
TILT: Transform Invariant Low-rank Textures ?

Zhengdong Zhang†, Xiao Liang†, Arvind Ganesh‡, and Yi Ma†,‡

†Visual Computing Group, Microsoft Research Asia, Beijing
{v-kelviz, v-ollian, mayi}@microsoft.com

‡Coordinated Science Lab, University of Illinois at Urbana-Champaign
abalasu2@illinois.edu

Abstract. In this paper, we show how to efficiently and effectively ex-
tract a rich class of low-rank textures in a 3D scene from 2D images de-
spite significant distortion and warping. The low-rank textures capture
geometrically meaningful structures in an image, which encompass con-
ventional local features such as edges and corners as well as all kinds of
regular, symmetric patterns ubiquitous in urban environments and man-
made objects. Our approach to finding these low-rank textures lever-
ages the recent breakthroughs in convex optimization that enable robust
recovery of a high-dimensional low-rank matrix despite gross sparse er-
rors. In the case of planar regions with significant projective deformation,
our method can accurately recover both the intrinsic low-rank texture
and the precise domain transformation. Extensive experimental results
demonstrate that this new technique works effectively for many near-
regular patterns or objects that are approximately low-rank, such as
human faces and text.

1 Introduction

One of the fundamental problems in computer vision is to identify certain feature
points or salient regions in images. These points and regions are the basic build-
ing blocks of almost all high-level vision tasks such as 3D reconstruction, object
recognition, and scene understanding. Throughout the years, a large number
of methods have been proposed in the computer vision literature for extract-
ing various types of feature points or salient regions. The detected points or
regions typically represent parts of the image which have distinctive geometric
or statistical properties such as Canny edges, Harris corners, and textons.

One of the important applications of detecting feature points or regions is to
establish correspondence or measure similarity across different images. For this
purpose, it is desirable that the detected points/regions are somewhat stable
or invariant under transformations incurred by changes in viewpoint or illumi-
nation. In the past decade, numerous “invariant” features and descriptors have
been proposed, studied, compared, and tuned in the literature (see [1, 2] and ref-
erences therein). A widely used feature descriptor is the scale invariant feature
transform (SIFT) [3], which to a large extent is invariant to changes in rotation
and scale (i.e., similarity transformations) and illumination. Nevertheless, if the
images are shot from very different viewpoints, SIFT may fail to establish reli-
able correspondences and its affine-invariant version becomes a better choice [4,
5]. While deformation of a small distant patch can be well-approximated by an

? This work was supported by grants ONR N00014-09-1-0230, NSF CCF 09-64215,
and NSF ECCS 07-01676.

2 Zhengdong Zhang, Xiao Liang, Arvind Ganesh, Yi Ma

(a) Input (r = 35) (b) Input (r = 15) (c) Input (r = 53) (d) Input (r = 13)

(e) Output (r = 14) (f) Output (r = 8) (g) Output (r = 19) (h) Output (r = 6)

Fig. 1. Low-rank Textures Automatically TILTed. From left to right: a butterfly;
a face; a tablet of Chinese characters; and the Leaning Tower of Pisa. Top: windows
with the red border are the original input, windows with the green border deformed
texture returned by our method; Bottom: textures in the green window are matrices
of much lower rank.

affine transform, projective transform becomes necessary to describe the defor-
mation of a large region viewed through a perspective camera. To the best of
our knowledge, from a practical standpoint, there are no feature descriptors that
are truly invariant (or even approximately so) under projective transformations
or homographies.

Despite tremendous effort in the past few decades to search for better and
richer classes of invariant features in images, there seems to be a fundamental
dilemma that none of the existing methods have been able to resolve ultimately:
On the one hand, if we consider typical classes of transformations incurred on
the image domain by changing camera viewpoint and on the image intensity by
changing contrast or illumination, then in strict mathematical sense, invariants
of the 2D image are extremely sparse and scarce – essentially only the topology
of the extrema of the image function remains invariant, known as attributed
Reeb tree (ART) [6]. The numerous “invariant” image features proposed in the
vision literature, including the ones mentioned above, are at best approximately
invariant, and often only to a limited extent. On the other hand, the 3D scene is
typically rich of regular structures that are full of invariants (with respect to 3D
Euclidean transformations). For instance, in an urban environment, the scene
is typically filled with man-made objects that have parallel edges, right angles,
regular shapes, symmetric structures, and repeated patterns. These geometric
structures are rich of properties that are invariant under all types of subgroups
of the 3D Euclidean group and as a result, their 2D (affine or perspective) images
encode extremely rich 3D information about objects in the scene [7–9].

In this paper we propose a technique that aims to resolve the above dilemma
about invariant features. We contend that instead of trying to seek invariants of
the image that are either scarce or imprecise, we should

aim to directly detect and extract invariant structures of a scene through
their images despite (affine or projective) domain transforms.

TILT: Transform Invariant Low-rank Textures 3

Many methods have been developed in the past to detect and extract all types
of regular, symmetric patterns from images under affine or projective transforms
(see [10] for a recent evaluation). As symmetry is not a property that depends on
a small neighborhood of a pixel, it can only be detected from a relatively large
region of the image. However, most existing methods for detecting symmetric
regions and patterns start by extracting and putting together local features such
as SIFT points [9], corners, and edges [11]. As feature detection and edge extrac-
tion themselves are sensitive to local image variations such as noise, occlusion,
and illumination change, such symmetry detection methods inherently lack ro-
bustness and stability. In addition, as we will see in this paper, many regular
structures and symmetric patterns do not even have distinctive features. Thus,
we need a more general, effective, and robust way of detecting and extracting
regular structures in images despite significant distortion and corruption.

Contributions of this Paper. In this paper, we aim to extract regions in a 2D
image that correspond to a very rich class of regular patterns on a planar surface
in 3D, whose appearance can be modeled as a “low-rank” matrix. In some sense,
many conventional features mentioned above such as edges, corners, symmetric
patterns can all be considered as special instances of such low-rank textures.
Clearly, an image of such a texture may be deformed by the camera projection
and undergoes certain domain transformation (say affine or projective). The
transformed texture in general is no longer low-rank in the image. Nevertheless,
by utilizing advanced convex optimization tools from matrix rank minimization,
we will show how to simultaneously recover such a low-rank texture from its
deformed image and the associated deformation.

Our method directly uses raw pixel values of the image and there is no need
of any pre-extraction of any low-level, local features such as corners, edges, SIFT,
and DoG features. The proposed solution and algorithm are inherently robust to
gross errors caused by corruption, occlusion, or cluttered background affecting
a small fraction of the image pixels. Furthermore, our method applies to any
image regions wherever such low-rank textures occur, regardless of the size of
their spatial support. Thus, we are able to rectify not only small local features
such as an edge and a corner but also large global symmetric patterns such as
an entire facade of a building. We believe that this is a very powerful new tool
that allows people to accurately extract rich structural and geometric informa-
tion about the scene from its images, that are truly invariant of image domain
transformations.

Organization of This Paper. The remainder of this paper is organized as follows:
Section 2 gives a rigorous definition of “low-rank textures” as well as formulates
the mathematical problem associated with extracting such textures. Section 3
gives an efficient and effective algorithm for solving the problem. We provide
extensive experimental results to verify the efficacy of the proposed algorithm
as well as the usefulness of the extracted low-rank textures.

4 Zhengdong Zhang, Xiao Liang, Arvind Ganesh, Yi Ma

2 Transform Invariant Low-rank Textures

2.1 Low-rank Textures

In this paper, we consider a 2D texture as a function I0(x, y), defined on R2.
We say that I0 is a low-rank texture if the family of one-dimensional functions
{I0(x, y0) | y0 ∈ R} span a finite low-dimensional linear subspace i.e.,

r
.
= dim

(
span{I0(x, y0) | y0 ∈ R}

)
≤ k (1)

for some small positive integer k. If r is finite, then we refer to I0 as a rank-r
texture. Figure 2 shows some ideal low-rank textures: a vertical or horizontal edge
(or slope) can be considered as a rank-1 texture; and a corner can be considered
as a rank-2 texture. By this definition, it is easy to see that the image of regular
symmetric patterns always lead to low-rank textures.

Given a low-rank texture, obviously its rank is invariant under any scaling of
the function, as well as scaling or translation in the x and y coordinates. That
is, if g(x, y)

.
= cI0(ax + t1, by + t2) for some constants a, b, c, t1, t2 ∈ R+, then

g(x, y) and I0(x, y) have the same rank according to our definition in (1).
For most practical purposes, it suffices to recover any scaled version of the

low-rank texture I0(x, y), as the remaining ambiguity left in the scaling can often
be easily resolved in practice by imposing additional constraints on the texture
(see Section 3.2). Hence, in this paper, unless otherwise stated, we view two
low-rank textures equivalent if they are scaled version of each other: I0(x, y) ∼
cI0(ax+ t1, by + t2), for all a, b, c, t1, t2 ∈ R+.

In practice, we are never given the 2D texture as a continuous function in
R2. Typically, we only have its values sampled on a finite discrete, say m × n,
grid in Z2. In this case, the 2D texture I0(x, y) is represented by an m× n real
matrix. For a low-rank texture, we always assume that the size of the sampling
grid is significantly larger than the intrinsic rank of the texture1 i.e.,

r � min{m,n}
Thus, the 2D texture I0(x, y) (discretized) as a matrix has very low rank relative
to its dimensions.

Remark 1 (Low-rank Textures versus Random Textures). Conventionally, the
word “texture” is used to describe image regions that exhibit certain spatially
stationary stochastic properties (e.g. grass, sand). Such a texture can be con-
sidered as a random sample from a stationary stochastic process [12] and is
generally of full rank as a 2D function. The “low-rank textures” defined here are
complementary to such random textures: It is supposed to describe regions in
an image that have rather regular deterministic structures.

2.2 Deformed and Corrupted Low-rank Textures

In practice, we typically never see a perfectly low-rank texture in a real image,
largely due to two factors: 1. the change of viewpoint usually induces a trans-
formation on the domain of the texture function; 2. the sampled values of the

1 It is easy to show that as long as the sampling rate is not one of the aliasing frequen-
cies of the function I0, the resulting matrix has the same rank as the continuous
function.

TILT: Transform Invariant Low-rank Textures 5

(a) Input(r = 11) (b) Input(r = 16) (c) Input(r = 10) (d) Input(r = 24)

(e) Output(r = 1) (f) Output(r = 2) (g) Output(r = 7) (h) Output(r = 14)

Fig. 2. Representative examples of low-rank textures. From left to right: an
edge; a corner; a symmetric pattern, and a license plate. Top: deformed textures (high-
rank as matrices); Bottom: the recovered low-rank textures.

texture function are subject to many types of corruption such as quantization,
noise, occlusions, etc. In order to correctly extract the intrinsic low-rank textures
from such deformed and corrupted image measurements, we must first carefully
model those factors and then seek ways to eliminate them.

Deformed Low-rank Textures. Although many surfaces or structures in 3D ex-
hibit low-rank textures, their images do not! If we assume that such a texture
I0(x, y) lies approximately on a planar surface in the scene, the image I(x, y)
that we observe from a certain viewpoint is a transformed version of the original
low-rank texture function I0(x, y):

I(x, y) = I0 ◦ τ−1(x, y) = I0
(
τ−1(x, y)

)
where τ : R2 → R2 belongs to a certain Lie group G. In this paper, we assume
G is either the 2D affine group Aff(2) or the homography group GL(3) acting
linearly on the image domain.2 In general, the transformed texture I(x, y) as a
matrix is no longer low-rank. For instance, a horizontal edge has rank one, but
when rotated by 45◦, it becomes a full-rank diagonal edge (see Figure 2(a)).

Corrupted Low-rank Textures. In addition to domain transformations, the ob-
served image of the texture might be corrupted by noise and occlusions or contain
some surrounding backgrounds. We can model such deviations as:

I = I0 + E

for some error matrix E. As a result, the image I is potentially no longer a low-
rank texture. In this paper, we assume that only a small fraction of the image
pixels are corrupted by large errors, and hence, E is a sparse matrix.

Our goal in this paper is to recover the exact low-rank texture I0 from an
image that contains a deformed and corrupted version of it. More precisely, we
aim to solve the following problem:

2 Nevertheless, in principle, our method works for more general classes of domain
deformations or camera projection models as long as they can be modeled well by a
finite-dimensional parametric family.

6 Zhengdong Zhang, Xiao Liang, Arvind Ganesh, Yi Ma

Problem 1 (Robust Recovery of Transform Invariant Low-rank Textures). Given
a deformed and corrupted image of a low-rank texture: I = (I0 + E) ◦ τ−1,
recover the low-rank texture I0 and the domain transformation τ ∈ G.

The above formulation naturally leads to the following optimization problem:

min
I0,E,τ

rank(I0) + γ‖E‖0 subject to I ◦ τ = I0 + E (2)

where ‖E‖0 denotes the number of non-zero entries in E. That is, we aim to
find the texture I0 of the lowest rank and the error E of the fewest nonzero
entries that agrees with the observation I up to a domain transformation τ .
Here, γ > 0 is a weighting parameter that trades off the rank of the texture
versus the sparsity of the error. For convenience, we refer to the solution I0

found to this problem as a Transform Invariant Low-rank Texture (TILT).3

Remark 2 (TILT versus Affine-Invariant Features). TILT is fundamentally dif-
ferent from the affine-invariant features or regions proposed in the literature [4,
5]. Essentially, those features are extensions to SIFT features in the sense that
their locations are very much detected the same way as SIFT. The difference is
that around each feature, an optimal affine transform is found that in some way
“normalizes” the local statistics, say by maximizing the isotropy of the bright-
ness pattern [13]. Here TILT finds the best local deformation by minimizing the
rank of the brightness pattern in a robust way. It works the same way for any
image region of any size and for both affine and projective transforms (or even
more general transformation groups that have smooth parameterization). Prob-
ably most importantly, as we will see, our method is able to stratify all kinds
of regions that are approximately low-rank (e.g. human faces, texts) and the
results match extremely well with human perception.

Remark 3 (TILT versus RASL). We note that the optimization problem (2) is
strikingly similar to the robust image alignment problem studied in [14], known
as RASL. In some sense, TILT is a simpler problem as it only deals with one
image and one domain transformation whereas RASL deals with multiple images
and multiple transformations, one for each image. Thus, in the next section, we
will follow a similar line of development to solve our problem as that in [14].
However, there are some important differences between TILT and RASL. For
example, to make TILT work for a wide range of textures, we have to incorporate
new constraints so that it achieves a large range of convergence. Moreover, we
use a much faster convex optimization algorithm than the APG-based method
used in [14], which will be described in the next section.

3 Solution by Iterative Convex Optimization

Although the formulation in (2) is intuitive, the rank function and the `0-norm
are extremely difficult to optimize (in general NP-hard). Recent breakthroughs
in convex optimization have shown that under fairly broad conditions, the cost

3 By a slight abuse of terminology, we also refer to the procedure of solving the opti-
mization problem as TILT.

TILT: Transform Invariant Low-rank Textures 7

function can be replaced by its convex surrogate [15]: the matrix nuclear norm
‖I0‖∗ (sum of all singular values) for rank(I0) and the `1-norm ‖E‖1 (the sum
of absolute values of all entries) for ‖E‖0, respectively. As result, the objective
function becomes:

min
I0,E,τ

‖I0‖∗ + λ‖E‖1 subject to I ◦ τ = I0 + E (3)

where λ > 0 is a weighting parameter. Notice that although the objective func-
tion is now convex, the constraint I◦τ = I0+E remains nonlinear in τ ∈ G. Theo-
retical considerations in [15] suggest that λ must be of the form C/

√
max{m,n},

where C is a constant, typically set to unity, and I0 ∈ Rm×n.
As suggested in [14], to deal with the nonlinear constraint effectively, we may

assume that the deformation τ is small and so we can linearize the constraint
I ◦ τ = I0 +E around its current estimate: I ◦ (τ +∆τ) ≈ I ◦ τ +∇I∆τ , where
∇I represents the derivatives of the image w.r.t the transformation parameters.4

Thus, locally the above optimization problem becomes a convex optimization
subject to a set of linear constraints:

min
I0,E,∆τ

‖I0‖∗ + λ‖E‖1 subject to I ◦ τ +∇I∆τ = I0 + E (4)

As this linearization is only a local approximation to the original nonlinear prob-
lem, we solve it iteratively in order to converge to a (local) minima of the original
problem. Although it is difficult to derive exact conditions under which this con-
vex relaxation followed by linearization converges, in practice, we observe that
the procedure does converge to a locally optimal solution, even when we start
from a large initial deformation τ0.

3.1 Fast Algorithm Based on Augmented Lagrangian Multiplier

In [14], the accelerated proximal gradient (APG) method was employed to solve
the linearized problem (4). Recent studies have shown that the Augmented La-
grangian multiplier (ALM) method [16] is more effective for solving this type
of convex optimization problems [15], and typically results in much faster con-
vergence. For the sake of completeness, we will derive the ALM method to the
linearized problem (4) and then summarize the overall algorithm for solving the
original problem (3). We leave some detailed implementation issues for improving
stability and range of convergence to the next subsection.

The Augmented Lagragian Multiplier method aims to solve the original con-
strained convex program (4) by instead minimizing the augmented Lagrangian
given by:

L(I0, E,∆τ, Y, µ)
.
=

‖I0‖∗ + λ‖E‖1 + 〈Y, I ◦ τ +∇I∆τ − I0 − E〉+
µ

2
‖I ◦ τ +∇I∆τ − I0 − E‖2F

4 Strictly speaking, ∇I is a 3D tensor: it gives a vector of derivatives at each pixel
whose length is the number of parameters in the transformation τ . When we “multi-
ply” ∇I with another matrix or vector, it contracts in the obvious way which should
be clear from the context.

8 Zhengdong Zhang, Xiao Liang, Arvind Ganesh, Yi Ma

where Y is a matrix of Lagrange multipliers, and µ > 0 denotes the penalty for
infeasible points. It is known from convex optimization literature [16] that the
optimal solution to the original problem (4) can be effectively found by iterating
the following two steps till convergence:{

(I0k+1, Ek+1, ∆τk+1) ← minI0,E,∆τ L(I0, E,∆τ, Yk, µk)
µk+1 ← ρµk, Yk+1 ← Yk + µk(I ◦ τ +∇I∆τk+1 − I0k+1 − Ek+1)

(5)

for some ρ > 1.
In general, it might be expensive to find the optimal solution to the first

step of (5) by minimizing over all the variables I0, E,∆τ simultaneously. So
in practice, to speed up the algorithm, we adopt an alternating minimization
strategy as follows: 5

I0k+1 ← minI0 L(I0, Ek, ∆τk, Yk, µk)
Ek+1 ← minE L(I0k+1, E,∆τk, Yk, µk)
∆τk+1 ← min∆τ L(I0k+1, Ek+1, ∆τ, Yk, µk)

(6)

Given the special structure of our Lagrangian function L, each of the above
optimization problem has a very simple solution. Let St[·] be the soft thresholding
or shrinkage operator defined as follows:

St(x) = sign(x) ·max{|x| − t, 0} (7)

where t ≥ 0. When applied to vectors or matrices, the shrinkage operator acts
element-wise. Suppose that (Uk, Σk, Vk)

.
= svd(I ◦ τ + ∇I∆τk − Ek + µ−1k Yk).

Then the optimization problems in (6) can be solved as follows:
I0k+1 ← UkSµ−1

k
[Σk]V Tk

Ek+1 ← Sλµ−1
k

[I ◦ τ +∇I∆τk − I0k+1 + µ−1k Yk]

∆τk+1 ← (∇IT∇I)−1∇IT (−I ◦ τ + I0k+1 + Ek+1 − µ−1k Yk)

(8)

We summarize the ALM approach to solving the problem in (3) as Algorithm 1.

3.2 Additional Constraints and Implementation Details

The previous section lays out the basic ALM algorithm for solving the TILT
problem (3). However, there are a few caveats in applying it to real images of
low-rank textures. In this section, we discuss some additional constraints which
make the solution to the problem well-defined and some special implementation
details that improve the range of convergence.

Constraints on the Transformations. As we have discussed in Section 2.1, there
are certain ambiguities in the definition of low-rank texture. The rank of a low-
rank texture function is invariant with respect to scaling in its value, scaling
in each of the coordinates, and translation in each of the coordinates. Thus, in
order for the problem to have a unique, well-defined optimal solution, we need to
eliminate these ambiguities. In the first step of Algorithm 1, the intensity of the
image is renormalized at each iteration in order to eliminate the scale ambiguity

5 It can be shown that under fairly broad conditions, this does not affect the conver-
gence of the algorithm.

TILT: Transform Invariant Low-rank Textures 9

Algorithm 1 (TILT via ALM)

Input: Initial rectangular window I ∈ Rm×n in the input image, initial transforma-
tions τ in a certain group G (affine or projective), λ > 0.
While not converged Do

Step 1: normalize the image and compute the Jacobian w.r.t. transformation:

I ◦ τ ← I ◦ τ
‖I ◦ τ‖F

, ∇I ← ∂

∂ζ

(
I ◦ ζ
‖I ◦ ζ‖F

)∣∣∣
ζ=τ

;

Step 2: solve the linearized convex optimization (4):

min
I0,E,∆τ

‖I0‖∗ + λ‖E‖1 subject to I ◦ τ +∇I∆τ = I0 + E,

with the initial conditions: Y0 = 0, E0 = 0,∆τ0 = 0, µ0 > 0, ρ > 1, k = 0:
While not converged Do

(Uk, Σk, Vk) ← svd(I ◦ τ +∇I∆τk − Ek + µ−1
k Yk),

I0k+1 ← UkSµ−1
k

[Σk]V Tk ,

Ek+1 ← S
λµ−1

k
[I ◦ τ +∇I∆τk − I0k+1 + µ−1

k Yk],

∆τk+1 ← (∇IT∇I)−1∇IT (−I ◦ τ + I0k+1 + Ek+1 − µ−1
k Yk),

Yk+1 ← Yk + µk(I ◦ τ +∇I∆τk+1 − I0k+1 − Ek+1),
µk+1 ← ρµk,

End While
Step 3: update transformations: τ ← τ +∆τk+1;

End While
Output: I0, E, τ .

in pixel value. Otherwise, the algorithm may tend to converge to a “globally
optimal” solution by zooming into a black pixel.

To resolve the ambiguities in the domain transformation, we also need some
additional constraints. For simplicity, we assume that the support of the initial
image window Ω is a rectangle with the length of the two edges being L(e1) = a
and L(e2) = b, so that the total area S(Ω) = ab. To eliminate the ambiguity in
translation, we can fix the center x0 of the window i.e., τ(x0) = x0. This imposes
a set of linear constraints on ∆τ given by :

At∆τ = 0 (9)

To eliminate the ambiguities in scaling the coordinates, we enforce (typically only
for affine transforms) that the area and the ratio of edge length remain constant
before and after the transformation, i.e. S(τ(Ω)) = S(Ω) and L(τ(e1))/L(τ(e2)) =
L(e1)/L(e2). In general, these conditions impose additional nonlinear constraints
on the desired transformation τ in problem (3). As outlines earlier, we can lin-
earize these constraints against the transformation τ and obtain another set of
linear constraints on ∆τ :

As∆τ = 0 (10)

As a result, to eliminate both scaling and translation ambiguities, all we
need to do is to add two sets of linear constraints to the optimization problem

10 Zhengdong Zhang, Xiao Liang, Arvind Ganesh, Yi Ma

(4). This results in very small modifications to Algorithm 1 to incorporate those
additional linear constraints.6

Multi-Resolution and Branch-and-Bound. To further improve both the speed
and the range of convergence, we adopt the popular multi-resolution approach in
image processing. For the given image window I, we build a pyramid of images by
iteratively blurring and downsampling the window by a factor of 2 until the size
of the matrix reaches a threshold (say, less than 30× 30 pixels7). Starting from
the top of the pyramid, we apply our algorithm to the lowest-resolution image
first and always initialize the algorithm with the deformation found from the
previous level. We found that in practice, this scheme significantly improves the
range of convergence and robustness of the algorithm since in the low-resolution
images, small details are blurred out and the larger structures of the image
drive the updates of the deformation. Moreover, it can speed up Algorithm 1 by
hundreds of times. We tested the speed of our algorithm in MATLAB on a PC
with a 3 Ghz processor. With input matrices of size 50×50, the average running
time over 100 experiments is less than 6 seconds.

Apart from the multi-resolution scheme, we can make Algorithm 1 work for a
large range of deformation by using a branch-and-bound approach. For instance,
in the affine case, we initialize Algorithm 1 with different deformations (e.g., a
combination search for all 4 degrees of freedom for affine transforms with no
translation). A natural concern about such a branch-and-bound scheme is its
effect on speed. Nevertheless, within the multi-resolution scheme, we only have
to perform branch-and-bound at the lowest resolution, find the best solution, and
use it to initialize the higher resolution levels. Since Algorithm 1 is extremely
fast for small matrices at the lowest-resolution level, running multiple times with
different initializations does not significantly affect the overall speed. In a similar
spirit, to find the optimal projective transform (homography), we always find
the optimal affine transform first and then use it to initialize the algorithm. We
observed that with such an initialization, the branch-and-bound step becomes
unnecesary for the projective transformation case.

Results in all examples and experiments shown in this paper are found by
Algorithm 1 using both the multi-resolution and branch-and-bound schemes,
unless otherwise stated.

4 Experiments and Applications

4.1 Range of Convergence of TILT

For most low-rank textures, Algorithm 1 has a fairly large range of convergence,
even without using any branch-and-bound. To illustrate this, we show the result
of the algorithm with a checkerboard image undergoing different ranges of affine
transform: y = Ax+ b, where x, y ∈ R2. We parameterize the affine matrix A as

6 By introducing an additional set of Lagrangian multipliers and then appropriately
revising the update equation associated with ∆τk+1.

7 In order for the convex relaxation (3) to be tight enough, the matrix size cannot be
too small. In practice, we find that our method works well for windows of size larger
than 20× 20.

TILT: Transform Invariant Low-rank Textures 11

Fig. 3. Convergence of TILT. Left: representative input images in different regions;
Right: the range of convergence (# of successes out of 20 random trials in each region).

(i) Input I (j) Output I ◦ τ (k) Low rank I0 (l) Sparse error E

Fig. 4. Robustness of TILT. Top: random corruption added to 60% pixels; Middle:
scratches added on a symmetric pattern; Bottom: containing cluttered background.

A(θ, t) =

[
cos θ − sin θ
sin θ cos θ

]
×
[

1 t
0 1

]
. We change (θ, t) within the range θ ∈ [0, π/6]

with step size π/60, and t ∈ [0, 0.3] with step size 0.03. We observe that the
algorithm always converges up to θ = 10◦ of rotation and skew (or warp) up
to t = 0.2. Due to its rich symmetries and sharp edges, the checkerboard is a
challenging case for “global” convergence since there are multiple local minima
possible. In practice, we find that for most symmetric patterns in urban scenes (as
shown in Figure 5), our algorithm converges for the entire tested range without
any branch-and-bound.

4.2 Robustness of TILT

The results shown in Figure 4 demonstrate the striking robustness of the pro-
posed algorithm to random corruptions, occlusions, and cluttered background,
respectively. For the first two experiments, the branch-and-bound scheme was
not used.

12 Zhengdong Zhang, Xiao Liang, Arvind Ganesh, Yi Ma

4.3 Shape from Low-rank Texture Detection

Obviously, the rectified low-rank textures found by our algorithm can better
facilitate almost all high-level vision tasks than existing feature or texture de-
tectors, including establishing correspondences among images, recognizing texts
and objects, or reconstructing 3D shape or structure of a scene, etc. Due to
limited space, we show a few examples in Figure 5 (left) to illustrate how our
algorithm can extract rich geometric and structure information from an image
of an urban scene.

The image size in this experiment is 1024 × 685 pixels and we use affine
transformations on a grid of 60×60 windows to obtain the low-rank texture. If the
rank of the resulting texture drops significantly from that of the original window,
we say that the algorithm has “detected” a salient region.8 In Figure 5, we have
plotted the resulting deformed windows, together with the local orientation and
surface normal recovered from the optimal affine transformation. Notice that for
windows inside the building facades, our algorithm correctly recovers the local
geometry for almost all of them; even for patches on the edge of the facades, one
of its sides always aligns precisely with the building’s edge.

Of course, one can initialize the size of the windows at different sizes or
scales. But for larger regions, affine transformations will not be accurate enough
to describe the deformation. In this case, we use projective transformations. For
instance, the entire facade of the middle building in Figure 5 (left) obviously
exhibits significant projective deformation. Nevertheless, if we initialize the pro-
jective TILT algorithm with the affine transform of a small patch on the facade,
the algorithm can easily converge to the correct homography and recover the
low-rank textures correctly, as shown in Figure 5 (middle).

With both the low-rank texture and their geometry correctly recovered, we
can easily perform many interesting tasks such as editing parts of the images
using the true 3D orientation and the correct perspective. Figure 5 (right) illus-
trates this application with an example.

4.4 Rectifying Different Categories of Low-rank Textures

Since the proposed algorithm has a very large range of convergence for both
affine and projective transformations and it is also robust to sparse corruptions,
we observed that it works remarkably well for a very broad range of patterns,
regular structures, and objects that arise in natural images or paintings. Figure
6 shows a few examples. We observe that with a simple initialization with a
very rough rectangular window, our algorithm can converge precisely onto the
underlying low-rank structures of the images, despite significant deformation.

References

1. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. PAMI
27 (2005) 1615–1630

8 The image rank is computed by thresholding the singular values at 1/30 times the
largest one. We also throw away regions whose largest singular value is too small,
which typically correspond to a smooth region such as the sky.

TILT: Transform Invariant Low-rank Textures 13

Fig. 5. Left: Low-rank textures detected by the TILT algorithm with affine transform
on a grid of 60× 60 windows and the recovered local affine geometry. Middle: low rank
textures recovered by TILT with projective transform, which correspond to the regions
marked with yellow lines; Right: the resulting image with the marked regions edited.

2. Winder, S., Brown, M.: Learning local image descriptor. In: Proc. of CVPR. (2007)
3. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60

(2004) 91–110
4. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point descriptors.

IJCV 60 (2004)
5. Morel, J.M., Yu, G.: Asift: A new framework for fully affine invariant image com-

parison. SIAM Journal on Imaging Sciences 2 (2009)
6. Sundaramoorthi, G., Petersen, P., Varadarajan, V.S., Soatto, S.: On the set of

images modulo viewpoint and constrast changes. In: Proc. of CVPR. (2009)
7. Ma, Y., Soatto, S., Kosecka, J., Sastry, S.: An Invitation to 3D Vision. Springer

(2004)
8. Kosecka, J., Zhang, W.: Extraction, matching, and pose recovery based on domi-

nant rectagular structures. CVGIP: Image Understanding 100 (2005) 274–293
9. Schindler, G., Krishnamurthy, P., Lublinerman, R., Liu, Y., Dellaert, F.: Detecting

and matching repeated patterns for automatic geo-tagging in urban environments.
In: Proc. of CVPR. (2008)

10. Park, M., Lee, S., Chen, P., Kashyap, S., Butt, A., Liu, Y.: Performance evaluation
of state-of-the-art discrete symmetry detection algorithms. In: Proc. of CVPR.
(2008)

11. Yang, A., Huang, K., Rao, S., Ma, Y.: Symmetry-based 3-D reconstruction from
perspective images. Computer Vision and Image Understanding 99 (2005) 210–240

12. Levina, E., Bickel, P.J.: Texture synthesis and non-parametric resampling of ran-
dom fields. Annals of Statistics 34 (2006) 1751–1773

13. Garding, J., Lindeberg, T.: Direct computation of shape cues using scale-adapted
spatial derivative operators. IJCV 17 (1996) 163–191

14. Peng, Y., Ganesh, A., Wright, J., Xu, W., Ma, Y.: RASL: Robust alignment by
sparse and low-rank decomposition for linearly correlated images. In: Proc. of
CVPR. (2010)

15. Candès, E., Li, X., Ma, Y., Wright, J.: Robust principal component analysis?
preprint (2009)

16. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific (2004)

14 Zhengdong Zhang, Xiao Liang, Arvind Ganesh, Yi Ma

Fig. 6. Representative results of our method. Top: various patterns and textures;
Middle: various texts and signs; Bottom: objects with bilateral symmetry.

