. We again refer the interested reader to [22] for a proof of the following result:
Theorem 2.5 (Matrix completion in proportional growth). There exist numerical constants m0, ρ?r ,
ρ?s , C all > 0, with the following property: if m > m0 and A0 ∈ Rm×m is distributed according to
the random orthogonal model of rank

r ≤ ρ?rm, (5)
and Υ ⊂ [m] × [m] is an independently chosen subset of [m] × [m] in which the inclusion of each
pair (i, j) is an independent Bernoulli(1−ρs) random variable with ρs ≤ ρ?s , then with probability
at least 1− exp (−Cm),

A0 = arg min ‖A‖∗ subj A(i, j) = A0(i, j) ∀ (i, j) ∈ Υ, (6)

and the minimizer is uniquely defined.

Relationship to existing work. Contemporaneous results due to [25] show that for A0 distributed
according to the random orthogonal model, and E0 with Bernoulli support, correct recovery occurs
with high probability provided

‖E0‖0 ≤ Cm1.5 log(m)−1 max(r, logm)−1/2. (7)

This is an interesting result, especially since it makes no assumption on the signs of the errors.
However, even for constant rank r it guarantees correction of only a vanishing fraction o(m1.5) �

5I.e., distributed according to the Haar measure on the Stiefel manifold Wm
r .
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m2 of errors. In contrast, our main result, Theorem 2.4, states that even if r grows proportional
to m/ log(m), non-vanishing fractions of errors are corrected with high probability. Both analyses
start from the optimality condition for the convex program (2). The key technical component of
this improved result is a probabilistic analysis of an iterative refinement technique for producing a
dual vector that certifies optimality of the pair (A0, E0). This approach extends techniques used
in [11, 26], with additional care required to handle an operator norm constraint arising from the
presence of the nuclear norm in (2). For further details we refer the interested reader to [22].

Finally, while Theorem 2.5 is not the main focus of this paper, it is interesting in light of results by
[15]. That work proves that in the probabilistic model considered here, a generic m × m rank-r
matrix can be efficiently and exactly completed from a subset of only

Cmr log8(m) (8)
entries. For r > m

polylog(m) , this bound exceeds the number m2 of possible observations. A similar
result for spectral methods [14] gives exact completion from O(m log(m)) measurements when
r = O(1). In contrast, our Theorem 2.5 implies that for certain scenarios with r as large as ρrm,
the matrix can be completed from a subset of (1− ρs)m2 entries. For matrices of large rank, this is
a significant extension of [15]. However, our result does not supersede (8) for smaller ranks.

3 Scalable Optimization for Robust PCA

There are a number of possible approaches to solving the robust PCA semidefinite program (2). For
small problem sizes, interior point methods offer superior accuracy and convergence rates. However,
off-the-shelf interior point solvers become impractical for data matrices larger than about 70 × 70,
due to the O(m6) complexity of solving for the step direction. For the experiments in this paper
we use an alternative first-order method based on the proximal gradient approach of [18],6 which
we briefly introduce here. For further discussion of this approach, as well as alternatives based on
duality, please see [27]. This algorithm solves a slightly relaxed version of (2), in which the equality
constraint is replaced with a penalty term:

min µ‖A‖∗ + λµ‖E‖1 + 1
2‖D −A− E‖

2
F . (9)

Here, µ is a small constant; as µ↘ 0, the solutions to (9) approach the solution set of (2).

The approach of [18] minimizes functions of this type by forming separable quadratic approxima-
tions to the data fidelity term ‖D−A−E‖2F at a special set of points (Ãk, Ẽk) that are conspicuously
chosen to obtain a convergence rate of O

(
k−2

)
. The solutions to these subproblems,

Ak+1 = arg min
A

µ‖A‖∗ +
∥∥∥A− (Ãk − 1

4∇A‖D −A− E‖
2
F

∣∣
Ãk,Ẽk

)∥∥∥2

F
, (10)

Ek+1 = arg min
E

λµ‖E‖1 +
∥∥∥E − (Ẽk − 1

4∇E‖D −A− E‖
2
F

∣∣
Ãk,Ẽk

)∥∥∥2

F
, (11)

can be efficiently computed via the soft thresholding operator (for E) and the singular value thresh-
olding operator (for A, see [20]). We terminate the iteration when the subgradient(

Ãk −Ak+1 + Ek+1 − Ẽk, Ẽk − Ek+1 +Ak+1 − Ãk
)

∈ ∂
(
µ‖A‖∗ + λµ‖E‖1 + 1

2‖D −A− E‖
2
F

)∣∣∣
Ak+1,Ek+1

has sufficiently small Frobenius norm.7 In practice, convergence speed is dramatically improved by
employing a continuation strategy in which µ starts relatively large and then decreases geometrically
at each iteration until reaching a lower bound, µ̄ (as in [21]).

The entire procedure is summarized as Algorithm 1 below. We encourage the interested reader to
consult [18] for a more detailed explanation of the choice of the proximal points (Ãk, Ẽk), as well
as a convergence proof ([18] Theorem 4.1). As we will see in the next section, in practice the total
number of iterations is often as small as 200. Since the dominant cost of each iteration is computing
the singular value decomposition, this means that it is often possible to obtain a provably robust
PCA with only a constant factor more computational resources than required for conventional PCA.

6That work is similar in spirit to the work of [19], and has also applied to matrix completion in [21].
7More precisely, as suggested in [21], we terminate when the norm of this subgradient is less than

2max(1, ‖(Ak+1, Ek+1)‖F )× τ . In our experiments, we set τ = 10−7.
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Algorithm 1: Robust PCA via Proximal Gradient with Continuation
1: Input: Observation matrix D ∈ Rm×n, weight λ.
2: A0, A−1 ← 0, E0, E−1 ← 0, t0, t−1 ← 1, µ0 ← .99‖D‖2,2, µ̄← 10−5µ0.
3: while not converged
4: Ãk ← Ak + tk−1−1

tk
(Ak −Ak−1), Ẽk ← Ek + tk−1−1

tk
(Ek − Ek−1).

5: Y Ak ← Ãk − 1
2

(
Ãk + Ẽk −D

)
.

6: (U, S, V )← svd(Y Ak ), Ak+1 ← U
[
S − µ

2 I
]
+
V ∗.

7: Y Ek ← Ẽk − 1
2

(
Ãk + Ẽk −D

)
.

8: Ek+1 ← sign[Y Ek ] ◦
[
|Y Ek | −

λµ
2 11∗

]
+

.

9: tk+1 ←
1+
√

1+4t2k
2 , µ← max(.9µ, µ̄).

10: end while
11: Output: A,E.

4 Simulations and Experiments

In this section, we first perform simulations corroborating our theoretical results and clarifying their
implications. We then sketch two computer vision applications involving the recovery of intrin-
sically low-dimensional data from gross corruption: background estimation from video and face
subspace estimation under varying illumination. 8

Simulation: proportional growth. We first demonstrate the exactness of the convex program-
ming heuristic, as well as the efficacy of Algorithm 1, on random matrix examples of increasing
dimension. We generate A0 as a product of two independent m × r matrices whose elements are
i.i.d. N (0, 1) random variables. We generate E0 as a sparse matrix whose support is chosen uni-
formly at random, and whose non-zero entries are independent and uniformly distributed in the range
[−500, 500]. We apply the proposed algorithm to the matrix D .= A0 +E0 to recover Â and Ê. The
results are presented in Table 1. For these experiments, we choose λ = m−1/2. We observe that the
proposed algorithm is successful in recovering A0 even when 10% of its entries are corrupted.

m rank(A0) ‖E0‖0 ‖Â−A0‖F
‖A0‖F

rank(Â) ‖Ê‖0 #iterations time (s)

100 5 500 3.0× 10−4 5 506 104 1.6
200 10 2,000 2.1× 10−4 10 2,012 104 7.9
400 20 8,000 1.4× 10−4 20 8,030 104 64.8
800 40 32,000 9.9× 10−5 40 32,062 104 531.6
100 5 1,000 3.1× 10−4 5 1,033 108 1.6
200 10 4,000 2.3× 10−4 10 4,042 107 8.0
400 20 16,000 1.6× 10−4 20 16,110 107 66.7
800 40 64,000 1.2× 10−4 40 64,241 106 542.8

Table 1: Proportional growth. Here the rank of the matrix grows in proportion (5%) to the dimensionality
m; and the number of corrupted measurements grows in proportion to the number of entries m2, top 5% and
bottom 10%, respectively. The time reported is for Matlab implementation run on a 2.8 GHz MacBook Pro.

Simulation: phase transition w.r.t. rank and error sparsity. We next examine how the rank
of A and the proportion of errors in E affect the performance our algorithm. We fix m = 200,
and vary ρr

.= rank(A0)
m and the error probability ρs between 0 and 1. For each ρr, ρs pair, we

generate 10 pairs (A0, E0) as in the above experiment. We deem (A0, E0) successfully recovered

8Here, we use these intuitive examples and data illustrate how our algorithm can be used as a simple, general
tool to effectively separate low-dimensional and sparse structures occurring in real visual data. Appropriately
harnessing additional structure (e.g., the spatial coherence of the error [28]) may yield even more effective
algorithms.
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if the recovered Â satisfies ‖Â−A0‖F

‖A0‖F
< 0.01. Figure 1 (left) plots the fraction of correct recoveries.

White denotes perfect recovery in all experiments, and black denotes failure for all experiments. We
observe that there is a relatively sharp phase transition between success and failure of the algorithm
roughly above the line ρr + ρs = 0.35. To verify this behavior, we repeat the experiment, but only
vary ρr and ρs between 0 and 0.4 with finer steps. These results, seen in Figure 1 (right), show that
phase transition remains fairly sharp even at higher resolution.

ρr

ρ s

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

ρr

ρ s

0.1 0.2 0.3

0.3

0.2

0.1

Figure 1: Phase transition wrt rank and error sparsity. Here, ρr = rank(A)/m, ρs = ‖E‖0/m2. Left:
(ρr, ρs) ∈ [0, 1]2. Right: (ρr, ρs) ∈ [0, 0.4]2.

Experiment: background modeling from video. Background modeling or subtraction from
video sequences is a popular approach to detecting activity in the scene, and finds application in
video surveillance from static cameras. Background estimation is complicated by the presence of
foreground objects such as people, as well as variability in the background itself, for example due
to varying illumination. In many cases, however, it is reasonable to assume that these background
variations are low-rank, while the foreground activity is spatially localized, and therefore sparse. If
the individual frames are stacked as columns of a matrix D, this matrix can be expressed as the sum
of a low-rank background matrix and a sparse error matrix representing the activity in the scene. We
illustrate this idea using two examples from [29] (see Figures 2). In Figure 2(a)-(c), the video se-
quence consists of 200 frames of a scene in an airport. There is no significant change in illumination
in the video, but a lot of activity in the foreground. We observe that our algorithm is very effective in
separating the background from the activity. In Figure 2(d)-(f), we have 550 frames from a scene in
a lobby. There is little activity in the video, but the illumination changes drastically towards the end
of the sequence. We see that our algorithm is once again able to recover the background, irrespective
of the illumination change.

Experiment: removing shadows and specularities from face images. Face recognition is an-
other domain in computer vision where low-dimensional linear models have received a great deal
of attention, mostly due to the work of [30]. The key observation is that under certain idealized
circumstances, images of the same face under varying illumination lie near an approximately nine-
dimensional linear subspace known as the harmonic plane. However, since faces are neither per-
fectly convex nor Lambertian, face images taken under directional illumination often suffer from
self-shadowing, specularities, or saturations in brightness.

Given a matrix D whose columns represent well-aligned training images of a person’s face under
various illumination conditions, our Robust PCA algorithm offers a principled way of removing
such spatially localized artifacts. Figure 3 illustrates the results of our algorithm on images from
subsets 1-3 of the Extended Yale B database [31]. The proposed algorithm algorithm removes the
specularities in the eyes and the shadows around the nose region. This technique is potentially useful
for pre-processing training images in face recognition systems to remove such deviations from the
low-dimensional linear model.

5 Discussion and Future Work

Our results give strong theoretical and empirical evidences for the efficacy of using convex pro-
gramming to recover low-rank matrices from corrupted observations. However, there remain many
fascinating open questions in this area. From a mathematical perspective, it would be interesting to
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(a) (b) (c) (d) (e) (f)

Figure 2: Background modeling. (a) Video sequence of a scene in an airport. The size of each frame is
72 × 88 pixels, and a total of 200 frames were used. (b) Static background recovered by our algorithm. (c)
Sparse error recovered by our algorithm represents activity in the frame. (d) Video sequence of a lobby scene
with changing illumination. The size of each frame is 64× 80 pixels, and a total of 550 frames were used. (e)
Static background recovered by our algorithm. (f) Sparse error. The background is correctly recovered even
when the illumination in the room changes drastically in the frame on the last row.

(a) (b) (c) (a) (b) (c)

Figure 3: Removing shadows and specularities from face images. (a) Cropped and aligned images of a
person’s face under different illuminations from the Extended Yale B database. The size of each image is
96 × 84 pixels, a total of 31 different illuminations were used for each person. (b) Images recovered by our
algorithm. (c) The sparse errors returned by our algorithm correspond to specularities in the eyes, shadows
around the nose region, or brightness saturations on the face.

know if it is possible to remove the logarithmic factor in our main result. The phase transition exper-
iment in Section 4 suggests that convex programming actually succeeds even for rank(A0) < ρrm
and ‖E0‖0 < ρsm

2, where ρr and ρs are sufficiently small positive constants. Another interesting
and important question is whether the recovery is stable in the presence of small dense noise. That
is, suppose we observe D = A0 +E0 + Z, where Z is a noise vector of small `2-norm (e.g., Gaus-
sian noise). A natural approach is to now minimize ‖A‖∗ + λ‖E‖1, subject to a relaxed constraint
‖D − A − E‖F ≤ ε. For matrix completion, [16] showed that a similar relaxation gives stable
recovery – the error in the solution is proportional to the noise level. Finally, while this paper has
sketched several examples on visual data, we believe that this powerful new tool pertains to a wide
range of high-dimensional data, for example in bioinformatics and web search.
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