
Fall 2019, EE290-001 – High-dim Data Analysis with Low-dimModels
(Theory, Algorithms, and Applications)

This graduate level course introduces basic geometric and statistical concepts and principles of low-
dimensional models for high-dimensional signal and data analysis, spanning basic theory, efficient
algorithms, and diverse applications. We will discuss recovery theory, based on high-dimensional
geometry and non-asymptotic statistics, for sparse, low-rank, and low-dimensional models – in-
cluding compressed sensing theory, matrix completion, robust principal component analysis, and
dictionary learning etc. Wewill introduce principledmethods for developing efficient optimization
algorithms for recovering low-dimensional structures, with an emphasis on scalable and efficient
first-order methods, for solving the associated convex and nonconvex problems. We will illustrate
the theory and algorithms with numerous application examples, drawn from computer vision, im-
age processing, audio processing, communications, scientific imaging, bioinformatics, information
retrieval etc. The course will provide ample mathematical and programming exercises with sup-
porting algorithms, codes, and data. A final course project will give students additional hands-on
experiencewith an application area of their choosing. Throughout the course, wewill discuss strong
conceptual, algorithmic, and theoretical connections between low-dimensional models with other
popular data-driven methods such as deep neural networks (DNNs), providing new perspectives
to understand deep learning.

Administrative
Time and place: TuTh 11:00AM - 12:29PM, Cory 521

Instructor: Professor Yi Ma
Tentative office hours: TBA or by appointment.
Instructor email: yima@eecs.berkeley.edu.

Teaching Assistant: TBA.
TA office hours: TBA

Course webpage: We will use a piazza website to post lecture materials, homeworks, code exam-
ples, etc.

Prerequisites
Linear algebra and probability. Background in signal processing, optimization, and statistics may
allow you to appreciate better certain aspects of the course material, but not necessary all at once. If
you’re curious about whether you would benefit from this course, contact the instructor for details.
The course is open to senior undergraduates, with consent from the instructor.

Text
A draft manuscript by the instructor:

High-Dimensional Data Analysis with Low-Dimensional Models: Theory, Algorithms, and Ap-
plications, by John Wright and Yi Ma, to be published by Cambridge Press, 2020.

Students will be provided with drafts of this manuscript. We will also provide references to orig-
inal research papers on the course website. Many of these papers contain additional results and
elaborations that go far beyond what we cover in lecture and in the manuscript.
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Computing
We will use the Matlab, Jupyter notebooks, and Google Colab environments for many of the in-
lecture demos, examples and homeworks.

Grades
The course will be graded based on class participation (20%), homework (30%) and a course project
(50%). For the course project, you can work on a topic of your choice – experimental, theoretical, or
a combination of both. Be creative! Virtually any topic related to the course material is acceptable,
provided the project is well-executed.

You may work alone, or in a team of two students. For teams of two, you will be expected
to document who did what. Your deliverables will be a project report and a short (15 min) talk
during the final exam slot for this class. If you did experimental work, you will also need to submit
your code. You will be required to submit a brief (<1 page) project proposal by midterm, and to
discuss your ideas with me before that date.

Tentative Syllabus (subject to changes)
• Course introduction, motivating examples

• Sparse solutions, `0 minimization, `0 uniqueness, NP-hardness

• `1 relaxation, `1 recovery under incoherence

• Recovery under RIP, random matrices

• Noise and inexact sparsity

• Rank minimization: motivating examples, nuclear norm relaxation

• Rank RIP (briefly), matrix completion

• Robust PCA and principal component pursuit

• General low-dim models

• Convex optimization: first order methods, proximal gradient, acceleration

• Convex optimization: augmented Lagrangian, ADMM

• Nonconvex formulation: low-rank recovery, dictionary learning, blind deconvolution etc.

• Nonconvex optimization: from second to first order methods, randomized or regularized gra-
dient descent

• Generalization: deep networks and low-dimensional structures.

• Applications: scientific imaging, face recognition, 3D reconstruction, photometric stereo, spec-
trum sensing, bioinformatics, etc.

• Course project presentations
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