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Abstract

This paper studies the problem of simultaneously align-

ing a batch of linearly correlated images despite gross cor-

ruption (such as occlusion). Our method seeks an optimal

set of image domain transformations such that the matrix

of transformed images can be decomposed as the sum of a

sparse matrix of errors and a low-rank matrix of recovered

aligned images. We reduce this extremely challenging op-

timization problem to a sequence of convex programs that

minimize the sum of ℓ1-norm and nuclear norm of the two

component matrices, which can be efficiently solved by scal-

able convex optimization techniques with guaranteed fast

convergence. We verify the efficacy of the proposed ro-

bust alignment algorithm with extensive experiments with

both controlled and uncontrolled real data, demonstrating

higher accuracy and efficiency than existing methods over

a wide range of realistic misalignments and corruptions.

1. Introduction

In recent years, the increasing popularity of image and

video sharing sites such as Facebook, Flickr, and YouTube

has led to a dramatic increase in the amount of visual data

available online. Within the computer vision community,

this has inspired a renewed interest in large, unconstrained

datasets [15]. Such data pose steep challenges to existing

vision algorithms: significant illumination variation, partial

occlusion, as well as poor or even no alignment (see Figure

1(a) for example). This last difficulty is especially challeng-

ing, since domain transformations make it difficult to mea-

sure image similarity for recognition or classification. Intel-

ligently harnessing the information encoded in these large

sets of images seems to require more efficient and effective

solutions to the long-standing batch image alignment task

[18, 3]: given many images of an object or objects of inter-

est, align them to a fixed canonical template.

To a large extent, progress in batch image alignment has
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07-01676, and ONR N00014-09-1-0230.

(a) Original images D (b) Aligned images D◦τ = A+E

(c) Low-rank component A (d) Sparse large errors E

(e) Average of (a), (b), (c), respectively

Figure 1. Batch Image Alignment. (a) 40 face images of a person

with different illumination, occlusions, poses, and expressions.

Our algorithm automatically finds a set of transformations such

that the transformed images D◦τ in (b) can be decomposed as the

sum of images from a low-rank approximation A in (c) and sparse

large errors E in (d). The much sharpened average face images

shown in (e) indicate the efficacy of our alignment algorithm.

been driven by the introduction of increasingly sophisti-

cated measures of image similarity [21]. Learned-Miller’s

influential congealing algorithm seeks an alignment that

minimizes the sum of entropies of pixel values at each pixel

in the batch of aligned images [16, 14]. If we stack the

aligned images as the columns of a large matrix, this crite-

rion demands that the rows of this matrix be nearly constant.
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Conversely, the least squares congealing procedure of [6, 7]

seeks an alignment that minimizes the sum of squared dis-

tances between pairs of images, and hence demands that the

columns be nearly constant. In both cases, if the criterion

is satisfied exactly, the matrix of aligned images will have

low rank, ideally rank one. However, if there is large illu-

mination variation in each of the images (as those in Figure

1), the aligned images might have an unknown rank higher

than one. In this case, it is more appropriate to search for

an alignment that minimizes the rank of the aligned im-

ages. So in [23], Vedaldi et. al. choose to minimize a log-

determinant measure that can be viewed as a smooth sur-

rogate for the rank function [10]. The low-rank objective

can also be directly enforced, as in Transformed Component

Analysis (TCA) [11, 12], which uses an EM algorithm to fit

a low-dimensional linear model, subject to domain transfor-

mations drawn from a known group.

One major drawback of the above approaches is that they

do not simultaneously handle large illumination variations

and gross pixel corruptions or partial occlusions that often

occur in real data (e.g. shadows, hats, glasses in Figure 1).

The Robust Parameterized Component Analysis (RPCA) al-

gorithm of [9] also fits a low-rank model, and uses a robust

fitting function to reduce the influence of corruption and oc-

clusion. Unfortunately, this leads to a difficult, nonconvex

optimization problem, with no theoretical guarantees of ro-

bustness or convergence rate. This somewhat unsatisfactory

status quo is mainly due to the extremely difficult nature

of the core problem of fitting a low-rank model to highly

corrupted data [8], a problem that until recently lacked a

polynomial-time algorithm with strong performance guar-

antees. Recent advances in rank minimization [5, 4] have

shown that it is indeed possible to efficiently and exactly re-

cover low-rank matrices despite significant corruption, us-

ing tools from convex programming. These developments

prompt us to revisit the problem of robustly aligning batches

of linearly correlated images.

Contributions. In this paper, we introduce a new algo-

rithm, named RASL, for robustly aligning linearly corre-

lated images (or signals), despite large occlusions and cor-

ruptions. Our solution builds on recent advances in rank

minimization and formulates the batch alignment problem

as the solution of a sequence of convex programs. We show

how each of these convex programs can be solved efficiently

using modern first-order optimization techniques, leading

to a fast, scalable algorithm that succeeds under very broad

conditions. Our algorithm can handle batches of up to one

hundred images in several minutes on a standard PC. As

we will verify with extensive experiments on real image

data, the algorithm achieves pixelwise accuracy over a wide

range of misalignments. We will publicly release the Mat-

lab code package that has been submitted as part of the sup-

plementary material, as well as all data used in this paper.

Organization of the paper. The remainder of the paper

is organized as follows. Section 2 formulates batch image

alignment as a rank minimization problem, subject to sparse

corruption. Section 3 gives an efficient and effective prac-

tical solution to this problem, using convex programming.

Section 4 presents experimental results demonstrating the

efficacy of the proposed algorithm as well as its advantages

over existing alternatives. Finally, Section 5 concludes with

a discussion of several promising directions for future work.

2. Aligning Corrupted Linearly Correlated

Images by Matrix Rank Minimization

Suppose we are given n well-aligned grayscale images

I0
1 , . . . , I0

n ∈ R
w×h of some object. In many situations of

interest, these well-aligned images are linearly correlated.

More precisely, if we let vec : R
w×h → R

m denote the

operator that selects an m-pixel region of interest from an

image and stacks it as a vector, then as a matrix

A
.
=

[

vec(I0
1 ) | · · · | vec(I0

n)
]

∈ R
m×n (1)

should be approximately low-rank. This assumption holds

quite generally. For example, if the I0
i , i = 1, . . . , n are

images of some convex Lambertian object under varying il-

lumination, then a rank-9 approximation suffices [1]. Being

able to correctly identify this low-dimensional structure is

crucial for many vision tasks such as face recognition.

Modeling corruption. In practice, however, this low-

rank structure can be easily violated when the object of in-

terest is partially occluded or the image is corrupted. For ex-

ample, in Figure 1, the shadow, sunglasses, hat, and scarves

break the linear structure of the set of face images. Thus,

rather than directly observing linearly correlated images

I0
1 , . . . , I0

n, it is more practical to assume that we observe

I1 = I0
1 +e1, . . . , In = I0

n +en, where ei is an additive er-

ror modeling the effect of such occlusions on image i. The

errors ei are large in magnitude, but affect only a fraction of

the image pixels, and hence are sparse: most of the entries

are zero. In terms of the dataset as a whole, this observation

model can be written as

D
.
= [vec(I1) | · · · | vec(In)] = A + E, (2)

where A =
[

vec(I0
1 ) | · · · | vec(I0

n)
]

∈ R
m×n is a low-

rank matrix that models the common linear structure in

the batch of images, and E = [vec(e1) | · · · | vec(en)] ∈
R

m×n is a matrix of large-but-sparse errors that models cor-

ruption, occlusion, shadows, and specularities etc.

Modeling misalignment. The above model (correlated

images with sparse errors) arises in a wide variety of ap-

plications, and has been used with great success in auto-

matic face recognition [25]. However, it depends critically

on the assumption that the given images I0
i are pixelwise

aligned. Even small misalignment breaks the linear struc-

ture in the data, so that even if we could correct the er-

rors E, the resulting matrix A would still be full rank. We



can model practical misalignments as certain transforma-

tions τ−1
1 , . . . , τ−1

n ∈ G acting on the two-dimensional

domain of the images I0
1 , . . . , I0

n, respectively. In this pa-

per, we assume that G is a finite-dimensional group that

has a parametric representation, such as the similarity group

SE(2) × R+, the 2-D affine group Aff(2), and the planar

homography group GL(3). Instead of observing the origi-

nal images I0
i , we observe misaligned images I0

i ◦ τ−1
i .

When both corruption and misalignment are present, in

order to correctly recover the common low-rank structure

in the batch of images, we must simultaneously align the

images and correct any errors in them. This compounded

problem can be formalized as follows:

Problem 1 (Robust Alignment of Correlated Images).

Let I0
1 , . . . , I0

n be a set of linearly correlated images. Given

an observation consisting of corrupted and misaligned ver-

sions I1 = (I0
1 + e1) ◦ τ−1

1 , . . . , In = (I0
n + en) ◦ τ−1

n ,

recover the images {I0
i } and transformations {τi}.1

Our approach to solving this problem is conceptually

very simple. We know that if the images are well-aligned,

they should exhibit good low-rank structure, up to some

sparse errors (say due to occlusions). We therefore search

for a set of transformations τ = {τ1, . . . , τn} such that the

rank of the transformed images becomes as small as pos-

sible, when the sparse errors are compensated for. For-

mally, writing D ◦ τ as shorthand for [vec(I1 ◦ τ1) | · · · |
vec(In ◦ τn)] ∈ R

m×n:

min
A,E,τ

rank(A) s.t. D ◦ τ = A + E, ‖E‖0 ≤ k. (3)

Here, the ℓ0-“norm” ‖ · ‖0 counts the number of nonzero

entries in the error matrix E. As we will see, it is more

convenient to consider the Lagrangian form of this problem:

min
A,E,τ

rank(A) + γ‖E‖0 s.t. D ◦ τ = A + E. (4)

Here, γ > 0 is a parameter that trades off the rank of the

solution versus the sparsity of the error. We refer to this

problem as Robust Alignment by Sparse and Low-rank de-

composition (RASL).

While (4) follows naturally from our problem formu-

lation, this optimization problem is not directly tractable:

both rank and ℓ0-norm are nonconvex and discontinuous,

and the equality constraint D ◦ τ = A + E is highly non-

linear. In the next section, we give an effective practical

solution to this problem, building on recent advances in al-

gorithms for robust matrix rank minimization [4, 5, 17].

3. Solution via Iterative Convex Programming

In this section, we present a practical solution to the

RASL problem (4), that works quite effectively as long as

1We here consider two solutions are equivalent if they only differ by

a single common transformation acting on all the images. This ambiguity

can be easily resolved in practice if we set one image as the reference.

the misalignments are not too large. We first relax the highly

nonconvex objective function in (4) to its convex surrogate

(Section 3.1). We then linearize the nonlinear equality con-

straint in (4) (Section 3.2), yielding a sequence of convex

programs that can be solved efficiently via modern first-

order optimization techniques (Section 3.3). In Section 4

we will verify the practical convergence behavior of this

scheme with numerous real-data examples.

3.1. Convex relaxation

As discussed above, the optimization problem (4) is not

directly tractable. One major difficulty is the nonconvexity

of the matrix rank and ℓ0-norm: minimization of these func-

tions is extremely difficult (NP-hard and hard to approxi-

mate) in the worst case. Recently, however, it was shown

that for the problem of recovering low-rank matrices from

sparse errors, as long as the rank of the matrix A to be recov-

ered is not too high and the number of errors is not too large,

minimizing natural convex surrogate for rank(A) + λ‖E‖0

can exactly recover A [4].2 This convex relaxation replaces

rank(·) with the nuclear norm or sum of the singular values:

‖A‖∗ .
=

∑m
i=1

σi(A), and replaces the ℓ0-norm ‖E‖0 with

the ℓ1-norm:
∑

ij |Eij |. Applying the same relaxation to

the RASL problem (4) yields a new optimization problem:

min
A,E,τ

‖A‖∗ + λ‖E‖1 s.t. D ◦ τ = A + E. (5)

Theoretical considerations in [4] suggest that the weighting

parameter λ should be of the form C/
√

m where C is a

constant, typically set to be C ≈ 1. The new objective

function is non-smooth, but now continuous and convex.

3.2. Iterative linearization

The main remaining difficulty in solving (5) is the non-

linearity of the constraint D ◦ τ = A + E, which arises

due to the complicated dependence of D ◦ τ on the trans-

formations τ ∈ G
n. When the change in τ is small, we can

approximate this constraint by linearizing about the current

estimate of τ . Here, and below, we assume that G is some

p-parameter group and identify τ = [τ1 | · · · | τn] ∈ R
p×n

with the parameterizations of all of the transformations. For

∆τ ∈ R
p×n, write D◦(τ +∆τ) ≈ D◦τ +

∑n
i=1

Ji∆τiǫ
T
i ,

where Ji
.
= ∂

∂ζ vec(Ii ◦ ζ)|ζ=τi
∈ R

m×p is the Jacobian of

the i-th image with respect to the transformation parameters

τi and {ǫi} denotes the standard basis for R
n. This leads to

a convex optimization problem in unknowns A,E,∆τ :

min
A,E,∆τ

‖A‖∗+λ‖E‖1 s.t. D◦τ +
n

∑

i=1

Ji∆τiǫ
T
i = A+E.

(6)

2For appropriate random matrix models, the relaxation succeeds when-

ever rank(A) < C1m/ log(m) and ‖E‖0 < C2mn [4] for some con-

stants C1, C2. Similar guarantees can be proved for the linearized convex

optimization to be introduced in Section 3.3, but are not the main focus of

this paper.



Algorithm 1 (Outer loop of RASL)

INPUT: Images I1, . . . , In ∈ R
w×h, initial transformations

τ1, . . . , τn in certain parametric group G, weight λ > 0.

WHILE not converged DO
step 1: compute Jacobian matrices w.r.t. transformation:

Ji ←
∂

∂ζ

„

vec(Ii ◦ ζ)

‖vec(Ii ◦ ζ)‖2

«

˛

˛

˛

ζ=τi

, i = 1, . . . , n;

step 2: warp and normalize the images:

D ◦ τ ←

»

vec(I1 ◦ τ1)

‖vec(I1 ◦ τ1)‖2

˛

˛

˛

. . .
˛

˛

˛

vec(In ◦ τn)

‖vec(In ◦ τn)‖2

–

;

step 3: solve the linearized convex optimization:

(A∗, E∗, ∆τ∗)← argmin
A,E,∆τ

‖A‖∗ + λ‖E‖1

s.t. D ◦ τ +

n
X

i=1

Ji∆τiǫ
T
i = A + E;

step 4: update transformations: τ ← τ + ∆τ∗;

END WHILE

OUTPUT: solution A∗, E∗, τ to problem (5).

Because the linearization only holds locally, we should not

expect the solution τ + ∆τ from (6) to exactly solve (5).

To find the (local) minimum of (5), we repeatedly linearize

about our current estimate of τ and solve a sequence of con-

vex programs of the form (6).3 As we will see in Section 4,

as long as the initial misalignment is not too large, this iter-

ation effectively recovers the correct transformations τ and

separates the low-rank structure of the batch of images from

any sparse errors or occlusions. This complete optimization

procedure is summarized as Algorithm 1.

Notice that Algorithm 1 operates on the normalized im-

ages vec(Ii ◦ τi)/‖vec(Ii ◦ τi)‖2, in order to rule out trivial

solutions such as zooming in on a single dark pixel.

3.3. Fast algorithm for the linearized inner loop

The main computational cost in Algorithm 1 comes in

solving the linearized convex optimization problem (6) at

each iteration. This is a semidefinite program in thousands

or millions of variables, so scalable solutions are essential

for its practical use. Fortunately, a recent flurry of work

on high-dimensional nuclear norm minimization has shown

that such problems are well within the capabilities of a stan-

dard PC [19, 20, 2, 22, 17]. In this section, we show how

one such fast first-order method, the Accelerated Proximal

Gradient (APG) algorithm [2, 22, 17], can be adapted to

efficiently solve (6).

The APG approach replaces the equality constraint in (6)

with a penalty function f(A,E,∆τ)
.
= 1

2

∥

∥A + E − D ◦
3This kind of iterative linearization has a long history in gradient algo-

rithms for batch image alignment (see [23] and references therein). More

recently a similar iterative convex programming approach was proposed

for single-to-batch image alignment in face recognition [24].

Algorithm 2 (Linearized Inner Loop of RASL)

INPUT: µ0 > 0, (A0, E0, ∆τ0) ∈ R
m×n × R

m×n × R
p×n.

Set t1 = t0 = 1, (A1, E1, ∆τ1) = (A0, E0, ∆τ0), k = 1.

WHILE not converged DO
step 1: compute proximal points:

Y k
A = Ak + tk−1

−1

tk
(Ak −Ak−1),

Y k
E = Ek + tk−1

−1

tk
(Ek − Ek−1),

Y k
∆τ = ∆τk + tk−1

−1

tk
(∆τk −∆τk−1);

step 2: gradient step:

Gk = Y k
A + Y k

E −D ◦ τ −
Pn

i=1
JiY

k
∆τ ǫiǫ

T
i ,

Gk
A = Y k

A − ρ−1Gk, Gk
E = Y k

E − ρ−1Gk,
Gk

∆τ = Y k
∆τ + ρ−1

Pn
j=1

JT
j Gkǫjǫ

T
j ;

step 3: soft-thresholding:

compute the reduced SVD (U, S, V ) of Gk
A,

Ak+1 = UTµk/ρ(S)V T , Ek+1 = Tλµk/ρ(G
k
E),

∆τk+1 = Gk
∆τ ;

step 4: update:

tk+1 = 1

2
+ 1

2

p

1 + 4(tk)2, µk+1 = max{0.9µk, µ̄};
END WHILE

OUTPUT: solution (A, E, ∆τ) to problem (7), and hence (6).

τ−∑n
i=1

Ji∆τiǫ
T
i

∥

∥

2

F
, and instead solves the unconstrained

optimization

min
A,E,∆τ

‖A‖∗ + λ‖E‖1 + 1

µf(A,E,∆τ). (7)

As µ ց 0, the optimal solution to (7) approaches the opti-

mal solution set of (6).

The algorithm solves (7) by forming separable quadratic

approximations to the data fidelity term f(A,E,∆τ) at a

special sequence of points Y k = (Y k
A , Y k

E , Y k
∆τ ), conspicu-

ously chosen to achieve essentially an optimal convergence

rate for first-order methods [19, 2].4 At each step k, the next

iterate (Ak+1, Ek+1,∆τk+1) is obtained as the solution to

min
A,E,∆τ

‖A‖∗+λ‖E‖1+
ρ
2µ‖(A,E,∆τ)−(Gk

A, Gk
E , Gk

∆τ )‖2
F .

(8)

Here, ρ > 0 will be specified below, and Gk =
(Gk

A, Gk
E , Gk

∆τ ) = Y k−ρ−1∇f |Y k . Because the quadratic

term in (8) is separable, (8) can be solved very efficiently via

the soft-thresholding operator:

Tξ(x) =

{

sign(x) (|x| − ξ), |x| > ξ,
0, |x| ≤ ξ.

(9)

The iterate Ek+1 is given by soft-threholding the entries of

Gk
E , while Ak+1 is given by soft-thresholding the singular

values of Gk
A. We summarize this complete procedure as

Algorithm 2, whose global optimality and convergence rate

is guaranteed by Proposition 1.

Proposition 1 (Global Convergence of the Inner Loop).

Let Lf denote the Lipschitz constant of ∇f , which satisfies

4Space precludes a more detailed discussion of the choice of Yk; we

refer the interested reader to [19, 2, 17].



Lf ≤
√

3(2 + ω2)max{1, ω2}, (10)

where ω
.
= maxi {‖Ji‖2,2}. Then if ρ ≥ Lf , the sequence

(Ak, Ek,∆τk) generated by Algorithm 2 converges to the

global optima of (7) with a non-asymptotic convergence

rate of O(1/k2).

Proof. The derivation of the Lipschitz constant of ∇f is

given in the supplemental materials. The proof of conver-

gence follows from more general results in [2, 22].

In our experiments, we always set ρ to be equal to the

righthand side of (10).

3.4. Implementation details for Algorithm 2

(i). Stopping criterion. As suggested in [22], we termi-

nate the iteration when a particular subgradient of the cost

function in (7),

Sk .
= ρ

(

(Y k−1
A , Y k−1

E , Y k−1
∆τ ) − (Ak, Ek,∆τk)

)

+

∇f(Ak, Ek,∆τk) −∇f(Y k−1
A , Y k−1

E , Y k−1
∆τ )

is sufficiently small in magnitude. In practice, the inner loop

is terminated when

‖Sk‖F

ρmax {1, (‖Ak‖2
F + ‖Ek‖2

F + ‖∆τk‖2
F )1/2} ≤ ε, (11)

where ε > 0 is a predefined tolerance. For our experiments,

we set ε = 10−6.

(ii). Improving convergence via QR decomposition of

Jacobian matrix. The Lipschitz constant of the gradient

∇f , denoted Lf , affects the speed of convergence of the al-

gorithm. In particular, the larger the Lf , the slower the con-

vergence. It can be seen from equation (10) that Lf depends

directly on the Jacobian matrices. Hence, it is desirable to

have Jacobian matrices with small spectral norms.

One possible strategy to achieving faster convergence is

to compute the QR factorization of the Jacobian matrices

Ji = QiR
T
i , and solve (7) using Algorithm 2 with the or-

thogonal Qi’s, in place of the Ji’s. The output of the algo-

rithm in this case would be ∆τ ′

i = Ri∆τi. This procedure

keeps the value of Lf small, and the original ∆τi can be

retrieved easily from ∆τ ′

i .

(iii). Fast continuation techniques. As mentioned earlier,

the solution to (7) approaches the optimal solution set of (6)

as µ approaches zero. It has been suggested in [13, 22, 17]

that employing a continuation technique on µ can yield

drastically faster convergence when compared to using a

fixed µ. The continuation is carried out by monotonically

decreasing the value of the relaxation parameter µ every it-

eration, until it reaches a pre-defined lower bound µ̄ > 0,

beyond which it is held constant. Although the theoreti-

cal convergence rate is still O(k−2), in practice continua-

tion significantly reduces the number of iterations needed

to converge. For all our experiments, we set µ0 = ‖D‖2,2,

and µk = max{0.9µk−1, µ̄}, where µ̄ = 10−4 µ0.

4. Experiments

In this section, we demonstrate the efficacy of RASL on

a variety of alignment tasks. Unless otherwise stated, we

always set λ = 1/
√

m in the RASL algorithm. We first

quantitatively verify the correctness of our algorithm on a

controlled example, and show that it outperforms state-of-

the-art methods in aligning batches of images despite light-

ing variation and occlusion. We then test our algorithm on

more realistic and challenging face images taken from the

Labeled Faces in the Wild (LFW) database [15]. Experi-

ments on video data and handwritten digits further demon-

strate the generality and broad applicability of our method.

Finally, an example of aligning perspective images of a pla-

nar surface demonstrates its ability to cope with more com-

plicated deformations such as planar homographies.

(i). Quantitative validation with controlled images. We

verify the correctness of the algorithm using 100 images of

a dummy head taken under varying illumination (see Fig-

ure 3 top for an example). Because the relative position be-

tween the camera and the dummy is fixed, the ground truth

alignment is known.

Large region of attraction for RASL. We examine

RASL’s ability to cope with varying levels of misalignment.

The task is to align the images to an 80×60 pixel canonical

frame, in which the distance between the outer eye corners

is normalized to 50 pixels5. We synthetically perturb each

of the input images by Euclidean transformations (G =
SE(2)) whose angles of rotation are uniformly distributed

in the range [−θ0/2, θ0/2], and whose x- and y-translations

are uniformly distributed in the range [−x0/2, x0/2] pixels

and [−y0/2, y0/2] pixels, respectively.

We consider an alignment successful if the maximum

difference in each individual coordinate of the eye corners

across all pairs of images is less than one pixel in the canon-

ical frame. Figure 2(a) shows the fraction of successes over

three independent trials, with θ0 = 0 fixed and varying lev-

els of translation x0, y0. Our algorithm always correctly

aligns the images as long as x0 and y0 are each smaller than

15 pixels, i.e. 30% of the distance between the eyes. In Fig-

ure 2(b), we fix x0 = 0 and plot the fraction of successes

for varying both y0 and θ0. Here, RASL successfully aligns

the given images despite translations of up to 15 pixels and

simultaneous in-plane rotation of up to 40◦!

Comparison with [23]. We next perform a qualitative

and quantitative comparison with the two methods given in

[23].6 While that work also minimizes a rank surrogate,

it lacks robustness to corruption and occlusion. For com-

patibility with [23], we choose the canonical frame to be

5The outer eye corners were manually chosen for one image, and the

same set of coordinates were used for all images.
6We have actively sought implementations of other alignment methods

such as TCA [12] and RPCA [9], but at the time of preparation of this

paper had only received code for [23].
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Figure 2. Large region of attraction for RASL. Fraction of suc-

cessful alignments for varying levels of misalignment. Transla-

tions are given as a fraction of the distance between the eyes (here,

50 pixels), while rotations are in degrees. (a) Translation in x and

y directions. All images are correctly aligned despite simultaneous

x and y translations up to 30% of the eye distance. (b) Translation

in y direction and in-plane rotation θ (degrees). All images are

correctly aligned for despite simultaneous y translation of 30% of

the eye distance and rotation up to 40◦.

49 × 49 pixels.7 To each image, we apply a random Eu-

clidean transformation whose angle of rotation is uniformly

distributed in [−10◦, 10◦] and whose x- and y-translations

are uniformly distributed in [−3, 3] pixels. We also synthet-

ically occlude a randomly chosen 12×12 patch on 30 of the

100 images, corresponding to roughly 6% pixels corrupted.

Figure 3(a) shows 10 of the 100 perturbed and occluded

images. Figure 3(b) shows the alignment result using [23].

Eight of the 100 are flipped upside down; some of the re-

maining images are still obviously misaligned. Figure 3(c)

shows the more visually appealing alignment produced by

RASL (with G the similarity group SE(2) × R+). Notice

that RASL correctly removes the occlusions (Figure 3(c)

bottom), to produce a rank 48 matrix of well-aligned im-

ages (Figure 3(c), middle). The table in Figure 3(d) gives a

quantitative comparison between the two algorithms.8 Sta-

tistically, RASL produces alignments within half a pixel ac-

curacy, with standard deviations of less than quarter a pixel

in the recovered eye corners. The performance of [23] suf-

fers in the presence of occlusion: even with the eight flipped

images excluded, the mean error is nearly two pixels.

Speed and scalability of RASL. For this example, on a

2.8 GHz Intel Pentium 4 machine with 1.5 GB RAM, our

Matlab implementation of RASL requires less than 24 min-

utes to align the 100 images of size 49 × 49, whereas [23]

requires over 13 hours. Later examples will show RASL

works with much larger images. This impressive computa-

tional efficiency is a direct result of using appropriate con-

vex optimization tools for rank minimization.

7Due to memory limit and running time, this is the largest image size

that the code of [23] can handle; as we will see in later experiments, RASL

however has no problem scaling up to images of much larger sizes.
8We calculate all 100 images’ eye corners for RASL but only the 92

un-flipped images for Vedaldi’s [23].

(a) Original perturbed and corrupted images

(b) Alignment results by [23] (Top: direct; Bottom: gradient)

(c) Alignment results by RASL

Mean error Error std. Max error

Initial misalignment 2.5 1.03 4.87

[23] (direct/gradient) 1.97/1.66 1.11/0.85 5.71/4.02

RASL (this work) 0.48 0.23 1.07

(d) Statistics of errors in eye corners, calculated as the distances from

the estimated eye corners to their center. Errors in each eye and in

individual coordinates are reported in the supplementary material.

Figure 3. Comparison with controlled images. (a) 10 out of 100

images of a dummy head. (b) alignment by Vedaldi’s methods

[23]: direct search of rotation and translation (top) and gradient

descent on a full affine transformation (bottom). (c) alignment

by RASL: D ◦ τ (top), low-rank approximation A (middle), and

sparse errors E (bottom).

(ii). Aligning natural face images. We next test our algo-

rithm on more challenging images taken from the Labeled

Faces in the Wild (LFW) [15] dataset of celebrity images.

Unlike the controlled images in our previous example, these

images exhibit significant variations in pose and facial ex-

pression, in addition to illumination and occlusion.

We obtain an initial estimate of the transformation in

each image using an off-the-shelf face detector. We again

align the images to an 80 × 60 canonical frame. For this

experiment we use affine transformations G = Aff(2) in

RASL, to cope with the large pose variability in LFW.

Since there is no ground truth for this dataset, we ver-

ify the good performance of RASL visually by plotting the

average face before and after alignment. Figure 4 shows re-

sults for 15 celebrities from LFW, as well as Barack Obama

whose images were separately downloaded from the Inter-

net. Notice that the average face after alignment is signifi-

cantly clearer, indicating the improved alignment achieved

by RASL. The supplementary material contains additional

examples from this dataset, showing the low-rank approx-

imation obtained by RASL, and demonstrating its ability

to correct errors in those real images. This result suggests

that RASL could potentially be very useful for improving

the performance of current face recognition systems under

less-controlled or uncontrolled conditions.



(a) Average faces from face detector (b) Average faces after alignment

Figure 4. Aligning natural face images. Average faces before

and after alignment. (a) average of original images from a face

detector; and (b) average of the reconstructed low-rank images.

Figure 5. Stabilization of faces in the video. 1st row: frames

1-15 from a 140-frame video, aligned by applying a face detector

to each frame; 2nd row: RASL alignment result D ◦ τ ; 3rd row:

recovered images A of rank 64; 4th row: sparse error E.

(iii). Stabilization of faces in video. Video frames are an-

other rich source of linearly correlated images. In this ex-

ample, we demonstrate the utility of RASL for jointly align-

ing the frames of a video. Figure 5 shows the first 15 frames

of a 140-frame video of Al Gore talking, obtained by ap-

plying a face detector to each frame independently. Due to

the inherent imprecision of the detector, there is significant

jitter from frame to frame. The second row shows align-

ment results by RASL, using affine transformations. In the

third row, we show the low-rank approximation obtained

after alignment, while the fourth row shows the sparse er-

ror. Notice that this error compensates for localized mo-

tions such as mouth movements and eye blinking that do

not fit the global motion model. We encourage the reader to

refer to the supplementary material to see the entire video

sequence – the recovered low-rank component even auto-

matically repairs certain video compression artifacts. These

results suggest the potential of RASL as a general tool for

video stabilization, compression, and object tracking.

(iv). Aligning handwritten digits. While the previous

examples concerned images and videos of human faces,

RASL is a general technique capable of aligning any set

of images with strong linear correlation. In this experiment,

we demonstrate the applicability of our algorithm to other

types of images by using it to align handwritten digits taken

from the MNIST database. For this experiment, we use 100

images of the handwritten “3”, of size 29 × 29 pixels.

Figure 6 compares the performance of RASL (using Eu-

clidean transformation G = E(2)) to that of [16] and [23].

RASL obtains comparably good performance on this exam-

ple, despite the fact that [16] explicitly targets binary image

alignment.

(v). Aligning planar surfaces despite occlusions. While

the previous examples used simple transformation groups

such as similarity and affine, RASL can also be used with

more complicated deformation models. In this example, we

demonstrate how RASL can be used to align images that

differ by planar homographies (i.e. G = GL(3)). Figure

7 shows 16 images of the side of a building, taken from

various viewpoints by a perspective camera, and with var-

ious occlusions due to tree branches. We manually choose

three points on the image and obtain an initial affine trans-

formation estimation for each image to initialize the trans-

formation, and then use RASL together with a homography

transformation to correctly align them to a 200 × 200 pixel

canonical frame. As we can see from Figure 7, RASL cor-

rectly aligns the windows and removes the branches occlud-

ing them. This example suggests that RASL could be very

useful for practical tasks such as image matching, mosaic-

ing and inpainting.

5. Discussion and Future Work
One of the most important questions for future work

is how to effectively extend the RASL framework to han-

dle more general classes of transformation groups such

as nonrigid and nonparametric. From a theoretical stand-

point, it would also be desirable to give guarantees for the

amount of misalignment or corruption the algorithm can

handle. The experiments in Section 4 demonstrate the sur-

prising effectiveness and efficiency of RASL for batch im-

age alignment, and immediately suggest applications in au-

tomatic face recognition, video stabilization and tracking,

and image mosaicing, inpainting, super-resolution etc. Fur-

ther customizing it to best meet the needs of such spe-

cific application scenarios and other type of signals (e.g.

speech, bioinformatic data) is an important direction for fu-

ture work. A MATLAB implementation of our algorithm

is available at http://perception.csl.illinois.edu/

matrix-rank/rasl.html.
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