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Abstract

Low-Rank Representation (LRR) [16, 17] is an effective

method for exploring the multiple subspace structures of

data. Usually, the observed data matrix itself is chosen

as the dictionary, which is a key aspect of LRR. However,

such a strategy may depress the performance, especially

when the observations are insufficient and/or grossly cor-

rupted. In this paper we therefore propose to construct the

dictionary by using both observed and unobserved, hidden

data. We show that the effects of the hidden data can be

approximately recovered by solving a nuclear norm mini-

mization problem, which is convex and can be solved ef-

ficiently. The formulation of the proposed method, called

Latent Low-Rank Representation (LatLRR), seamlessly in-

tegrates subspace segmentation and feature extraction into

a unified framework, and thus provides us with a solu-

tion for both subspace segmentation and feature extraction.

As a subspace segmentation algorithm, LatLRR is an en-

hanced version of LRR and outperforms the state-of-the-art

algorithms. Being an unsupervised feature extraction al-

gorithm, LatLRR is able to robustly extract salient features

from corrupted data, and thus can work much better than

the benchmark that utilizes the original data vectors as fea-

tures for classification. Compared to dimension reduction

based methods, LatLRR is more robust to noise.

1. Introduction

Vision data is often characterized by a mixture of mul-

tiple (linear) subspaces. For example, it is known that mo-

tion [6, 21, 29], face [26, 28] and texture [18] can be well

characterized by subspaces. The importance of subspaces

naturally leads to a challenging problem of subspace seg-

mentation [2] 1, whose goal is to segment (or group) data

into clusters with each cluster corresponding to a subspace.

1For ease of presentation, in this paper we firstly present our motiva-

tions under the context of subspace segmentation. Then we shall show that

our method can also naturally handle the feature extraction problem.

In computer vision, subspace segmentation has been widely

studied (e.g., [2, 3, 5, 7, 11, 17, 18, 19, 21, 22, 27]) owing

to its numerous applications, such as motion segmentation

[6, 21, 29], face recognition [26, 28] and image segmenta-

tion [15, 18].

When the subspaces are independent and the data is

noiseless, several existing methods (e.g., [2, 3, 16, 17]) are

able to produce exactly correct segmentation results. So,

as pointed out by [16, 17], the main challenge of subspace

segmentation is how to effectively handle the “chicken-and-

egg” coupling between noise correction and data segmenta-

tion. In this sense, the recently established Low-Rank Rep-

resentation (LRR) [16, 17, 24] is a promising method, since

LRR provides us with an efficient way to perform noise

correction and subspace segmentation simultaneously. In

general, LRR aims at finding the lowest-rank representation

among all the candidates that can represent the data vectors

as linear combinations of the basis in a given dictionary:

min
Z

‖Z‖∗ , s.t. XO = AZ,

where XO denotes the observed data matrix (each column is

an observation vector), A is the dictionary and ‖·‖∗ denotes

the nuclear norm [4] of a matrix, i.e., the sum of the sin-

gular values of the matrix. For subspace segmentation, the

observed data matrix itself is usually used as the dictionary

[16, 17, 24], resulting in the following convex optimization

problem:

min
Z

‖Z‖∗ , s.t. XO = XOZ. (1)

When the subspaces are independent, the data is noiseless

and the data sampling is sufficient 2, Liu et al. [16, 17] show

that the optimal solution, denoted as Z∗
O, to the above prob-

lem is the widely used Shape Iteration Matrix (SIM) [2],

2Let XO be a set of samples drawn from a union of k sub-

spaces {Si}
k
i=1

, each of which has a rank of ri. Suppose XO =
[X1, X2, · · · , Xk] and Xi is the collection of ni samples from the i-

th subspace Si, then the sampling of XO is sufficient if and only if

rank (Xi) = ri,∀i.



which is a “block-diagonal” affinity matrix exactly indicat-

ing the true segmentation of the data. To handle the data

corrupted by noise, LRR adopts a regularized formulation

that introduces an extra regularization term to fit the noise.

However, previous LRR methods [16, 17, 24] suffer

some issues caused by directly setting the dictionary A as

the observed data matrix XO. First, to enable the abil-

ity of representing the underlying subspaces, the dictionary

(A = XO) must contain sufficient data vectors sampled

from the subspaces. Otherwise, Z∗
O = I (I denotes the

identity matrix) is probably the only feasible solution to (1)

and thus LRR may fail. So, one cannot use XO as the dic-

tionary to represent the subspaces if the data sampling is

insufficient 3. Second, in order to achieve robust segmenta-

tion, LRR requires that sufficient noiseless data is available

in the dictionary A, i.e., only a part of A is corrupted. While

A = XO, this assumption may be invalid and the robustness

of LRR may be depressed in reality.

To resolve the issue of insufficient sampling and improve

the robustness to noise, we consider the following LRR

problem:

min
Z

‖Z‖∗ , s.t. XO = [XO, XH ]Z, (2)

where the concatenation (along column) of XO and XH is

used as the dictionary, XO is the observed data matrix and

XH represents the unobserved, hidden data. The above for-

mulation can resolve the issue of insufficient data sampling,

provided that A = [XO, XH ] is always sufficient to rep-

resent the subspaces. Let Z∗
O,H be the optimal solution

to the above problem and Z∗
O,H = [Z∗

O|H ;Z∗
H|O] be its

row-wise partition such that Z∗
O|H and Z∗

H|O correspond

to XO and XH
4, respectively, then Z∗

O|H is a nontrivial

block-diagonal matrix that can exactly reveal the true sub-

space membership even if the sampling of XO is insuffi-

cient. Note here that LRR actually only requires the sam-

pling of the dictionary being sufficient (see Theorem 3.2 of

[16]). Moreover, as we will see, the consideration of the

hidden data can improve the robustness of LRR. With these

motivations, in this paper we study the problem of recov-

ering the affinity matrix Z∗
O|H by using only the observed

data XO. More concretely we study the following “hidden

effects recovery” (i.e., recovery of the effects of the hidden

data) problem.

Problem 1.1 (Hidden Effects Recovery) Given an ob-

served data matrix XO, our goal is to recover Z∗
O|H in the

absence of the hidden data XH .

3It is worth noting that the methods based on Sparse Representation

(SR) (e.g., [3]) also suffer this issue.
4For n observed data vectors, Z∗

O|H
is an n×n matrix that contains the

pairwise affinities among the observed data vectors. We adopt the symbol

Z∗
O|H

just because the affinity matrix depends on both XO and XH .

Without imposing any restriction on XO and XH , the

above problem is “ill-posed”, because Z∗
O|H is computed

in the presence of both XO and XH . So we study the

problem in the setting where all the data, both observed

and hidden, are sampled from the same collection of low-

rank subspaces. In this case, we show that the hidden ef-

fects can be approximately recovered by solving a nuclear

norm minimization problem, which is convex and can be

solved efficiently. For clarity, we call this recovery method

as Latent Low-Rank Representation (LatLRR). The solu-

tion of LatLRR could be regarded as an “enhanced” ver-

sion of LRR, where the enhancement is made by the hidden

data. Since it not only inherits the advantages of LRR but

also includes the hidden effects, LatLRR is more accurate

and robust than LRR as a tool for subspace segmentation.

Moreover, the formulation of LatLRR naturally integrates

subspace segmentation and feature extraction [20] into a

unified framework, and thus also provides us with an al-

gorithm for feature exaction. In summary, the main contri-

butions of this paper include:

• LatLRR extends LRR to handle the hidden effects. To

the best of our knowledge, this work is the first to con-

sider the hidden data in subspace segmentation.

• As a subspace segmentation algorithm, LatLRR out-

performs the state-of-the-art algorithms for motion

segmentation.

• As an unsupervised feature extraction algorithm,

LatLRR is empirically able to automatically extract

salient features from corrupted data, and thus can work

much better than the benchmark that uses the original

data as features for classification. Compared to dimen-

sion reduction based methods, LatLRR is more robust

to noise.

2. Problem Statement

Problem 1.1 only describes the hidden recovery problem

for noiseless data. More precisely, this paper addresses the

following two hidden effect recovery problems.

Problem 2.1 (Noiseless Data) The same as Problem 1.1.

Futher, we define the hidden effects recovery problem for

corrupted data as follows.

Problem 2.2 (Corrupted Data) For the following LRR

problem (noisy case)

min
Z,E

‖Z‖∗ + λ ‖E‖
1
, s.t. XO = [XO, XH ]Z + E, (3)

where ‖ · ‖1 is the ℓ1-norm for characterizing the sparse

noise E. Suppose Z∗
O,H = [Z∗

O|H ;Z∗
H|O] is the optimal so-

lution (with respect to the variable Z) and Z∗
O|H is the sub-

matrix corresponding to XO, then our goal is to recover

Z∗
O|H by using only the observed data XO.



3. Recovery of Hidden Effects by LatLRR

In this section we abstractly present our Latent Low-

Rank Representation (LatLRR) method for addressing the

problem of hidden effects recovery. For ease of understand-

ing, we also present some clues of using LatLRR to per-

form subspace segmentation. The detailed applications to

subspace segmentation and feature extraction are deferred

to Section 4.

3.1. A Basic Observation

In order to recover the hidden effects, it is necessary to

explore the minimizer to problem (2). Based on the theo-

rems introduced by Liu et al. [16], we have the following

theorem.

Theorem 3.1 Given any matrices XO (XO 6= 0) and XH ,

the minimizer to problem (2) is unique and has the following

closed form:

Z∗
O|H = VOV

T
O and Z∗

H|O = VHV T
O , (4)

where VO and VH are calculated as follows: Compute the

skinny Singular Value Decomposition (SVD) of [XO, XH ],
denoted as [XO, XH ] = UΣV T , and partition V as V =
[VO;VH ] such that XO = UΣV T

O and XH = UΣVH
T .

Proof By the definition of skinny SVD, it can be calculated

that the constraint XO = [XO, XH ]Z is equal to UΣV T
O =

UΣV TZ, which is also equal to V T
O = V TZ. So problem

(2) is equal to the following optimization problem:

min
Z

‖Z‖∗ , s.t. V T
O = V TZ.

By Lemma 3.3 of [16], problem (2) has a unique minimizer

Z∗
O,H = V V T

O = [VOV
T
O ;VHV T

O ],

which directly leads to the conclusions in (4).

3.2. Recovering Hidden Effects by Convex Opti­
mization

3.2.1 Noiseless Data (Problem 2.1)

In general, it is impractical to exactly recover Z∗
O|H by us-

ing only the observed data XO. Nevertheless, it is possible

to obtain an approximate recovery by analyzing the proper-

ties of the hidden effects. By Theorem 3.1, we have

XO = [XO, XH ]Z∗
O,H = XOZ

∗
O|H +XHZ∗

H|O

= XOZ
∗
O|H +XHVHV T

O

= XOZ
∗
O|H + UΣV T

H VHV T
O

= XOZ
∗
O|H + UΣV T

H VHΣ−1UTXO.

(a) Z
O|H

*
(b) LRR (c) LatLRR

Figure 1. Illustrating the recovery of the hidden effects. (a)

The block-diagonal affinity matrix identified by Z∗
O|H , which is

obtained by solving problem (2). (b) The affinity matrix produced

by LRR. Since the data sampling is insufficient, Z = I is the only

feasible solution to problem (1). (c) The affinity matrix identified

by the minimizer (with respect to the variable Z) to problem (5).

Let L∗
H|O = UΣV T

H VHΣ−1UT , then the hidden effects can

be described by a simple formulation as follows:

XO = XOZ
∗
O|H + L∗

H|OXO.

Suppose both XO and XH are sampled from the same col-

lection of low-rank subspaces, and the union of the sub-

spaces has a rank of r. Then it can be derived that

rank
(

Z∗
O|H

)

≤ r and rank
(

L∗
H|O

)

≤ r.

So both Z∗
O|H and L∗

H|O should be of low-rank and we may

recover Z∗
O|H by minimizing

min
ZO|H ,LH|O

rank
(

ZO|H

)

+ rank
(

LH|O

)

,

s.t. XO = XOZO|H + LH|OXO.

As a common practice in rank minimization problems, we

relax the rank function as the nuclear norm, resulting in the

following convex optimization problem:

min
Z,L

‖Z‖∗ + ‖L‖∗ , s.t. X = XZ + LX. (5)

Here, for ease of presentation, we simplify the symbols by

replacing XO, ZO|H and LH|O with X , Z and L, respec-

tively. Suppose X is of size d× n, then Z and L are n× n
and d × d, respectively. One may have noticed that there

is no parameter in (5) to balance the strengths of Z and L.

This is because the strengths of the two parts are balanced

automatically 5.

Let the minimizer to problem (5) be (Z∗, L∗), then Z∗ is

an approximate recovery to Z∗
O|H (Problem 2.1). To verify,

we present an example as the following.

5To measure the individual strengths of L and Z in problem (5), we

consider the following two optimization problems:

min
Z

‖Z‖∗ , s.t. X = XZ,

whose minimizer is assumed to be Z∗
Z

, and

min
L

‖L‖∗ , s.t. X = LX,

whose minimizer is assumed to be L∗
L

. By Corollary 3.3 of [16], it can be

concluded that
∥

∥Z∗
Z

∥

∥

∗
= rank (X) = rank(XT ) =

∥

∥L∗
L

∥

∥

∗
. So the

strengths of L and Z in (5) are balanced naturally.



Example 3.1 We construct 10 independent subspaces

{Si}
10
i=1 whose basis {Ui}

10
i=1 are computed by Ui+1 =

TUi, 1 ≤ i ≤ 9, where T is a random rotation and U1 is a

random column orthogonal matrix of dimension 200 × 10.

So each subspace has a rank of 10. We construct a 200×90
data matrix XO = [X1, · · · , X10] by sampling 9 (which is

smaller than the rank of the subspaces) data vectors from

each subspace by Xi = UiCi, 1 ≤ i ≤ 10 with Ci being

a 10 × 9 i.i.d. N (0, 1) matrix. Then we obtain a 90 × 90
affinity matrix (identified by Z∗) by solving (5). To simu-

late the hidden effects, we also construct a 200× 50 hidden

matrix XH by sampling 5 data vectors from each subspace.

Fig.1 illustrates that our formulation (5) does make sense

for recovering the hidden effects.

3.2.2 Corrupted Data (Problem 2.2)

In Problem 2.2, it is not easy to give a theoretical analy-

sis to the hidden effects. Nevertheless, since Problem 2.2

is generalized from Problem 2.1, it could be regarded that

the conclusions in the above section are approximately valid

for corrupted data. So it is adequate to recover the hidden

effects by solving the following convex optimization prob-

lem:

min
Z,L,E

‖Z‖∗ + ‖L‖∗ + λ ‖E‖
1
, (6)

s.t. X = XZ + LX + E,

where λ > 0 is a parameter and ‖·‖
1

is the ℓ1-norm cho-

sen for characterizing sparse noise. When λ → +∞, the

solution to the above problem identifies that of (5). So (6)

is a generalization of (5). The minimizer Z∗ (with respect

to the variable Z) is a recovery to Z∗
O|H (Problem 2.2). So

Z∗ could be regarded as an “enhanced” lowest-rank repre-

sentation and LatLRR may be more robust than LRR as a

tool for subspace segmentation. To see this, we refer to the

following example.

Example 3.2 We sample 200 data vectors from 5 indepen-

dent subspaces constructed in a similar way as in Example

3.1. Since all the subspaces have a rank of 10 and we sam-

ple 20 data vectors from each subspace, the data sampling

is sufficient in this example. Some entries are randomly cho-

sen to be corrupted by using large Gaussian noise. After

obtaining the affinity matrix identified by Z∗, we use Algo-

rithm 2 of [17] to segment the data into 5 clusters and ob-

serve the segmentation accuracy at each noise level. Fig.2

illustrates that LatLRR is more robust than LRR as a tool

for subspace segmentation, i.e., the robustness of LRR can

be improved by taking the hidden effects into account.

An intuition underlying the phenomenon in Fig.1 and

Fig.2 is that LatLRR actually provides a way to reconstruct

a data matrix X from two directions: column (XZ) and
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Figure 2. Illustrating that the robustness of LRR can be im-

prove by considering the hidden effects. We plot the segmen-

tation accuracies (averaged over 20 runs) across the entire range

of noise for the two methods. It can be seen that LatLRR consis-

tently outperforms LRR. Here, the segmentation accuracy is the

percentage of correctly grouped samples [3, 17].

Algorithm 1 Solving Problem (6) by Inexact ALM

Initialize: Z = J = 0, L = S = 0, E = 0, Y1 =
0, Y2 = 0, Y3 = 0, µ = 10−6,maxu = 106, ρ = 1.1,

and ε = 10−6.

while not converged do

1. Fix the others and update J by setting J =
argminJ

1

µ
||J ||∗ +

1

2
||J − (Z + Y2/µ)||

2
F .

2. Fix the others and update S by setting S =
argminS

1

µ
||S||∗ +

1

2
||S − (L+ Y3/µ)||

2
F .

3. Fix the others and update Z by setting Z = (I +
XTX)−1(XT (X−LX−E)+J+(XTY1−Y2)/µ).
4. Fix the others and update L by setting L = ((X −
XZ −E)XT +S + (Y1X

T − Y3)/µ)(I+XXT )−1.
5. Fix the others and update E by setting E =
argminE λ/µ||E||1 + 0.5||E − (X − XZ − LX +
Y1)/µ||

2
F .

6. Update the multipliers by Y1 = Y1 + µ(X −XZ −
LX−E), Y2 = Y2+µ(Z−J), Y3 = Y3+µ(L−S).
7. Update the parameter µ by µ = min(ρµ,maxu).
8. Check the convergence conditions: ||X − XZ −
LX−E||∞ < ε, ||Z−J ||∞ < ε, and ||L−S||∞ < ε.

end while

row (LX). When some data points are missed, i.e., some

columns are missed, it is helpful to make use of the recon-

struction along row. By combining both directions, LatLRR

can defend missed points and be more robust against noise.

3.3. Solving the Optimization Problem

Since problem (6) can fall back to problem (5) by setting

the parameter λ to be relatively large, here we just present

how to solve problem (6), which is convex and can be opti-

mized by various methods. We first convert it to the follow-

ing equivalent problem:

min
Z,L,J,S,E

‖J‖∗ + ‖S‖∗ + λ‖E‖
1
,

s.t. X = XZ + LX + E,Z = J, L = S.

This problem can be solved by the Augmented Lagrange



Multiplier (ALM) [14] method, which minimizes the fol-

lowing augmented Lagrange function:

‖J‖∗ + ‖S‖∗ + λ‖E‖
1
+ tr

(

Y T
1 (X −XZ − LX − E)

)

+tr
(

Y T
2 (Z − J)

)

+ tr
(

Y T
3 (L− S)

)

+
µ

2
(‖X −XZ − LX − E‖2F + ‖Z − J‖2F + ‖L− S‖2F ),

where tr (·) and ‖·‖F denote the trace and Frobenious norm

of a matrix, respectively. The above problem is uncon-

strained. So it can be minimized with respect to J , S, Z, L
and E, respectively, by fixing the other variables, and then

updating the Lagrange multipliers Y1, Y2 and Y3, where

µ > 0 is a penalty parameter. The inexact ALM method,

also called the alternating direction method, is outlined in

Algorithm 1. Its convergence properties are similarly as

those in [14]. Notice that Step 1, Step 2 and Step 5 all have

closed-form solutions. Step 1 and Step 2 are solved via the

Singular Value Thresholding (SVT) operator [1], while Step

5 is solved by the shrinkage operator [14].

The major computation of Algorithm 1 is at Step 1 and

Step 2, which require computing the SVD of matrices. So

the complexity of the algorithm is O(n3)+O(d3) (assuming

X is d×n). However, it is simple to show that the complex-

ity of LatLRR is O(d2n+d3) (assume d ≤ n). By Theorem

3.1 of [16], it can be seen that the optimal solution Z∗ (with

respect to the variable Z) to (6) always lies within the sub-

space spanned by the rows of X , i.e., Z∗ can be factorized

into Z∗ = P ∗Z̃∗, where P ∗ can be computed in advance

by orthogonalizing the columns of XT . In a similar way, it

can be shown that the optimal solution L∗ (with respect to

the variable L) to (6) can be factorized into L∗ = L̃∗(Q∗)T ,

where Q∗ can be computed by orthogonalizing the columns

of X . Hence, problem (6) can be equivalently transformed

into a simpler problem by replacing Z and L with P ∗Z̃ and

L̃(Q∗)T , respectively:

min
Z̃,L̃,E

‖Z̃‖∗ + ‖L̃‖∗ + λ ‖E‖
1
, s.t. X = AZ̃ + L̃B + E,

where A = XP ∗ and B = (Q∗)TX . Since the number

of columns (or rows) of A (or B) is at most d, the above

problem can be solved with a complexity of O(d2n + d3)
by using a similar way as Algorithm 1. So LatLRR is quite

scalable for large-size (n is large) datasets, provided that the

data dimension d is not high.

4. Experiments

In this section, we apply LatLRR for subspace segmenta-

tion and feature extraction, along with presenting our exper-

imental results. In summary, let (Z∗, L∗, E∗) be the min-

imizer to problem (6), then we shall show that Z∗ and L∗

are useful for subspace segmentation and feature extraction,

respectively.
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Figure 3. The distribution of the error rates on Hopkin155. It

can be seen that LRR has achieved error rates smaller than 3% for

most sequences.

Comparison under the same setting

LSA RANSAC SR LRR LatLRR

Mean 8.99 8.22 3.89 3.16 2.95

Std. 9.80 10.26 7.70 5.99 5.86

Max 37.74 47.83 32.57 37.43 37.97

Comparison to state-of-the-art methods

LSA ALC SSC SC LatLRR

Mean 4.94 3.37 1.24 1.20 0.85
Table 1. Error rates (%) on Hopkins155. Besides of LRR, we

also list the results of Local Subspace Analysis (LSA) [29], Ran-

dom Sample Consensus (RANSAC) [5], Sparse Representation

(SR) [16], Agglomerative Lossy Compression (ALC) [21], Sparse

Subspace Clustering (SSC) [3] and Spectral Clustering (SC) [12].

Note here that the core of SSC is SR, and the previous state-of-

the-art results are directly quoted from [3, 12, 21].

4.1. Subspace Segmentation

The affinity matrix identified by Z∗ has similar purposes

as that of LRR. So we can use Algorithm 2 of [17] to

perform subspace segmentation. Namely, we firstly utilize

the affinity matrix identified by Z∗ to define edge weights

of an undirected graph, and then use Normalized Cuts

(NCut) [23] to produce the final segmentation results.

To evaluate the effectiveness of LatLRR, we test it on

Hopkins155 [25], which is a standard database for motion

segmentation. This database contains 156 sequences each

of which has 39 ∼ 550 data vectors drawn from two or

three motions (one motion corresponds to one subspace).

Each sequence is a sole segmentation (clustering) task and

so there are 156 segmentation tasks in total.

Comparison to LRR. In order to demonstrate the ad-

vantages of considering the hidden data, we compare all

algorithms under the same setting. Namely, all algorithms

use the raw data without any preprocessing as their inputs

and simply use NCut to obtain the final segmentation

results. Table 1 shows that LatLRR (λ = 0.9) achieves

an error rate of 2.95%, which outperforms LRR. One may

have noticed that the improvement is not very distinct. This

is because there are 156 sequences in total and LRR has

achieved accurate segmentation results for most sequences,

as shown in Fig.3. Actually, if we sort the segmentation

errors in an ascending order and use T-Test (type 1, tail 1)



to do significance test, the improvement is significant with

the level of 1%. This confirms the effectiveness of taking

the hidden data into account.

Comparison to State-of-the-art Methods. The basic

algorithm of LatLRR can achieve an error rate of 2.95%,

which does not outperform the specific motion segmen-

tation algorithms. This is mainly due to the fact that

Hopkins155 is consisting of 155 sequences with different

properties, including the data dimension, number of data

points and noise level. As can be seen from Fig.3, the error

rates on some sequences (about 10) exceed 20%. For more

accurate and reliable motion segmentation, we utilize some

techniques used in [12] as follows. First, since the affinity

matrix Z∗ obtained by solving problem (6) is asymmetric,

we convert it into a Positive Semi-Definite (PSD) matrix

Z∗
1 by solving

Z∗
1 = argmin

Z1

‖Z1‖∗ + α ‖E‖
1
,

s.t. Z∗ = Z1 + E,Z1 � 0,

where Z1 � 0 is the PSD constraint and α is set to be 0.8.

The above problem can be efficiently solved in a similar

way as [24]. This transformation step does not improve the

performance largely and is actually preparing for the fol-

lowing two steps. Second, as in [12], we decompose Z∗
1

into Z∗
1 = QQT and define G = (Q̃Q̃T )2, where Q̃ is Q

with normalized rows. This normalization operator, which

is equal to replacing inner product similarities with cosine

similarities, can reduce the error rate to 1.86%. Third, like

[12], we use Gβ (β = 2) as the affinity matrix for spectral

clustering, obtaining an error rate of 0.85% (Std.=2.58%,

Max=19.03%).

4.2. Feature Extraction

Unsupervised feature extraction is a fundamental step in

pattern recognition [20]. In our LatLRR method, the d × d
(assuming the data is of dimension d) matrix identified by

L∗ may be useful for feature extraction. This heuristic idea

has been verified by our experiments. Namely, we exper-

imentally find that L∗ is able to extract “salient features”

(i.e., notable features such as the eyes of faces) from data.

After learning L∗ from a set of training data, it is straight-

forward to generalize the learnt model to fresh testing data.

That is, for a testing data vector x, its transformed feature

vector y can be calculated by

y = L∗x. (7)

Note here that the feature vector y has the same dimension

as the original data vector x. This is different from dimen-

sion reduction based methods.

Experimental Setting. We test LatLRR’s ability to

    data           =   principal features +  salient features   +   sparse noise

X =
*
EXL

**
XZ + +

Figure 4. Illustrating LatLRR’s mechanism of decomposing

the data. Given a data matrix X , LatLRR decomposes it into a

low-rank part XZ∗ that represents the principal features, a low-

rank part L∗X that encodes the salient features and a sparse part

E∗ that fits noise. These examples are selected from the training

set.

extract salient features from corrupted data, using Extended

Yale Database B [13], which consists of 2414 frontal face

images of 38 classes. Each class contains about 64 images.

First, we randomly split the database into training set and

testing set, with the training set containing 1140 images

(30 images per class) and the testing set containing the rest

1274 images. Second, we resize the images into 28 × 32,

normalize the pixel values to [0, 1] and use the normalized

pixel values to form data vectors of dimension 896. Finally,

we use the K-nearest neighbor (K-NN) classifier (based

on Euclidean distance) to evaluate the quality of various

transformed features.

Main Results. We compare LatLRR with the bench-

mark of “Raw Data” that uses the original data vectors

as features for classification. For comparison, we also

list the results of some popular dimension reduction

methods, including Principal Component Analysis (PCA),

Locality Preserving Projection (LPP) [9], Neighborhood

Preserving Embedding (NPE) [10] and Nonnegative Matrix

Factorization (NMF) [8]. Table 2 (left part) shows that

LatLRR (λ = 0.4) can largely outperform the benchmark

of “Raw Data”. The advantages of LatLRR mainly come

from its ability of automatically extracting salient features

from corrupted data, as shown in Fig.4 and Fig.5. Fig.4



Raw Data PCA LPP NPE NMF LatLRR LatLRR +

(317D) (83D) (325D) (195D) PCA(400D) LPP(52D) NPE(400D)

1-NN 61.07 61.54 80.46 79.28 84.69 88.76 87.28 87.60 82.18

3-NN 59.81 60.03 78.73 79.28 84.07 87.76 85.95 87.13 81.71

5-NN 58.16 58.54 76.69 76.69 82.58 86.03 85.87 85.56 80.85
Table 2. Classification accuracies (%, averaged over 20 runs) on Extended Yale Database B. We adopt K-NN (K = 1, 3, 5) classifier

to classify various features. The parameters of all algorithms have been tuned to the best. For dimension reduction methods, the feature

dimension is optimally determined by testing all possible dimensions within 1 ∼ 400. We only explore 1D ∼ 400D just because these

dimension reduction methods have usually achieved the best performances before 400D.

illustrates that LatLRR can also be regarded as a mecha-

nism for data decomposition. Namely, given a data matrix

X , LatLRR decomposes it into a low-rank part XZ∗ that

represents the “principal” features 6, a low-rank part L∗X
that encodes the salient features and a sparse part that fits

the noise. In particular, the salient features correspond

to the key object parts (e.g., the eyes), which are usually

discriminative for recognition. Also, Fig.5 shows that

the learnt model (identified by L∗) can generalize well

to the testing data. So, LatLRR can achieve much better

classification performance than the benchmark of “Raw

Data”.

The dimension of the feature vector produced by

LatLRR is the same as the original data. To improve

computation efficiency, we could utilize dimension re-

duction methods to process the features. Suppose P is a

low-dimensional projection learnt by using L∗X as inputs

for some dimension reduction methods, the reduced feature

vector y of a testing data vector x can be computed by

y = PTL∗x. Table 2 (right part) shows the performance of

applying PCA, LPP and NPE on the features produced by

LatLRR. While reducing the feature dimension to 52D by

LPP, we obtain a classification accuracy (1-NN classifier)

of 87.60%, which is close to the 88.76% obtained by using

the 896D features.

Robustness to Noise. In order to test LatLRR’s ro-

bustness to the noise possibly appearing in the testing data,

we randomly choose some pixels to corrupt, e.g., for a

pixel chosen to corrupt, its value is replaced by using a

random value that uniformly ranges from 0 to 1 (the pixel

values have been normalized to [0, 1]). Fig.6 shows that

LatLRR is robust to such ad-hoc noise, performing better

than dimension reduction based methods.

5. Conclusions and Future Work

In this paper we proposed Latent Low-Rank Represen-

tation (LatLRR) to recover the effects of the unobserved,

6We call the features represented by XZ∗ as principal features because

they are visually similar to PCA features. For a certain image, its principal

features can be roughly regarded as its projection onto the subspace that

represents the image.

Figure 5. Some examples of using LatLRR to extract salient

features from the testing images. Each row is from the same

class. For each group of images: (left) the testing image x; (right)

the intensity map identified by L∗x.
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Figure 6. Testing the robustness of various methods. The clas-

sification accuracy (averaged over 20 runs) across the entire range

of noise for various methods. LatLRR and PCA are more robust

than the other methods.

hidden data in LRR. When all the data, both observed and

unobserved, are drawn from the same collection of low-

rank subspaces, we show that the hidden effects can be

approximately recovered by solving a convex optimization

problem. The formulation of LatLRR seamlessly integrates

subspace segmentation and feature extraction into a uni-



fied framework, providing us with a robust subspace seg-

mentation algorithm and also a robust feature extraction al-

gorithm. As a subspace segmentation algorithm, LatLRR

could be regarded as an enhanced version of LRR, and thus

obtains more accurate segmentation results. Being an un-

supervised feature extraction algorithm, LatLRR can auto-

matically extract salient features from corrupted data so as

to produce effective features for classification.

Besides the contents presented in this paper, there are

several directions left for future work.

• The lowest-rank criterion and the sparest criterion are

two typical regularization strategies used in various

problems. Each of them has its own advantages and

applications. In Sparse Representation (SR), the hid-

den data is also important for computing the sparsest

representation.

• LatLRR also provides a general way to explain the

mechanism of generating data. Its application should

not be limited to subspace segmentation and feature

extraction. In summary, LatLRR can well fit various

applications where the data can be decomposed into a

right low-rank part, a left low-rank part and a sparse

part.
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