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ABSTRACT

Low-dimensional topic models have been proven very use-
ful for modeling a large corpus of documents that share a
relatively small number of topics. Dimensionality reduc-
tion tools such as Principal Component Analysis or La-
tent Semantic Indexing (LSI) have been widely adopted for
document modeling, analysis, and retrieval. In this pa-
per, we contend that a more pertinent model for a docu-
ment corpus as the combination of an (approximately) low-
dimensional topic model for the corpus and a sparse model
for the keywords of individual documents. For such a joint
topic-document model, LSI or PCA is no longer appropriate
to analyze the corpus data. We hence introduce a powerful
new tool called Principal Component Pursuit that can effec-
tively decompose the low-dimensional and the sparse com-
ponents of such corpus data. We give empirical results on
data synthesized with a Latent Dirichlet Allocation (LDA)
mode to validate the new model. We then show that for real
document data analysis, the new tool significantly reduces
the perplexity and improves retrieval performance compared
to classical baselines.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; H.3.3 [Information Storage and
Retrieval]: Information Search and Retrieval

General Terms

Theory, Verification, Experimentation
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1. INTRODUCTION
The ability to effectively model and analyze relationships

among a large corpus of documents has become increasingly
important for information retrieval, and for indexing, rank-
ing, and searching documents on the web [7, 15]. In the past
few years, a large number of models and computational tools
have been introduced in the information retrieval literature,
and many have seen great success and led to more powerful
indexing and search methods.

Nevertheless, the rapidly increasing volume and diversity
of the web documents continue to demand ever more effec-
tive and scalable tools for extracting useful information from
massive collections of text data. The size of the document
corpus to be analyzed is now routinely in the range of mil-
lions or even billions. When dealing with such massive high-
dimensional data, the curse of dimension becomes a reality:
the complexity of many models and algorithms increases ex-
ponentially in terms of the dimension, or their performance
decreases sharply as the scale goes up. As pointed out in
[3], to alleviate such a curse, modern statistical and compu-
tational methods have started to leverage on the fact that
natural high-dimensional data typically have low intrinsic
dimensionality.

Such low-dimensional structures have long been observed
and harnessed in the analysis of document corpora. Al-
though the number of documents in a corpus can be large,
their topics can be very limited and highly correlated. Thus,
if we try to summarize the semantics of the corpus at the
topic level, the corpus data could have much lower dimen-
sion (or degree of freedom) than the ambient dimension (the
number of documents). Since such a low-dimensional model
is important for summarizing the semantics of the corpus,
earlier work such as the Latent Semantic Indexing (LSI) [8]
has proposed to use Singular Value Decomposition (or Prin-
cipal Component Analysis) to fit a low-dimensional subspace
to the corpus data matrix. This simple subspace model and
solution by PCA have had tremendous influence on docu-
ment analysis in the past two decades.

Many recent more powerful (and hence more complicated)
models such as Probabilistic Latent Semantic Indexing (pLSI)
[10] and Latent Dirichlet Allocation (LDA) [2] essentially fol-
low the same rationale that document corpora at the topic
level have few intrinsic degrees of freedom. Although pLSI
and LDA are based on more precise statistical formulations,
in practice, data generated according to such models clearly
exhibit an approximate low dimensional subspace structure,
as shown in Figure 3(a). Mathematically, the corpus data
matrix D can be viewed as low-rank matrix L0 perturbed



CHRYSLER SETS STOCK SPLIT, HIGHER DIVIDEND

Chrysler Corp said its board declared a three-for-two stock split in the form of a 50 pct stock dividend and
raised the quarterly dividend by seven pct.

The company said the dividend was raised to 37.5 cts a share from 35 cts on a pre-split basis, equal to a 25
ct dividend on a post-split basis.

Chrysler said the stock dividend is payable April 13 to holders of record March 23 while the cash dividend
is payable April 15 to holders of record March 23. It said cash will be paid in lieu of fractional shares.

With the split, Chrysler said 13.2 mln shares remain to be purchased in its stock repurchase program that
began in late 1984. That program now has a target of 56.3 mln shares with the latest stock split.

Chrysler said in a statement the actions ”reflect not only our outstanding performance over the past few
years but also our optimism about the company’s future.”

U.S. COMMERCE’S ORTNER SAYS YEN UNDERVALUED

Commerce Dept. undersecretary of economic affairs Robert Ortner said that he believed the dollar at current
levels was fairly priced against most European currencies.

In a wide ranging address sponsored by the Export-Import Bank, Ortner, the bank’s senior economist also
said he believed that the yen was undervalued and could go up by 10 or 15 pct.

”I do not regard the dollar as undervalued at this point against the yen,” he said.
On the other hand, Ortner said that he thought that ”the yen is still a little bit undervalued,” and ”could

go up another 10 or 15 pct.”
In addition, Ortner, who said he was speaking personally, said he thought that the dollar against most

European currencies was ”fairly priced.”
Ortner said his analysis of the various exchange rate values was based on such economic particulars as wage

rate differentiations.
Ortner said there had been little impact on U.S. trade deficit by the decline of the dollar because at the time

of the Plaza Accord, the dollar was extremely overvalued and that the first 15 pct decline had little impact.
He said there were indications now that the trade deficit was beginning to level off.
Turning to Brazil and Mexico, Ortner made it clear that it would be almost impossible for those countries

to earn enough foreign exchange to pay the service on their debts. He said the best way to deal with this was to
use the policies outlined in Treasury Secretary James Baker’s debt initiative.

Figure 1: Highlighted keywords in two sample texts from the Reuters dataset. The bold words are keywords
contained in the sparse term S, while black words are either not in the vocabulary or are explained by the
low-rank model L. Here, the corpus was decomposed via PCP with λ = 5/

√
3, 000.

by small noise:

D = L0 + Z0. (1)

To some extent, pLSI and LDA model use generative statis-
tical models to justify the validity of PCA for document data
analysis: if Z0 is i.i.d. Gaussian, PCA in fact gives the opti-
mal estimate of the low-dimensional subspace (or principal
components) L0.

While most of the above topic models are trying to capture
the intrinsic common relationships among all the documents,
none of them is designed to model the statistics of individual
documents. Although a particular document may belong to
a common topic (say on the topic of “finance”), it covers
a story different from all the other financial documents in
the same corpus. Any statistical deviation of this document
from the common topic model allows us to distinguish it
from the rest of the corpus. For instance, certain words
may show up much more frequently in the document and
stand out from the background topic model. One may view
such words as “keywords.” Figure 1 shows one example of
some such keywords detected by our method in a financial
document. Obviously, discriminative statistical features like
the keywords would be tremendously informative for us to
identify any particular document inside the entire corpus,

hence allow us to better index, search and rank documents
[18].

In this paper, we propose to model the statistics of both
the corpus topic and individual documents with a combina-
tion of a topic model such as LDA and a sparse model for
the keywords that occur with unusually high frequency in
each document. We refer to such a model as a joint topic-
document model. Similar models have previously been con-
templated and explored for document analysis [5]. However,
the solution given in [5] suffers from several problems. First,
[5] directly models the keywords and topic words via a la-
tent random variable and estimates the parameters from the
corpus. The definition of keywords, however, is more a sub-
jective rather than objective concept. What percentage of
words should be treated as the keywords of a document,
10%, 5%, or 1%? The answer varies from application to ap-
plication. Our model leaves it as a free parameter to tune,
embracing a broader range of applications. Moreover, al-
though the inference procedure (a modified Gibbs Sampling
method) used by [5] worked well in practice, there is no
guarantee on the number of iterations in general.

As we will soon see, mathematically, we essentially assume
that the corpus data can be written as the sum of a low-rank
matrix and a sparse matrix

D = L0 + S0 (2)



with the low-rank component L0 corresponding to the back-
ground topic and the sparse one S0 to the keywords (here,
we assume D, L0 and S0 to be unnormalized term frequency
matrixes). There is a major difference between this model
and the LSI model discussed earlier: there Z0 (given in (1))
introduces an entry-wise small perturbation to L0 while here
the entries of S0 are sparse but in theory are allowed to have
arbitrarily large magnitude. It is well known that decom-
posing a matrix into its low-rank and sparse components is
an intractable (NP-hard [4]) problem in general. So such a
model, though conceptually well-motivated, would be use-
less for real document analysis if we could not effectively
learn the low-dimensional background topic and the sparse
keywords from large corpora. Fortunately, recent break-
throughs in high-dimensional convex optimization indicate
that the above decomposition can be exactly and efficiently
computed under surprisingly broad conditions by solving a
certain convex program, called Principal Component Pursuit
(PCP) [3].

In this paper, we validate the joint topic-document model
with encouraging empirical results on synthetic and real
data. Our experiments demonstrate the effectiveness of PCP
in recovering the low-dimensional topic model and the sparse
keywords. As we will see, this new tool yields much better
results in terms of both subspace distance and perplexity
in identifying the latent low-dimensional topic model, and
these translate into better performance in identifying key-
words as well as on a model retrieval task.

We note that the goal of this paper is not to reach at
a full-fledged document indexing and retrieval method that
has been optimized to work better than existing methods
on diverse corpora. Instead, our goal is to validate a sim-
ple, new model for document analysis and to introduce a
remarkable new tool that can learn such new model rather
effectively. Although we have only verified the model on a
corpus of moderate size and compared with classical base-
line methods, the consistently positive test results and wide
improvement margins indicate that this new model indeed
has great potential to enhance future document analysis,
indexing, and retrieval.

2. JOINT TOPIC-DOCUMENT MODEL
In this section, we introduce the proposed joint topic-

document model and new computational tool for analyzing
corpus data that obey this model. As the new model is a
generalization of conventional topic models, especially LSI
and LDA, for completeness, we first give a brief overview of
main assumptions of these methods. The overview will also
discuss some limitations of these assumptions and justify the
need for a better model and analytical tool.

2.1 Low-dimensional Background Topics
It is common in document analysis to assume that docu-

ments are generated from a relatively small number of topics
[1, 2, 8, 10]. We consider documents containing words drawn
from a vocabulary V of size m. Each topic corresponds to
a discrete probability distribution over V. To fix some no-
tation, suppose there are r topics, and that τ1 . . . τr denote
these r distributions: each τi ∈ R

m is a nonnegative vector
whose entries sum to one. For ease of notation, we introduce
a matrix

T = [τ1 | · · · | τr] ∈ R
m×r. (3)

We will let n denote the number of documents in the cor-
pus. For each j = 1 . . . n, the j-th document is generated
as follows: one first chooses a set of r weights, w(j) =

(w
(j)
1 . . . w

(j)
r ) ∈ R

r, which are nonnegative and sum to one.
One then forms the mixture distribution

p(j) =
∑

i

w
(j)
i τi = Tw(j).

Clearly, p(j) is also a probability distribution over V. The
words of the j-th document are considered as an iid sample

of length Nj from p(j): s(j) = (s
(j)
1 . . . s

(j)
Nj

) ∼iid p(j). The

final observation is the unnormalized term frequency vector:
d(j) ∈ R

m with

d(j)(i) = #{k | s
(j)
k = i}

. In particular, if the length of the document Nj is large,
then the law of large numbers suggests that with proper
normalization, the empirical probability distribution

d(j)/Nj ≈ p(j).

It is convenient to further consider the matrix forms

W =
[

w(1) | · · · | w(n)
]

∈ R
r×n,

P =
[

p(1) | · · · | p(n)
]

∈ R
m×n,

D =
[

d(1) | · · · | d(n)
]

∈ R
m×n.

Here D ∈ R
m×n is our observation (again, note that T ,

W and P are all probability or weight matrices, but D is
unnormalized term frequency matrix “sampled” from P ). In
terms of these quantities, notice that

P = TW, and rank(P ) = r.

Since column-wise normalization does not affect the rank
of D, D is approximately the same rank as P (i.e., r) ex-
cept for the small noise term and lack of sufficient sam-
pling. This phenomenon has been verified empirically in
real text corpora. For example, for a document set con-
sisting of n = 10, 000 articles with a vocabulary V of size
m = 20, 000, between 50 and 300 dimensions are generally
sufficient [6, 11]. This has motivated the use of low-rank ap-
proximation in information retrieval, under the name Latent
Semantic Indexing [8]. LSI uses the singular value decom-
position to form an optimal rank-r approximation

L̂LSI =
r
∑

i=1

uiσiv
T
i , (4)

where {ui}, {vi} are the first r singular vectors of D and {σi}
the corresponding singular values. Interestingly, in some
cases this low-rank approximation indeed improves recall [8],
a phenomenon that can be explained under certain strong
generative models for text [16].

Although the above low-dimensional model seems naive, it
captures the essence of other more sophisticated topic mod-
els such as the popular LDA model. Although not explicitly
analyzed in [2], one can show that if each document to be
generated by LDA model is sufficiently long, the mixture
weights of topics of T can be computed accurately. There-
fore, the corpus generated by LDA model satisfies the low-
dimension model. In summary, LDA places probabilistic
priors on the number of words per document and the mix-
ing weights, which makes it more flexible in modeling real



corpus data. Hence, in subsequent simulations and exper-
iments in Section 3, we will use the LDA to generate and
model our data. We also verified empirically the property
of low-dimensionality of LDA here.

Note that in the following discussion, unless explicitly
stated, D, L, S and all the related matrix symbols all stands
for document-term matrixes whose entries indicate the num-
ber of occurrence of each term.

2.2 Sparse Model for Keywords
As argued above, a low-dimensional topic model (and its

low-rank approximation) provides a good representation of
the commonalities of a set of documents. However, for in-
dexing and retrieval tasks, the deviation of each document
from the common model may actually be much more infor-
mative. Normally each document will have a few terms that
are used with much higher frequency than one might expect
from the overall statistics of the corpus. We call these the
“keywords” of the document, and model their effect on the
observation D through an additive term S0 ∈ R

m×n:

D ≈ L0 + S0. (5)

Since there are relatively few keywords, S0 is a sparse matrix.
In the context of document analysis, the above model is

rather natural to interpret: while the low-rank component
L0 can be viewed as the common “background” topics of all
the documents in the corpus; the sparse component S0 cap-
ture the distinctive “keywords” or key phrases that best rep-
resent the unique content of each document, see for example
the words “Chrysler” and “Ortner” in Figure 1. The support
of S0 indicates which terms are the keywords for each doc-
ument and the magnitude of its entries suggests how much
each keyword stand out from the common topic model. As
this model capture both the corpus topic and the content
of individual documents, we call it a “joint topic-document”
model.

This model has several implications. First, as discussed
above

An approximation to the low-rank component L0

may not contain the most relevant information
for indexing.

Moreover,

Under this model, SVD-based methods may not
even compute a good approximation L0.

The reason for this is simple: the rank-r approximation (4)
is optimal when the matrix D is perturbed by small dense
noise, say D = L0+Z0 where Z0 is i.i.d. Gaussian. However,
the sparse perturbation S0 due to the presence of keywords
has a very different nature than Gaussian noise: a few of the
entries are quite large, but the rest are almost zero. In this
situation of large but sparse corruption, the approximation
error ‖L̂LSI − L0‖ can become extremely large.

2.3 Decomposing Background Topics and Key-
words

It seems then, that a more pertinent solution for the joint
topic-document model would be to attempt to directly com-
pose the data matrix D in (5) into a low-rank component L0,
corresponding to the topic model, and a sparse component
S0, corresponding to the keywords. Clearly, we can always

get a low-rank L0 by setting S0 = D, which is obviously
meaningless. Therefore, we want to minimize the number
of non-zero entries in S0 so long as L0 is a low-rank matrix.
Specifically if we know from prior knowledge that the esti-
mated number of topics of the given corpus is at most r, the
above idea can be translated into the following optimization
problem:

min ‖S‖0 subject to L + S = D, rank(L) ≤ r (6)

The Lagrange form of (6) is:

min rank(L) + λ‖S‖0 subject to L + S = D (7)

It is known, however, for worst case inputs, this optimiza-
tion problem is intractable (NP-hard [4]). Nevertheless, as
we will see, recent advances in the study of low-rank matrix
recovery provide a computationally feasible solution that
guarantees to solve a surprisingly broad class of instances.
In fact, these advances are largely motivated by the interest
in relevance analysis of web data or user taste anticipation.
In particular, as long as the rank of the matrix L0 is suffi-
ciently low and the matrix S0 is sparse, one can effectively
and efficiently get exactly the same solution as (7) by solving
the following relaxed convex program:

min ‖L‖∗ + λ‖S‖1 subject to L + S = D. (8)

Here ‖·‖∗ is the nuclear norm of a matrix (i.e. the sum of its
singular values) and ‖ ·‖1 is the ℓ1 norm of a matrix (i.e. the
sum of absolute values of entries). The parameter λ > 0 bal-
ances the tradeoff between sparsity of the keywords matrix
S and rank of the background topic matrix L. According
to the theoretical result established in [3], λ should be of

the order of Θ
(

max{m, n}−1/2
)

. The above convex pro-

gramming problem is dubbed Principal Component Pursuit
(PCP) in [3]. Below, we will let

L̂PCP , ŜPCP (9)

denote the solution to (8). The recent development in con-
vex optimization has produced algorithms that can solve
this relaxed convex program with a computational cost not
so much higher than that of the classical PCA. For com-
pleteness we review one of the fastest algorithm via Alter-
nating Directions [19, 20] method here to demonstrate the
tractability of (8). The equation (8) can be rewritten as the
Augmented Lagrange Multiplier form:

min ℓ(L, S, Y ) = ‖L‖∗ + λ‖S‖1 + 〈Y,D − L − S〉
+

µ

2
‖D − L − S‖2

F (10)

where the Euclidean inner product between two matrices X
and Y is defined as 〈X, Y 〉 = trace(X∗Y ).

There are two important observations that makes mini-
mizing (10) quite easy and elegant. Before presenting that,
let us define two operators:

Sτ (x) = sgn(x)max(|x| − τ, 0)

and

Dτ (X) = USτ (Σ)V ∗, X = UΣV ∗

Here Sτ (·) is initially defined on single number and then
we extend it to matrix by applying it to every entry in the

The recent Netflix challenge of completing movie rankings
from incomplete user survey is one such example.



matrix. For any matrix X, X = UΣV ∗ gives the singular
value decomposition of it. The following two observations
are particularly important for the minimization problem:

arg min
S

ℓ(L, S, Y ) = Sλµ−1(D − L + µ−1Y ) (11)

arg min
L

ℓ(L, S, Y ) = Dµ−1(D − Sk − µ−1Yk) (12)

With these two observations, in each iteration we fix S and
minimize ℓ with respect to L, do the contrary(fix L and
minimize with respect to S) and then update the Lagrange
multiplier matrix Y based on the residual D − L − S. This
procedure has been proved to converge to the global optimal
point of (10) under quite board conditions [19, 20]. The
above idea is summarized as Algorithm 1.

Algorithm 1 Decomposing D into Low-rank and Sparse
Parts by Alternating Directions [19, 20]

Initialize: S0 = Y0 = 0, µ > 0
while not converged do

Compute Lk+1 = Dµ−1(D − Sk − µ−1Yk)

Compute Sk+1 = Sλµ−1(D − Lk+1 + µ−1Yk)
Compute Yk+1 = Yk + µ(D − Lk+1 − Sk+1)

end while
return L, S

2.4 Computational Cost and Scalability of De-
composition

As we have discussed, realistic web corpora may contain
millions or even billions of observations. This scale is often
beyond the capability of traditional methods, due to the
Curse of Dimensionality. On the other hand, theoretical
results in [3] demonstrate that as the data dimensionality
increases, the decomposing ability of (8) becomes identical
to (7) and perhaps more surprisingly, the convergence of
Algorithm 1 needs even fewer iterations, arguably a Blessing
of Dimensionality!

We will talk about the computational cost of Algorithm
1 briefly. Note that the Singular Value Decomposition is re-
quired in each iteration. Recent research shows that solving
(8) with this algorithm just takes approximately 10 Singu-
lar Value Decomposition on D [20], meaning that the time
complexity of solving (8) is almost the same as traditional
Singular Value Decomposition, which can be efficiently com-
puted in parallel. Our distributed implementation of Algo-
rithm 1 performs efficiently even for large scale problems,
e.g., decomposing matrices as large as 10, 000 × 50, 000.

As we have seen, PCP offers a way to make the conven-
tional PCA robust to gross corruptions with small additional
computational cost. In the next section, we will see that
this approach performs well in decomposing corpera D that
are generated according to the above joint topic-document
model.

3. SIMULATIONS AND EXPERIMENTS
In this section, we evaluate the proposed model and algo-

rithm with both synthetic and real data experiments. We
first show that if the corpus is generated from a topic model
plus sparse document-specific keywords, Principal Compo-
nent Pursuit gives a much more accurate estimate of L0 (and
hence of S0) than classical PCA/LSI. We observe that real
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Figure 2: Singular values of the 1,000 documents
from the Reuters dataset. The singular values de-
cay smoothly, similarly to the idealized joint topic-
document model in Figure 3(b).

data such as the Reuters dataset indeed exhibit a distribu-
tion that better resembles the joint topic-document model
than the topic model alone. Motivated by this observation,
we then compare topic models fit to the original data ma-
trix to topic models fit to the matrix after PCP has removed
outlying words. We will see that such preprocessing signifi-
cantly reduces the perplexity of the topic model fit by LDA.
Finally, we show how the low-rank and sparse components
learned by the PCP algorithm can enhance retrieval perfor-
mance.

3.1 Validation with Synthetic Data
We first perform a basic consistency check, to see that

when the corpus is indeed generated according to a topic
model plus some sparse keywords, Principal Component Pur-
suit effectively estimates the two components.

We adopt the popular Latent Dirichlet Allocation model
to generate the corpus. This model places probabilistic pri-
ors on the number of words Nj per document and the mixing
weights w(j). In particular, the Nj are assumed to be i.i.d.
samples from a Poisson(ξ) distribution, while the w(j) are as-
sumed to be i.i.d. samples from a Dirichlet distribution with
parameter vector α ∈ R

r. For more details on this proba-
bilistic formulation, we invite the reader to consult [2, 17].

In our simulation, we generate data according to the LDA
model with expected document length ξ = 500 and Dirichlet
parameter α = (0.1, . . . , 0.1). The corpus size is n = 1, 000,
while the vocabulary is assumed to have size m = 2, 000.
We generate r = 100 topics, each distributed in accordance
with Zipf ’s Law, which was observed on almost any corpus
that is large enough [9]. For each τi, we generate an in-
dependent random permutation of πi of {1 . . . m}, and set
τi(j) ∝ 1/πi(j). This is reasonable, since only a small por-
tion of the vocabulary set is highly correlated with a given
topic.

We first generate a corpus DLDA according to the LDA
model, with no additional keywords. Figure 3(a) plots the
singular values of a document matrix generated according to
this model. We observe a clear sudden drop of magnitude of
the r-th and (r + 1)-th singular value, where r corresponds
to the number of hidden topics. Such a distribution clearly



supports the use of subspace methods such as LSI for pro-
cessing the data to help identifying the topics.

However, real text datasets rarely exhibit such a clear sub-
space structure. Figure 2 shows the singular value distribu-
tion of a 1,000-article real dataset from the Reuters corpus.
As we see, the change of singular values is more gradual and
smooth, and one does not see any clear break point.

We next consider what happens if the corpus contains
additional keywords, that occur more frequently than pre-
dicted by the LDA model. From each article in the syntheti-
cally generated corpus, we randomly select 10% of the words
of each article to be keywords. We add a frequency of 10 to
each (recall that since ξ = 500, this is 1/50 of the expected
document length), forming a new data matrix

DJTD = DLDA + S0 ≈ L0 + S0.

Figure 3(b) shows the distribution of singular values of the
corrupted LDA data. Notice that the clear break point has
disappeared and the distribution has become just as smooth
as the real data. This shows that the joint topic-document
model is more suitable than the LDA model alone, which
does not take the keywords of individual documents into
consideration.

We next apply principal component pursuit to the per-
turbed corpus, with weight factor λ = 0.1. This yields
a low-rank and sparse pair (L̂, Ŝ), for which Ŝ has 54,704
non-zero entries. Figure 3(c) plots the singular values of the

recovered matrix L̂. Notice that the distribution of singular
values becomes much closer to the original distribution in
Figure 3(a). The sharp drop at r = 100 which vanished due
to the presence of keywords is now clearly visible again.

We evaluate the recovery quantitatively by examining the
distance between the range of the recovered low-rank sub-
space and the range of the matrix T of topic distributions
defined in (3). Notice that as the number of words per docu-
ment becomes large, the matrix DLDA approaches range(T ) =
range(L0). If our goal is to infer the underlying topic mix-
tures L0 = TW that generated the data, then the distance
to range(L0) is a good measure of correctness.

We measure distance using the subspace angles [14]. Specif-
ically, let S1 and S2 be two subspaces in R

n with

max{dim S1, dim S2} ≤ l.

The distance between S1 and S2 is defined as follows

d(S1, S2) =

(

l
∑

i=1

θi

)1/2

, (13)

where cos θi = σi and σi is the ith singular value of ST
1 S2.

We let L̂LDA,LSI denote the rank r approximation to the
LDA corpus DLDA obtained by singular value decomposi-
tion. We let L̂JTD,LSI denote the rank r approximation to
DJTD obtained by singular value decomposition. Finally,
L̂JTD,PCP denotes the rank-r approximation given by ap-
plying Principal Component Pursuit to the corpus DJTD.
Table 1 plots the distance between the range of each of
these recovered low-rank components and the range of L0.
Notice that in the absence of additional sparse keywords,
the SVD (or LSI) gives a fairly good approximation to L0:

By abuse of notion, we here use the same notation S1, S2

to represent any orthonormal bases for the two subspaces,
respectively.

Subspace Distance

d(range(L̂LDA,LSI), range(L0)) 1.86

d(range(L̂JTD,LSI), range(L0)) 11.16

d(range(L̂JTD,PCP ), range(L0)) 3.63

Table 1: The distance between different subspaces.

d(range(L̂LDA,LSI), range(L0)) ≈ 1.86. However, when ad-
ditional sparse keywords are introduced this estimate breaks
down: d(range(L̂JTD,LSI), range(L0)) ≈ 11.1. If we instead
decompose the data using principal component pursuit, the
error drops significantly: d(range(L̂JTD,PCP ), range(L0)) ≈
3.63.

This drastic reduction clearly suggests that PCP could ef-
fectively isolate sparse keywords that cause deviations from
the low-rank topic model. Conversely, the large error in es-
timating L0 using LSI/SVD suggests that these tools may
be less appropriate for such perturbed corpora. We have
repeated this experiment with varying numbers of topics,
documents and perturbation percentages. The reduction of
the subspace angle is consistent and significant.

3.2 Reducing Model Perplexity of Real Data
In this section, we further validate the proposed model

with experiments on real data. Because real data lack ground
truth L0, [2] proposed to measure the quality of a learned
topic model through the perplexity

perplexity(D | model) = exp

{

−
∑n

j=1 log P(d(j) | model)
∑M

d=1 Nd

}

.

Since this is a monotonic function of the likelihood of D,
lower perplexity implies higher likelihood, suggesting a bet-
ter fit.

3.2.1 Experiment Setup

In this experiment, we use a corpus consisting of 1,000
documents in the Reuters-21578 dataset. The vocabulary V
consists of the 3,000 most frequent words, excluding common
words in a “stop words” list. This gives us a 3, 000 × 1, 000
data matrix D whose i, j entry is the frequency of occur-
rence of word i in document j. As above, we decompose D
into low-rank topics L and sparse keywords S by solving the
Principal Component Pursuit problem (8).

The free parameter λ in (8) strikes a balance between ex-
tracting more keywords and using a higher-rank topic model.
In our experiment we try 20 different values of λ,

λ ∈
{

1√
3, 000

, . . . ,
20√
3, 000

}

.

This gives 20 solutions (L(i), S(i)), 1 ≤ i ≤ 20. For each

L(i), we train an LDA model using Gibbs sampling. We
let number of topics r = 50, and use the default hyperpa-
rameters α = 50

r
= 1, β = 0.1 and number of iterations,

2, 000. This yields 20 different learned LDA models. For
comparison, we also generate an LDA model from the data
itself with no PCP preprocessing. We compare the quality
of these learned models by evaluating the likelihood of D
being generated by the learned model, or, equivalently, the
perplexity.

Using the package GibbsLDA++, available at http://
gibbslda.sourceforge.net/
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(a) Synthetic Topic Data (LDA model)
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(b) Topic Data with Sparse Keywords
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(c) Low rank component L̂ by PCP

Figure 3: Singular values of synthetic topic data. Left: singular values of synthetic topic data sampled
according the LDA model with r = 100 topics. Notice the sharp drop at 100. Middle: the singular value
distribution of the LDA data with additional sparse keywords. The singular value distribution now decays
smoothly, with no sharp drop. Right: The singular value distribution of the matrix L̂ recovered by applying
PCP to the corrupted LDA matrix. Notice that the low-rank structure is recovered: the sharp drop at r = 100
is again clearly visible.

We calculate the perplexity of this model and compare
those of the models learned from above. Here we ignore the
result from L(1) to L(4) and L(19) to L(20). The reason is
when λ is too small (i < 5), S is too dense containing too
many words; and when λ is large (i > 18), S becomes too
sparse (less than 1,000 entries, which means each document
has less than 1 keyword on average). The perplexity as a
function of λ is plotted in Figure 4(a), and compared to the
baseline perplexity (red line) without PCP.

From the result we see that in the selected range of λ, the
perplexity of the model after processed by PCP is signifi-
cantly lower than that of the unprocessed data. Note that
the perplexity for L(5) and L(6) is much lower than that for
the original data D, with a reduction of nearly 20 − 30%
in the perplexity value. The matrix S(6) is already rather
sparse: it contains no more than 150 words compared with
the 3, 000 in total. Figure 1 shows some of the keywords (in
bold) detected by S in two typical sample texts from the
corpus.

From this experiment, we may conclude that after apply-
ing PCP to the corpus data and removing a small number of
outlying words from each documents, the processed corpus
fit the LDA model much better.

3.2.2 Generalizability Test

Next, we would like to test the generalizability of the
learned model for new (but similar) test data. Again, we use
perplexity to measure the goodness of each model learned
in explaining the new data. Since the learned LDA model is
only supposed to predict the low-dimensional part of the test
data, we will first run PCP on the test to remove outliers.

We use the same data set, Reuters-21578 with 2,000 doc-
uments, obtaining a 3,000-by-2000 matrix D. But this time
we take the odd columns and form a 3,000-by-1,000 subma-
trix as the training data Dtrain and use the submatrix of
the even columns as the testing data Dtest. For both Dtrain

and Dtest, we use PCP to decompose them to their low rank

plus sparse components:

Dtrain = Ltrain + Strain,

Dtest = Ltest + Stest.

Same as the previous experiment, we choose 20 different
λ from 1√

3,000
to 20√

3,000
with step 1√

3,000
. Then we get

L
(i)
train, L

(i)
test, 1 ≤ i ≤ 20.

Then we learn an LDA model for each L
(i)
train with exactly

the same setting as before. Also we use the original unpro-
cessed corpus Dtrain to learn an LDA model and compare

its perplexity with those learned from L
(i)
train.

Then we would like to test the models on the test matrix
Mtest and L

(i)
test, 1 ≤ i ≤ 20. In this inference step we set

iter = 20 by default. We then calculate the perplexity in
the same manner as in the first experiment.

For the same reason as above, we only select the λ from
5√

3000
to 18√

3000
and we can see that in this range of λ, the

perplexity drops significantly: in the case of i = 5, 6, the
drop is nearly 30 − 35%!

For i = 5, the matrix L
(5)
test contains about only 76% of

the vocabulary. This may have partially contributed to the

drop in perplexity. Nevertheless, for i = 6, L
(6)
test contains

over 95% of the vocabulary, and the drop remains significant.
Even when λ increases significantly, for example for λ18,

the support of the sparse matrix S
(18)
test is about 3, 000. This

means that for each document with an average length of 500
words, we only treat 3 words as outliers but the perplexity
still drops a lot.

So we may conclude that the new method can effectively
remove the outliers of a given corpus and the model learned
after outliers being removed is much more generalizable.

3.3 Keywords Justification
In this section, we examine how so learned low-rank and

sparse components encode useful information for document
analysis. As we have discussed before, the low-rank matrix
encodes the general topics that are contained in documents,
whereas the sparse components are the document-specific
terms. It is natural to ask that how well are the keywords
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(b) Perplexity of Sequestered Test Set

Figure 4: Perplexity of topic model fit to Reuters data with and without PCP preprocessing. Left: Entire
dataset as training. The blue line plots the perplexity of the fit to the low-rank component obtained via PCP,
as a function of the weight factor λ in (8). The red line gives a baseline result without PCP preprocessing.
Right: Testing result. The dataset is divided in half and both the training and test sets are decomposed via
PCP. An LDA model is fit to the low-rank component for the training set. Plotted is the perplexity of the
low-rank component of the test set with respect to this fitted model.

computed by PCP agree with human’s intuition. It is, how-
ever, not easy to verify this due to the lack of well-labeled
data. Nevertheless, in the experiment below, we examine the
proportion that the keywords extracted by PCP are also the
words contained in the title of each document. This is a rea-
sonable test, since for most articles, especially formal ones,
the titles are carefully chosen to represent the most informa-
tive and document-specific part in a corpus. We therefore
consider the titles as the human label for the keywords of
documents.

However, since title words are usually somewhat unique
to each document, many of them will not fall in the list of
3,000 most frequent words in the corpus. So we have to
resample the corpus to ensure most title words are included
in the list of words of interest. By combining the title words
with the most frequent words in the 1,000 documents in the
corpus, we obtain an extended new data matrix D of size
3, 322×1, 000. We use another matrix X of the same size to
denote the matrix of title words: xij is the number of times
the ith word appears in the title of document j.

As in the previous section, we apply PCP to decompose
the data matrix D into a low-rank part L and a sparse part
S. We again choose 20 different λ’s from 1√

3322
to 20√

3322
with

step 1√
3322

. Then for each choice of λi, we get a different

decomposition: D = L(i) + S(i), for 1 ≤ i ≤ 20.
We first investigate the relationships between the title

words and the words that appear in the sparse matrix S.
We compute the correlation between the title matrix X and
each of the sparse matrix S(i), i = 1, . . . , 20 in terms of two
measures. We first normalize the sum of each column of S(i)

to one and view it as a probability distribution:

1. The first measure, denoted as t1(i), is the fraction of

entries in S(i) that are title words.

2. The second measure, denoted as t2(i), is the average

of the sum of title entry values of each column of S(i).
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Figure 5: Keywords justification by comparing with
Title Words. Two correlation measures t1 and t2
between the sparse matrix S(i) and the title matrix
X.

It can be viewed as the probability of any title word
appearing in S(i).

We plot these measures as a function of i in Figure 5. To
give a sense of how sparse the keywords detected by S(i)

are in the corpus, we have also plotted the fraction of word
counts given by S(i) w.r.t. the total number of words in the
corpus.

As we see from the plot 5, the result is rather striking: The
value of t2(i) reaches its peak at i = 12 or λ = 12√

3322
. The

fraction of words detected by S(12) as keywords is about 5%.
But out of the 5% keywords, more than 50% of them are title
words (see Figure 1 for an example), even though we never
told the algorithm which words belong to the titles! Note



from the same example that it is not necessarily true that
title words are the most important words of a document
– there may well be keywords that do not appear in the
title. Such words will get detected by S as well. Also, it is
interesting to see in the plot 5 that t1(i) is monotonic in i
which suggests that as λ increases and S gets sparser, the
percentage of title words left in the keyword list increases.

PCP decomposition actually provides us more informa-
tion about the original dataset, i.e. background information
versus document-specific information (or, geometrically, a
proper subspace versus outliers). We have performed some
preliminary experiments on information retrieval using the
two parts in a cooperative manner. Specifically, we found
that a better mAP can be obtained by weighting the low-
rank terms and sparse terms separately, compared with tra-
ditional TF·IDF strategy. We leave a comprehensive com-
parisons with state-of-the-art and the possible ad-hoc strate-
gies with learning to rank (see,e.g. [12, 13]) for future work.

4. DISCUSSION
In this paper, we have argued that sparse and low-rank

models may be more relevant for text data analysis than
more traditional topic models. We have further demon-
strated that Principal Component Pursuit is an effective
tool for decomposing the given data into sparse and low-
rank components, and suggested that this can indeed im-
prove retrieval performance. However, as a new tool, its
full capabilities are still far from well-understood. Although
we have focused on the retrieval task, we believe that this
approach might be useful for a broad family of problems,
including text classification, information retrieval, and doc-
ument summarization, to name a few. Moreover, the scale
could be extended to several order of magnitudes larger by
the rapidly advancements in parallel and distributed com-
puting.
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