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Abstract

We present a simple new criterion for classification, based on principles from lossy data compres-

sion. The criterion assigns a test sample to the class that uses the minimum number of additional bits

to code the test sample, subject to an allowable distortion. We rigorously prove asymptotic optimality

of this criterion for Gaussian (normal) distributions and analyze its relationships to classical classifiers.

The theoretical results provide new insights into the relationships among a variety of popular classifiers

such as MAP, RDA, k-NN, and SVM, as well as unsupervised methods based on lossy coding [18].

Our formulation induces several good effects on the resulting classifier. First, minimizing the lossy

coding length induces a regularization effect which stabilizes the (implicit) density estimate in a small

sample setting. Second, compression provides a uniform means of handling classes of varying dimension.

The new criterion and its kernel and local versions perform competitively on synthetic examples, as

well as on real imagery data such as handwritten digits and face images. On these problems, the

performance of our simple classifier approaches the best reported results, without using domain-specific

information. All MATLAB code and classification results are publicly available for peer evaluation at

http://perception.csl.uiuc.edu/jnwright/coding.

Index Terms

Classification, Lossy Data Coding, Regularization, MAP, RDA, k-NN, SVM.

I. INTRODUCTION

The quintessential problem in statistical learning [11], [26] is to construct a classifier from la-

beled training data (xi, yi)
iid∼ pX,Y (x, y). Here, xi ∈ Rn is the observation, and yi ∈ {1, . . . , K}

its associated class label. The goal is to construct a classifier g : Rn → {1, . . . , K} which

minimizes the expected risk (or probability of error):

g∗ = arg min E[Ig(X) 6=Y ], (1)

where the expectation is taken with respect to pX,Y . When the conditional class distributions

pX|Y (x|y) and the class priors pY (y) are known, then the maximum a posterior (MAP) assign-

ment

ŷ(x) = arg max
y∈{1,...,K}

ln pX|Y (x|y) + ln pY (y) (2)

gives the optimal classifier.

September 25, 2007 DRAFT



3

A. Issues with Learning the Distributions from Training Samples

In the typical classification setting, the distributions pX|Y (x|y) and pY (y) need to be learned

in advance from a set of training data whose class labels are given. Conventional approaches to

model estimation (implicitly) assume that the distributions are nondegenerate and the samples

are sufficiently dense. However, these assumptions fail in many classification problems which are

vital for applications in computer vision [13], [15], [16], [27]. For instance, in the case of face

recognition, the set of images of a person’s face taken from different angles and under different

lighting conditions often lie in a low-dimensional subspace or submanifold of the ambient space

[12]. As a result, the associated distributions are degenerate or nearly degenerate. Moreover, due

to the high dimensionality of imagery data, the set of training images is typically sparse.

Inferring the generating probability distribution pX,Y from a sparse set of samples is an

inherently ill-conditioned problem [26]. Furthermore, in the case of degenerate distributions,

the classical likelihood function (2) does not have a well-defined maximum [26]. Thus, to infer

the distribution from the training data or to use it to classify new observations, the distribution

or its likelihood function needs to be properly “regularized.” Typically, this is accomplished

either explicitly via smoothness constraints, or implicitly via parametric assumptions on the

distribution [3]. However, even if the distributions are assumed to be generic Gaussians, explicit

regularization is still necessary to achieve good small-sample performance [7]. This effect is

particularly insidious in the high-dimensional data spaces common in computer vision, pattern

recognition and bioinformatics. For example, naive covariance estimators are inconsistent when

the number of samples is proportional to the dimension of the space [2], as are estimators of

subspace structure such as principal components [14].

In many real problems in computer vision, the distributions associated with different classes of

data have different model complexity. For instance, when detecting a face in an image, features

associated with the face often have a low-dimensional structure which is “embedded” as a sub-

manifold in a cloud of essentially random features from the background. Model selection criteria

such as the minimum description length (MDL) [17], [23] serve as important modifications to

MAP for estimating a model across classes of different complexity. It selects the optimal model

as the one that minimizes the overall coding length of the given (training) data, hence the name

“minimum description length” or “minimum coding length” [1]. However, notice that MDL does
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not specify how the model complexity should be properly accounted for when classifying new

test data among models that have different dimensions.1

B. Minimum Coding Length Principle for Classification

Once the distributions pX|Y and pY are estimated from the training data, the classifier is

usually obtained by substituting the estimated distributions p̂X|Y and p̂Y into the MAP classifier

(2). Notice that the MAP classifier (2) is equivalent to

ŷ(x) = arg min
y∈{1,...,K}

− ln pX|Y (x|y)− ln pY (y). (3)

This gives the MAP classifier another interpretation. The optimal classifier should minimize

Shannon’ optimal (lossless) coding length of the test data x with respect to the distribution of

the true class: The first term is the number of bits needed to code x w.r.t. the distribution of

class y, and the second term is the number of bits needed to code the label y for x. In this

paper, we essentially follow this minimum coding length principle for classification.

However, as we have contended in the previous subsection, the (potentially degenerate) dis-

tributions pX|Y (x|y) and pY (y) can be very difficult to learn from a few samples in a high-

dimensional space. It therefore makes more sense to look for other good surrogates for imple-

menting the above minimum coding length principle. Our idea is to measure how efficiently a new

observation can be encoded by each class of the training data subject to an allowable distortion,

and to assign the new observation to the class that requires the minimum number of additional

bits. We dub this criterion “minimum incremental coding length” (MICL) for classification, as

a counterpart of the MDL principle for model estimation and as a surrogate for the minimum

coding length principle for classification.

We will see that the proposed criterion naturally addresses the issues of regularization and

model complexity. Regularization is introduced through the use of lossy coding, i.e. coding the

test data x up to an allowable distortion. This contrasts with Shannon’s optimal coding length

which requires the precise knowledge of the true distributions, and thus places our approach more

along the lines of lossy MDL [20]. As we will also see, the lossy coding length naturally accounts

1Note that model estimation is about inferring a model from the training data whereas classification is about inferring a

decision on a new test sample given the models.
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for model complexity by directly measuring the difference in the volume (hence dimension) of

the training data with and without the new observation.

In [18], we have investigated minimum lossy coding length in the context of unsupervised

data clustering. There, the coding length subject to an allowable distortion was used to measure

the goodness of a clustering, and a simple agglomerative method was proposed to segment data

from mixtures of Gaussians or linear subspaces. In a sense, this paper extends these results to the

supervised domain, inducing a simple new classifier and studying its properties. Moreover, the

new theoretical results described here further explain for the surprising efficacy of the simple

clustering algorithm of [18]. For example, Theorem 1 implies that the agglomerative method

of [18] makes a decision at each step based on a regularized version of (Gaussian) maximum

likelihood or maximum a posterior.

C. Relationships to Existing Classifiers

While MICL and MDL both operate by minimizing a coding-theoretic objective, MICL differs

strongly from traditional MDL approaches to classification such as those examined in [9]. Those

methods choose an optimal decision boundary from an allowable set by minimizing the following

coding length:

g∗ = arg min
g∈G

L(g) + log

(
m∑

i Ig(xi) 6=yi

)
, (4)

where L(g) is the number of bits needed to code the classifying boundary g within certain

class G, and the second term counts the cost of coding training samples misclassified by g. This

approach has been proven inconsistent in [9]. In contrast, MICL uses coding length directly as

a measure of how well the training data represent the new sample. The inconsistency result of

[9] does not apply in this modified context. In fact, MICL will have more in common with the

classical ML/MAP decision criteria, since maximizing the likelihood also minimizes the number

of bits needed to code the sample according to Shannon’s optimal lossless coding scheme.

However, the use of lossy coding distinguishes MICL from these approaches. Within the lossy

data coding framework, we establish in this paper that the MICL criterion leads to a family

of classifiers that generalize the conventional MAP classifier (2). We rigorously show that for

Gaussian distributions, the MICL criterion asymptotically converges to a regularized version
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of MAP2 (see Theorem 1) and we also gives a precise estimate on the convergence rate (see

Theorem 2). In the Gaussian case, one effect of lossy coding is to induce a regularization effect

similar to Friedman’s Regularized Discriminant Analysis (RDA) [7]3, with similar gains in finite

sample performance with respect to MAP/QDA.

The fully Bayesian approach to model estimation, in which posterior distributions over model

parameters are estimated also claims finite sample gains over ML/MAP [19], [21]. However,

these methods generally require that the number of samples be larger than the dimension of

the space. When this condition is not satisfied (as for high-dimensional or degenerate data), the

result becomes strongly dependent on the choice of prior4. MICL requires no such assumptions,

and in fact sees its greatest advantage when the sample size is small. Notice, however, that

Theorem 1 also ensures asymptotic equivalence to the Bayesian approach, since it too converges

to ML/MAP asymptotically.

When the distributions involved are not Gaussian, the MICL criterion can be easily extended

via a nonlinear kernel or can be applied in a local neighborhood of the test sample, similar to

the popular k-Nearest Neighbor (k-NN) classifier [6], [22]. However, the local MICL classifier

significantly improves the k-NN classifier as it accounts for both the number of samples and

the distribution of the samples within the neighborhood. When dealing with almost degenerate

distributions or sparse samples, the distribution of the neighboring samples typically contains

more information than the majority label about the correct class of the new observation (see

Figure 4 for a comparison).

Work on Support Vector Machines (SVM) [26] has shown that not all samples in the training

data are equally important for the resulting classifier. In this framework, the final decision

hypersurface is represented in terms of a small portion of nearby samples, called “support

vectors.” Thus, for generic distributions, the SVM may significantly compress the training data

2MAP subject to a Gaussian assumption is also known in the learning literature as Quadratic Discriminant Analysis (QDA)

[11].
3Throughout this paper, we only consider the version of RDA which regularizes the covariance by a multiple of the identity:

Σ̃ = Σ + αI . Regularizing by the pooled data covariance as in [7] is less appropriate if we wish to consider groups with

significantly different and anisotropic covariances.
4In the Gaussian case, Jeffery’s prior no longer suffices in this regime, and stronger assumptions on the parameters of the

distribution are required to regularize the problem.
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for classification purposes. However, if the training data have degenerate structure such that most

samples lie on low-dimensional subspaces or submanifolds, almost all the samples help determine

the global shape of the optimal separating hyperplane or hypersurface. In this case, learning

the separating hyperplane or hypersurface via SVM may no longer be more generalizable than

directly harnessing the low-dimensional structures of the training data via MICL for classification

(see Figure 4 for a comparison). Moreover, the kernelized version of MICL provides a simpler

alternative to the SVM approach of constructing a linear decision boundary in the embedded

(kernel) space, potentially exploiting details of the structure of the embedded data (see Figure 5

for an example).

D. Contributions of this Paper

The main contribution of this paper is to establish for the first time a formal and rigorous

connection between classification and lossy data compression. The theoretical results provide

new insights into the relationships among a variety of popular classifiers such as MAP, RDA,

k-NN, and SVM, unsupervised methods such as [18], as well as the relationship of classification

to important statistical concepts such as regularization, model complexity, and rate distortion. As

a result, the proposed MICL classifier, though very simple, performs competitively under a wider

range of conditions than many conventional classifiers. Extensive simulations and experiments

on real imagery data show that MICL often approaches the best reported results from more

sophisticated classifiers or systems, without using any domain-specific information (Section III).

II. CLASSIFICATION CRITERIA AND ANALYSIS

A. Minimum Incremental Coding Length

We formulate the problem of classification from the perspective of lossy data coding and

compression [5]. A lossy coding scheme maps vectors X = (x1, . . . ,xm) ∈ Rn×m to a sequence

of binary bits, from which the original vectors can be recovered upto an allowable distortion

E[‖x̂ − x‖2] ≤ ε2. The length of the bit sequence is then a function: Lε(X ) : Rn×m → Z+.

Given a lossy coding scheme and its associated coding length function Lε(·), we can encode

each class of training data Xj
.
= {xi : yi = j} using Lε(Xj) bits. The entire training dataset can
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be represented by a two-part code using

Length
(
X ,Y

)
=

K∑
j=1

Lε(Xj)− |Xj| log2 pY (j) (bits). (5)

Here, the second term is the minimum number of bits needed to (losslessly) code the class labels

yi.

Now, suppose we are given a new (test) sample x ∈ Rn, whose associated class label is

y(x) = j. If we code x jointly with the training data Xj of the jth class, the number of

additional bits needed to code the pair (x, y) is:

δLε(x, j) = Lε(Xj ∪ {x})− Lε(Xj) + L(j). (6)

Here, the first two terms measure the excess bits needed to code (x,Xj) upto distortion ε2, while

the last term L(j) is the cost of losslessly coding the label y(x) = j. One may view these as

“finite-sample lossy” surrogates for the Shannon coding lengths in the ideal classifier (3). This

interpretation naturally lends it to the following classifier:

Criterion 1 (Minimum Incremental Coding Length): Assign x to the class which minimizes

the number of additional bits needed to code (x, ŷ), subject to the distortion ε:

ŷ(x)
.
= argmin

j=1,...,K
δLε(x, j). (7)

The above criterion (7) can be taken as a general principle for classification, in the sense

that it can be applied using any lossy coding scheme and its associated coding length function.

Nevertheless, in order for the classification to be effective, the coding scheme should be such

that the associated coding length is the shortest possible for the given data. More specifically,

if the data are from some family of distributions, the asymptotically optimal coding length is

given by the rate-distortion of the distribution5 [5]; Or if we consider the data as a discrete set

of points, the coding length should be approximately6 the minimum among all possible coding

schemes subject to the given distortion. For the rest of this subsection, we discuss how to choose

the function Lε(·) for the data x and L(·) for the label y(x) in the formula (6) of δLε.

5The construction of optimal coding schemes (achieving the lower bound given by the rate-distortion of the data distribution)

is a difficult problem, even in the Gaussian case (see e.g. [10]). Note however, that for the purposes of classification, it is only

necessary for there to exist in principle a coding scheme whose length function is Lε.
6Approximation is necessary even if the given data are binary numbers instead of real-valued vectors, since the universal

minimum coding length, or Kolmogorov complexity, of the data is non-computable [5].
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1) Lossy Coding Length of Gaussian Data: We will first consider a coding length function

Lε which is approximately (asymptotically) optimal for Gaussian distributions. The (implicit)

use of a coding scheme which is optimal for Gaussian sources is equivalent to assume that the

conditional class distributions pX|Y are unimodal, and can be well-approximated by Gaussians.7

We will rigorously analyze the performance of the MICL in this (admittedly restrictive) scenario,

and demonstrate its relationships with classical classifiers such as MAP and RDA. In Section

III we will show using the same Lε function, how the MICL can be extended to arbitrary,

multimodal distributions via an effective local Gaussian approximation.

For a multivariate Gaussian source N (µ,Σ), the average number of bits needed to code a

vector subject to a distortion ε2 is approximately:

Rε(Σ)
.
=

1

2
log2 det

(
I +

n

ε2
Σ
)

(bits/vector). (8)

Then given the data X = (x1, . . . ,xm) with sample mean µ̂ = 1
m

∑
i xi, we can represent them

upto expected distortion ε2 using on average Rε(Σ̂) bits, where Σ̂(X ) = 1
m−1

∑
i(xi−µ̂)(xi−µ̂)T

is the sample covariance, and so the number of bits needed for the m vectors is mRε(Σ̂). Since

the optimal codebook is adaptive to the data, we need additional nRε(Σ̂) bits to represent the

principal axes of the covariance matrix. In addition, we need an extra n
2

log2

(
1 + µ̂T µ̂

ε2

)
bits to

code the mean vector µ̂. Thus, the total number of bits required to code X becomes:

Lε(X )
.
=
m+ n

2
log2 det

(
I +

n

ε2
Σ̂(X )

)
+
n

2
log2

(
1 +

µ̂T µ̂

ε2

)
. (9)

The first term, therefore, gives the number of bits needed to code the distribution of the vectors

xi about their mean, µ̂, while the second gives the number of bits needed to code the mean.

In addition to well-approximating the optimal coding length for Gaussian data, one can show

that this function gives a good upper bound on the number of bits needed to code finitely many

samples lying on a linear subspace (or equivalently, a degenerate Gaussian distribution). See

[18] for a more detailed derivation and justification.

2) Coding of the Class Label: Since the label Y is discrete, it can be coded losslessly. The

form of the final term L(j) in (6) depends on one’s prior assumptions about the nature of the

7This assumption can be significantly relaxed. The same analysis and results can be easily generalized to a mixture of

Gaussians.
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test data. If the test class labels Y are known to have the marginal distribution P [Y = j] = πj ,

then the optimal coding lengths are (within one bit):

L(j) = − log2 πj. (10)

If the testing data are also iid samples from the same distribution pX,Y as the training data, then

we may estimate π̂j =
|Xj |
m

. Conversely, if we have no prior knowledge regarding the distribution

of the class labels, it may be more appropriate to set πj ≡ 1
K

, in which case the excess coding

length depends only on the number of additional bits needed to encode x. Similar to the MAP

classifier (2), the choice of πj effectively gives a prior on class labels.

3) The Overall Algorithm: Given the coding length function (86) for the observations and

the coding length (10) for the class label, we summarize the MICL criterion (7) as Algorithm 1

below.

Algorithm 1 (The MICL Classifier).
1: Input: a set of m training samples partitioned into K classes X1,X2, . . . ,XK and a test

sample x.

2: Compute prior distribution of class labels πj = |Xj|/m.

3: Compute incremental coding length of x for each class:

δLε(x, j) = Lε(Xj ∪ {x})− Lε(Xj)− log2 πj,

where

Lε(X )
.
=
m+ n

2
log2 det

(
I +

n

ε2
Σ̂(X )

)
+
n

2
log2

(
1 +

µ̂T µ̂

ε2

)
.

4: Let ŷ(x) = arg minj=1,...,K δLε(x, j).

5: Output: ŷ(x).

Figure 1 shows the performance of the MICL classifier on two simple but informative toy

problems in R2. In both cases, the MICL criterion harnesses the covariance structure of the data

to achieve good classification results, even in sparsely sampled regions. In the left example, the

criterion interpolates the data structure to achieve correct classification, even near the origin

where the samples are sparse. In the right example, the criterion extrapolates the horizontal line

to the other side of the plane. In both cases, methods such as k-NN and support vector machine
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Fig. 1. MICL harnesses the covariance structure of the data to interpolate (left) and extrapolate (right) in regions where the

training samples are sparse.

(SVM) fail to give correct classification in these regions (see Figure 4 for a comparison). The

astute reader may notice, however, that these decision boundaries are very similar to what

MAP/QDA would give. This raises an important question: what is the precise relationship

between MICL and MAP, and under what circumstances is MICL superior?

B. Asymptotic Behavior and Relationship to MAP

In this section, we analyze the asymptotic behavior of the MICL criterion (7) using coding

length function (86), as the number of training samples, m, goes to infinity. We will see that

asymptotically, classification based on the incremental coding length is equivalent to a regularized

version of MAP (or ML), subject to a reward on the dimension of the classes. The precise

correspondence is given by the following theorem, proven in Appendix I:

Theorem 1 (Asymptotic MICL): Let the training samples {(xi, yi)}m
i=1

iid∼ pX,Y (x, y), with8

µj
.
= E[X|Y = j], Σj

.
= Cov(X|Y = j). Then as m → ∞, the MICL criterion coincides

(asymptotically, with probability one) with the decision rule

ŷ(x) = argmax
j=1,...,K

LG

(
x
∣∣µj, Σj +

ε2

n
I
)

+ lnπj +
1

2
Dε(Σj), (11)

8We assume that the first and second moments of the conditional distributions exist.
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where LG(·|µ,Σ) is the log-likelihood function for a N (µ,Σ) distribution9, and Dε(Σj)
.
=

tr
(
Σj(Σj + ε2

n
I)−1

)
is the effective dimension of the j-th model, relative to the distortion ε2.

This result shows that asymptotically, MICL generates a family of MAP-like classifiers parametrized

by the distortion ε2. Notice that if all of the distributions are non-degenerate (i.e.their covariance

matrices Σj are nonsingular), then limε→0

(
Σj + ε2

n
I
)

= Σj, and limε→0Dε(Σj) = n, a

constant across the various classes. Thus, for nondegenerate data, the family of classifiers induced

by MICL contains the conventional MAP classifier (2) at ε = 0. Any reasonable rule for

choosing the distortion ε2 given a finite number, m, of samples should therefore ensure that

ε → 0 as m → ∞. This guarantees that for non-degenerate distributions, MICL converges to

the asymptotically optimal MAP criterion.

Simulations (e.g. Figure 1) suggest that the limiting behavior does provide useful information

about the performance of the classifier on finite training data. Yet Theorem 1 is only strictly valid

as m → ∞, giving no indication as to whether one should expect to observe such behavior in

practical scenarios. The following result, proven in Appendix II shows that the MICL discriminant

functions, δLε(x, j) converge quickly to their limiting form, δL∞ε (x, j):

Theorem 2 (MICL Convergence Rate): As the number of samples, m → ∞, the MICL cri-

terion (7) converges to its asymptotic form, (25) at a rate of m− 1
2 . More specifically10, with

probability at least 1− α,
∣∣δLε(z, j)− δL∞ε (z, j)

∣∣ ≤ c(α) ·m− 1
2 for some constant c(α) > 0.

From the proof of the theorem, one may further notice that the constant c becomes smaller when

the covariance tends to singular, which suggests that the convergence speed is higher when the

distributions are closer to being degenerate.

C. Improvements over MAP

In the above, we have established the fact that asymptotically, the MICL criterion (25) is

just as good as the MAP criterion. Nevertheless, in the cases of finite samples or degenerate

9Notice that although the form of the criterion involves a Gaussian log-likelihood, the result holds for arbitrary second-

order pX,Y , and makes no Gaussian assumption. However, directly applying the MICL with coding length (86) to complicated

multimodal distributions will often result in poor classification performance, and is therefore not advisable. Section III discusses

how MICL can be modified to handle arbitrary data distributions.
10Assuming that the fourth moments E[‖x− µ‖4] of the conditional distributions exist.
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distributions, the MICL criterion makes several important modifications to the MAP criterion,

which may significantly improve its performance.

1) Regularization and Finite-Sample Behavior: Notice that the first two terms of the asymp-

totic MICL criterion (25) have the form of a MAP criterion, based on an N (µj,Σj + ε2

n
I)

distribution, with prior πj . This is in some sense equivalent to softening or regularizing the

distribution by ε2

n
along each dimension, and has two important effects. First, it renders the

associated MAP decision rule well-defined, even when the true data distribution might be (almost)

degenerate. Even for non-degenerate distributions, there is empirical evidence showing that for

appropriately chosen ε, Σ̂+ ε2

n
I gives a more stable finite-sample estimate of the covariance [7],

leading to lower misclassification rates.

Figure 2 demonstrates this effect on two simple examples in R2. In each example, we vary

the number of training samples, m, and the distortion ε. For each (m, ε) combination, we draw

m training samples from two Gaussian distributions N (µi,Σi), i = 1, 2, and estimate the Bayes

risk of the resulting MICL and MAP classifiers. This procedure is repeated 500 times, to estimate

the overall Bayes risk with respect to variations in the training data. In Figure 2 we visualize

the (estimated) difference in risks, RMAP − RMICL. Positive values, then, indicate that MICL

is outperforming MAP. The red line approximates the zero level-set of the difference in risks,

where the two methods perform equally well.

The generating distributions are parameterized as (at left) µ1 = [−1
2
, 0], µ2 = [1

2
, 0], Σ1 =

Σ2 = I , and (at right) µ1 = [−3
4
, 0], µ2 = [3

4
, 0], Σ1 = diag(1, 4), Σ2 = diag(4, 1). At left, in

the isotropic case, MICL outperforms MAP for all sufficiently large ε. with a larger performance

gain when the number of samples is small. In the anisotropic case (right), for a good range of ε,

MICL dramatically outperforms MAP for small sample sizes. We will see in the next example

that this effect becomes more pronounced as the dimension, n, increases.

2) Dimension Reward: The effective dimension term Dε(Σj) in the asymptotic MICL criterion

(25) can be rewritten as Dε(Σj) =
∑n

i=1
λi

ε2

n
+λi

, where λi is the ith eigenvalue of Σj . Notice

that if the data distribution lies on a perfect subspace of dimension d (i.e.. λ1, . . . , λd � ε2

n
and

λd+1, . . . , λn � ε2

n
), D⊥ will be exactly d, the dimension of the subspace. In general, D can be

viewed as “softened” estimate of the dimension, relative to the distortion ε2. This quantity has

been dubbed the “effective number of parameters” in the context of ridge regression [11]. Thus,
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Fig. 2. Excess misclassification risk incurred by using MAP rather than MICL, as a function of ε and m. MICL outperforms

MAP in most settings, with the largest gain when m is relatively small. Left: two isotropic Gaussians in R2. Right: anisotropic

Gaussians in R2.

minimizing the MICL criterion rewards distributions that have relatively higher dimension.11

Note however, that this effect is somewhat countered by the regularization induced by ε, which

has a larger “reward” effect on lower dimensional distributions.

Figure 3 empirically compares MICL to the conventional MAP and the regularized MAP (or

RDA [7]). In this example, we draw m samples from three nested Gaussian distributions: one

has a full rank n, one has rank n/2, and one has rank 1. All samples are corrupted by 4%

Gaussian noise. We estimate the Bayes risk for each (m,n) combination by averaging over 500

independent trials. For fairness of comparision, the regularization parameter in RDA, and the

distortion ε for MICL are chosen independently for each trial to minimize the cross-validation

error over the training data. Plotted are the (estimated) differences in risk, RMAP −RMICL (left)

and RRDA−RMICL (right). The red lines again correspond to the zero level-set of the difference.

Notice that with little surprise, MICL outperforms MAP for most (m,n), and that the effect is

most pronounced when n is large and m is small. Interestingly, when m is much smaller than

n (e.g. the bottom row of Figure 3 right), MICL demonstrates a significant performance gain

with respect to RDA. As the number of samples increases, though, there is a region where RDA

11Notice that here dimension assumes an “opposite” role to that in model estimation where we typically penalize models with

higher dimension.
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Fig. 3. Excess risk incurred by using MAP and RDA rather than MICL, as a function of number of samples m and dimension

n.

is slightly better. However, for most (m,n) considered here, MICL and RDA have rather close

performance.12

D. Implementation Issues

The rigorous analysis of the Gaussian case in the previous subsections reveals many good

properties of the proposed MICL criterion. In reality, the distribution(s) of the data of interest

may not be Gaussian. If the rate-distortion function of such distribution(s) is known, one could,

in principle, carry out similar analysis as for the Gaussian case. Nevertheless, in this subsection,

we discuss some practical ways of modifying the MICL criterion that are applicable to arbitrary

distributions, without losing some of the desirable properties of MICL.

1) Kernel MICL Criterion: Since XX T and X TX have the same non-zero eigenvalues, we

have the following identity

log2 det
(
I+

n

ε2m
XX T

)
= log2 det

(
I+

n

ε2m
X TX

)
. (12)

From this identity, we notice that to evaluate the coding length function (86), we only need

to compute the inner products between the data points. Thus, if the data x (of each class) are

not Gaussian but there exists a nonlinear map ψ : Rn → H such that the transformed data

12Note that RDA [7] is designed to be nearly optimal for finite samples of Gaussians.
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φ(x) are (approximately) Gaussian, we can replace the inner product xT
1 x2 with a new one

k(x1,x2)
.
= ψ(x1)

Tψ(x2). The so-defined symmetric positive definite function k(x1,x2) is

known in statistical learning as a “kernel function”13. Thus, by a proper choice of the kernel

function, one may achieve better classification performance for certain classes of non-Gaussian

distributions. In practice, some popular choices of the kernel functions include the polynomial

kernel k(x1,x2) = (xT
1 x2+1)d, the radial basis function (RBF) kernel k(x1,x2) = exp(−γ‖x1−

x2‖2) and their variants. Notice that by replacing xT
1 x2 with k(x1,x2), we are now classifying

the test sample x by assigning it to the class which minimizes the additional bits to code ψ(x)

jointly with ψ(x1) . . . ψ(xm). Appendix IV describes how to properly account for the mean and

dimension of the lifted data, so that the discriminant functions are well-defined, and correspond

to a proper coding length.

The transformation described above is similar to that used in generalizing SVM to nonlinear

decision boundaries. Notice, however, that whereas SVM constructs a linear decision boundary

in the lifted space H, kernel MICL exploits the covariance structure of the lifted data, generating

decision boundaries that are (asymptotically) quadratic when the ψ(x) are Gaussian in H. Thus,

the theoretical advantage of kernel MICL over kernel SVM is clear. In Section III-B we will

see that even for real data whose statistical nature is unclear, kernel MICL outperforms SVM

when applied with the same kernel function.

2) Local MICL Criterion: For data drawn from complicated multi-modal distributions, it

may be difficult or impossible to find a kernel function that converts the data into Gaussians.

In this case, we can apply the MICL criterion locally, in a neighborhood of the test sample x.

For instance, we may consider the k-nearest14 neighbors of x in the training set X , which we

denote as Nk(x). Training data in this neighborhood that belong to each class are Nk
j (x)

.
=

Xj∩Nk(x), j = 1, . . . , K. Then in the MICL classifier (Algorithm 1), we replace the incremental

coding length δLε(x, j) by its local version:

δLε(x, j) = Lε(N
k
j (x) ∪ {x})− Lε(N

k
j (x)) + L(j), (13)

where L(j) is replaced with its local version: L(j) = − log2

|Nk
j (x)|

|Nk(x)| .

13The necessary and sufficient conditions for k(·, ·) to be a kernel function are given by Mercer’s Theorem [26].
14In terms of the Euclidean distance.
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The local MICL criterion gives a universal classifier that is applicable to arbitrary distributions.

As a corollary to Theorem 1, we have

Corollary 3 (Asymptotic Local MICL): If the probabilistic density function pj(x) = p(x|y =

j) of each class is non-degenerate, as k and m go to ∞ the local MICL criterion converges to

the MAP criterion:

ŷ(x) = argmax
j=1,...,K

ln pj(x) + lnπj.

Proof: [Proof (sketch)] For any fixed k, when the sample size m goes to infinity, the

radius of the neighborhood goes to zero. Hence µj → x and Σj → 0 and the first term in the

asymptotic MICL (25) is the same for all classes. Also the third term D goes to n as ε goes to

zero. The only remaining effective term in the classifier is the coding length L(j) for the class

label. Since
|Nk

j (x)|
|Nk(x)| → πj · pj(x) as k →∞, we have the conclusion of the corollary.

Thus, when the sample size is large or more precisely when the density of samples around the

query point is high, the local MICL criterion behaves more like a k-Nearest Neighbor (k-NN)

criterion since the effect of the first and third term in (25) diminishes. The criterion, just like

the k-NN criterion, approximates the MAP criterion when the sample size goes to infinity and

k is large.

However, the finite-sample behavior of the local MICL criterion can be drastically different

from that of k-NN, especially when the samples are sparse and the distributions involved are

almost degenerate because in those cases, the first and third term in (25) become significant. The

first term approximates the local shape of the distribution pj(x) from the handful neighboring

samples Nk
j (x) by a (regularized) Gaussian;15 and the third term accounts for the dimension of

the subspace spanned by these samples in case pj(x) is close to degenerate around x. These

two terms together provide a more comprehensive measure of how well the test sample x can

be interpolated or extrapolated by its neighboring training samples, in terms of their frequency

as well as their shape. As we will demonstrate in the next section with extensive simulations

and experiments, the local MICL criterion consistently has superior finite-sample performance

over the conventional k-NN criterion.

15In the same spirit as using a Gaussian kernel in the Parzen’s density estimator [26].
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(a) MICL (b) k-NN (c) SVM-RBF

Fig. 4. Extrapolation of data structure. Left: MICL. Center: 5-NN. Right SVM-RBF.

III. SIMULATIONS AND EXPERIMENTS

In this Section, we conduct extensive simulations and experiments on real imagery data. Our

results show that MICL and its kernel and local variants approach the best reported results from

more sophisticated classifiers or systems, without using any domain-specific information. In our

implementation, the complexity of the global MICL (Algorithm 1) is quadratic in the dimension

of the data; the complexity of the local MICL is similar to that of k-NN.

A. Simulations on Synthetic Data

a) Extrapolation of Data Structure.: We compare the decision boundary given by MICL

in Figure 1 (right) to that of k-NN and SVM. For MICL we choose ε = 1, for k-NN k = 5, and

SVM is run with a RBF kernel with γ = 1
2
. All three methods give plausible decision boundaries

on the right side of the vertical line. However, both k-NN and SVM assign everything on the

left side of the vertical line to that line, whereas MICL extrapolates the data structure to this

side. Note that while MICL is certainly not the only classifier capable of such extrapolation, it

does provide a very simple and effective means of harnessing data structure that is ignored by

methods such as k-NN and SVM-RBF.

b) Local MICL and Kernel MICL.: Figure 5 compares the nonlinear extensions to MICL

discussed in Section III on a two-spiral decision problem. Here we choose K = 5, ε = 2.5

for local MICL (LMICL), k = 5 for k-NN, an RBF kernel with γ = 1000 and ε = 1 for

kernel MICL (KMICL), and the same kernel for SVM. The local version of MICL exploits the

approximately-locally-linear structure of the data to produce a smoother decision boundary than

k-NN. Also, notice that both kernel MICL and kernel SVM produce smooth decision boundaries
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(a) LMICL (b) 5-NN (c) KMICL (d) SVM

Fig. 5. Comparison of nonlinear extensions to MICL against SVM and k-NN. Notice that local MICL improves

upon k-NN, producing a smoother and more intuitive decision boundary. Kernel MICL and SVM produce similar

boundaries, that are smoother and better respect the data structure than those given by either of the local methods.

that extrapolate the spiral structure of the data in the upper left corner. However, the improved

performance of these kernelized methods comes at the price of having to select a proper kernel,

a non-trivial problem for this dataset, since certain popular kernels (e.g. polynomial) do not work

for this dataset.

B. Tests on Real Imagery Data

c) Handwritten Digit Recognition.: We first test the MICL classifier on two standard

datasets for handwritten digit recognition (Table I top). The MNIST handwritten digit dataset

[15] consists of 60,000 training images and 10,000 test images. We achieved better results using

the local version of MICL, due to non-Gaussian distribution of the data. With k = 20 and

ε = 150, local MICL achieves a test error 1.59%, outperforming simple methods such as k-NN

as well as many more complicated neural network approaches (e.g. LeNet-1 [15]). MICL’s error

rate approaches the best result for a generic learning machine (1.1% error for SVM with a

degree-4 polynomial kernel). Problem specific approaches, such as generating synthetic training

samples, have resulted in lower error rates, however, with the best reported result achieved using

a specially engineered neural network [25].

We also test on the challenging USPS digits database (Table I bottom). Here, even humans have

considerable difficulties (about 2.5% error). With k = 35 and ε = 0.03, local MICL achieves an
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error rate of 4.88%, again outperforming k-NN (best error rate achieved with k = 4). We further

compare the performance of kernel MICL to SVM16 on this dataset using the same homogeneous,

degree 3 polynomial kernel, and identical preprocessing (normalization and centering). This

allows us to compare pure classification performace, independent of the various engineering

improvements. Here, SVM achieves a 5.3% error, while kernel-MICL achieves an error rate of

4.7% with distortion ε = 0.0067. This ε was chosen fully automatically, via leave-one-out cross

validation within the training set. It is optimal for the range log ε ∈ {−10,−9, . . . , 9, 10}.

Using domain-specific information, one can achieve better results. For instance [24] (best

reported in [26]) achieves 2.7% error using tangent distance to a large number of prototypes.

Other preprocessing steps, for example using many synthetic training images or more advanced

skew-correction and normalization techniques have been applied to lower the error rate for SVM-

poly to 4.1 % in [26]. While we have avoided extensive preprocessing here, so as to isolate the

effect of the classifier, such preprocessing can be readily incorporated into our framework.

Method Error (%) Method Error (%)

LMICL 1.59 k-NN 3.09

SVM-Poly [26] 1.1 Best [25] 0.4

Method Error (%) Method Error (%)

LMICL 4.88 k-NN 5.28

k-MICL-Poly 4.7 SVM-Poly [4] 5.3

TABLE I

RESULTS FOR HANDWRITTEN DIGIT RECOGNITION ON TWO STANDARD DATASETS. TOP: MNIST DATASET.

BOTTOM: USPS DATASET. THE RESULTS IN THE RIGHTMOST COLUMN ARE WITH IDENTICAL PREPROCESSING

AND KERNEL FUNCTION. KERNEL-MICL OUTPERFORMS SVM ON THIS LEVEL PLAYING FIELD.

d) Face Recognition.: We further verify MICL’s appropriateness for vision problems by

testing its performance on the Yale Face Database B [8]17, which tests illumination- and pose-

sensitivity of face recognition algorithms. The dataset is divided into four subsets, corresponding

16For this experiment, we use the LIB-SVM implementation of SVM [4]
17We use the normalized and cropped version of this dataset, as in [16].
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to different illumination angles. Following [8], [16], we use subsets 1 and 2 for training, and

report the average test error across the four subsets. We apply Algorithm 1, not the local or kernel

version, directly to the raw imagery data, with ε = 75. Table II shows the comparison with pop-

ular face recognition techniques such as Eigenfaces. We see that MICL significantly outperforms

classical subspace techniques on this problem, with error 0.88% near the best reported results

given in [8], [16] that were obtained using a domain-specific model of illumination for face

images. We suggest that the source of this improved performance is precisely the regularization

induced by lossy coding. In this problem the number of training vectors per class, 19, is very

small compared to the dimension, n = 32, 256.18 Our simulations (e.g. the lower right corner of

Figure 3) show that this is exactly the circumstance in which MICL is superior to MAP and even

RDA. Interestingly, this suggests that if we have a criterion that directly exploits the degenerate

or low-dimensional structures of the data, performing dimensionality reduction before classifying

becomes unnecessary or even undesirable.19

Method Error (%) Method Error (%)

MICL 0.88 Eigenface [8] 25.8

Subspace [8] 4.6 Best [16] 0

TABLE II

FACE RECOGNITION UNDER WIDELY VARYING ILLUMINATION. MICL OUTPERFORMS A VARIETY OF

CLASSICAL FACE RECOGNITION METHODS SUCH AS EIGENFACES ON YALE FACE DATABASE B [8].

IV. CONCLUSION

In this paper, we propose and study a new classification criterion based on the principle of

lossy data compression, called the minimum incremental coding length (MICL) criterion. We

formally establish its theoretical optimality. It generates a family of classifiers which give us

more insights to classical techniques such as MAP, RDA, and k-NN. This family of classifiers

18We apply our method to the raw 168× 192 images without additional preprocessing.
19Working directly in the high-dimensional space is computationally feasible thanks to the kernel property (12), and can be

further accelerated via block determinant identites (see Appendix III for details).
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extends the working conditions of these classical techniques to situations where the sample set

is sparse or degenerate in a high-dimensional space.

On real vision problems, the MICL criterion and its kernel and local versions perform compet-

itively (nearly optimally for the face recognition problem) without utilizing any domain-specific

engineering. We believe that its good performance mainly comes from the fact that MICL can

automatically exploit low-dimensional structure in high-dimensional imagery data for classifica-

tion purposes. This ability allows MICL to be applied in practice with little preprocessing and

engineering of the data, thus avoiding the risk of over-fitting the data. Due to its simplicity and

flexibility, we believe it can be successfully applied to even wider range of real-world data and

classification problems.

APPENDIX I

PROOF OF THEOREM 1

In this section, we prove Theorem 1 of Section 2.2. We will require the following two lemmas,

the first of which is useful for computing higher order derivatives of the coding length function:

Lemma 4: Let δij
kl be the matrix whose k, l entry is one and whose other entries are all zero.

Let Λ(m)
.
= I + n

ε2
m

m+1
Σ, and Ψ

.
= (Λ(m) + Γ)−T . Then for k ≥ 1,

∂k ln det(Λ(m) + Γ)

∂Γi1,j1∂Γi2,j2 . . . ∂Γik,jk

= (−1)k+1

 ∑
σ∈Sym(k−1)

Ψ
k−1∏
l=1

[
δij
jσ(l)iσ(l)

Ψ
]

ikjk

, (14)

where Sym(p) is the symmetric group on p letters. Thus, the k-th partials of log2 det(Λ(m)+Γ)

are all Θ(1) with respect to increasing m.

Proof: Induction on k. For k = 1, the standard result that ∂ ln det W
∂W

= W−T gives

∂ ln det(Λ(m) + Γ)

∂Γi1,j1

=

(
(Λ(m) + Γ)−T

)
i1,j1

= (Ψ)i1,j1 . (15)

Suppose that (14) holds for 1 . . . k − 1. Then

∂k−1 ln det(Λ(m) + Γ)

∂Γi1,j1∂Γi2,j2 . . . ∂Γik−1,jk−1

= (−1)k

 ∑
σ∈Sym(k−2)

Ψ
k−2∏
l=1

[
δij
jσ(l)iσ(l)

Ψ
]

ik−1jk−1

(16)

and so the k-th partial is given by

(−1)k

 ∂

∂Γik,jk

∑
σ∈Sym(k−2)

Ψδij
jσ(1)iσ(1)

Ψ . . .Ψδij
jσ(k−2)iσ(k−2)

Ψ


ik−1jk−1

=
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(−1)k

(∑
σ

∂Ψ

∂Γik,jk

δij
jσ(1)iσ(1)

Ψ . . .Ψδij
jσ(k−2)iσ(k−2)

Ψ + . . .

+ Ψδij
jσ(1)iσ(1)

Ψ . . .Ψδij
jσ(k−2)iσ(k−2)

∂Ψ

∂Γik,jk

)
ik−1jk−1

(17)

Notice that ∂Ψ
∂Γik,jk

= −Ψδij
jk,ik

Ψ. Plugging this quantity into (17), changing the order of the

partials wrt Γik,jk
and Γik−1,jk−1

, and recognizing that the sum is now over all permutations of

{1 . . . k−1} gives the desired formula.

Our main use of this Lemma is to establish that partials of ln det(Λ(m) + Γ) are all O(1).

Now, let Rε(Q)
.
= 1

2
log2 det(I + n

ε2 Σ̂(Q)) denote the coding rate associated with a set of

samples Q, and let δRε(Q, z)
.
= Rε(Q ∪ {z}) − Rε(Q) denote the change in rate due to

introducing a new sample, z. The following lemma shows that δRε is asymptotically quadratic

in z:

Lemma 5: Let q1 . . . qm . . .
iid∼ pQ(q), and let E[Q] = µ and Cov(Q) = Σ. Let Q(m) =

[q1, . . . , qm] ∈ Rn×m. Then ∀z ∈ Rn,

lim
m→∞

2m ln 2 δRε(Q(m), z) = (z − µ)T

(
Σ +

ε2

n
I

)−1

(z − µ) − tr
(
Σ(Σ +

ε2

n
I)−1

)
a.s.

(18)

Proof: Let Γ
.
= n

ε2
m

(m+1)2
(z − µ̂)(z − µ̂)T . Then,

2 ln 2 δRε = ln det
(
I +

n

ε2
Σ̂(Q(m) ∪ {z})

)
− ln det

(
I +

n

ε2
Σ̂(Q(m))

)
= ln det

(
I +

n

ε2

m

m+ 1
Σ̂(Q(m)) + Γ

)
− ln det

(
I +

n

ε2
Σ̂(Q(m))

)
.

Since ln det(Λ) is analytic in the entries of the matrix Λ, we may Taylor expand the first term

in Γ, about Γ = 0. The above becomes

ln det

(
I +

n

ε2

m

m+ 1
Σ̂

)
+
∑
i,j

[(
I +

n

ε2

m

m+ 1
Σ̂

)−1
]

ij

Γij + O(m−2) − ln det
(
I +

n

ε2
Σ̂
)
.

(19)

Here, we have used that ∂ ln detΛ
∂Λij

= (Λ−T )ij . The fact that the higher order terms go as m−2

follows from Lemma 4. Applying the definition of Γ and rearranging gives

1

m+ 1
(z − µ̂)T

(
ε2

n

m+ 1

m
I + Σ̂

)−1

(z − µ̂) − ln

[
det(I + n

ε2 Σ̂)

det(I + n
ε2

m
m+1

Σ̂)

]
+ O(m−2). (20)
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So, limm→∞ 2m ln 2 δRε(Q(m), z) is equal to

lim
m→∞

m

m+ 1
(z−µ̂)T

(
ε2

n

m+ 1

m
I + Σ̂(Q(m))

)−1

(z−µ̂)−ln

[
det(I + n

ε2 Σ̂(Q(m))

det(I + n
ε2

m
m+1

Σ̂(Q(m)))

]m

+O(m−1).

(21)

The first term goes to (z − µ)T
(
Σ + ε2

n
I
)−1

(z − µ) almost surely. Let λ̂1 . . . λ̂n be the

eigenvalues of the sample covariance, Σ̂. Then the limit of the middle term is:

lim
m→∞

ln

[
det(I + n

ε2 Σ̂)

det(I + n
ε2

m
m+1

Σ̂)

]m

= ln
n∏

i=1

lim
m→∞

[
1 + n

ε2 λ̂i

1 + n
ε2

m
m+1

λ̂i

]m

(22)

= ln
n∏

i=1

exp

(
λi

ε2

n
+ λi

)
(23)

= tr
(
Σ(Σ +

ε2

n
I)−1

)
. (24)

Here, in (22) we have used that limm→∞

[
α+β

α+ m
m+1

β

]m
= exp( β

β+α
), in conjunction with the

almost sure convergence of the sample eigenvalues λ̂i to the true covariance’s eigenvalues λi.

This establishes the lemma.

Theorem 1, restated below, is a straightforward consequence of this analysis.

Theorem 1 (Asymptotic MICL) Let the training samples {(xi, yi)}m
i=1

iid∼ pX,Y (x, y), with20

µj
.
= E[X|Y = j], Σj

.
= Cov(X|Y = j). Then as m → ∞, the MICL criterion coincides

(eventually, with probability one) with the decision rule

ŷ(x) = argmax
j=1,...,K

LG

(
x
∣∣µj, Σj +

ε2

n
I
)

+ lnπj +
1

2
Dε(Σj), (25)

where LG(·|µ,Σ) is the log-likelihood function for a N (µ,Σ) distribution, and

Dε(Σj)
.
= tr

(
Σj

(
Σj +

ε2

n
I
)−1
)

(26)

is the effective codimension of the j-th model, relative to ε.

Proof: We first consider the decision boundary between two classes whose means and

covariances are µ1,Σ1 and µ2,Σ2 respectively. Let X (m) .= [x1, . . . ,xm] ∈ Rn×m be the first m

training vectors, X (m)
j

.
= {xi ∈ X (m) : yi = j} the subset of the first m training vectors belonging

to the j-th class, and mj
.
= |X (m)

j |. Let Mε(X )
.
= n

2
log2(1 + ‖µ̂(X )‖2

ε2 ) be the number of bits

20We assume that the first and second moments of the conditional distributions exist.
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needed to code the mean, and δMε(X , z) the change due to introducing sample z. Applying the

definition of Lε and rearranging, we have that δLε(z, 1) < δLε(z, 2) iff

(m1 + n) δRε

(
X (m)

1 , z
)

+ Rε

(
X (m)

1 ∪ {z}
)

+ δMε(X (m)
1 , z) − log2 π̂1

< (m2 + n)δRε

(
X (m)

2 , z
)

+ Rε

(
X (m)

2 ∪ {z}
)

+ δMε(X (m)
2 , z) − log2 π̂2, (27)

Now, w.p.1., ∀z ∈ Rn, Rε

(
X (m)

j ∪ {z}
)
→ Rε(Σj), δMε(X (m)

j , z) → 0 and π̂j → πj .

Let us multiply (27) by ln 2 and let m →∞. Using Lemma 5 to evaluate the limit of the first

term, we have that w.p.1., ŷ(z) = 1 iff

1

2
(z − µ1)

T

(
Σ1 +

ε2

n
I

)−1

(z − µ1) −
1

2
Dε(Σ1) +

1

2
ln det(I +

n

ε2
Σ1) − ln π1

<
1

2
(z − µ2)

T

(
Σ2 +

ε2

n
I

)−1

(z − µ2) −
1

2
Dε(Σ2) +

1

2
ln det(I +

n

ε2
Σ2) − ln π2. (28)

Notice that the first and third terms on each side sum to −LG(z|µj,Σj + ε2

n
I). Multiplying by

−1 converts the minimization to a maximization, and extending to K classes by considering the

decision boundaries between each pair of classes establishes the result, (25).

APPENDIX II

PROOF OF THEOREM 2

In this section, we analyze the convergence rate of the MICL discriminant functions to their

limiting form (25), proving Theorem 2 of the paper. Throughout this section we consider the

discriminant function δLε(z, j) associated with a single group with mean µj and covariance

Σj , and so for compactness of notation we will drop the subscript j. In the course of proving

Theorem 1, we showed that the incremental coding length can be written as

δLε(z) = (m+ n) δRε(X , z) + Rε(X ∪ {z}) + δMε(X , z) − log2 π̂ (29)

=
1

2 ln 2
(z − µ̂)T

(
Σ̂ +

ε2

n

m+ 1

m
I

)−1

(z − µ̂)− m

2 ln 2
ln

[
det(I + n

ε2 Σ̂)

det(I + n
ε2

m
m+1

Σ̂)

]
+ Rε(X ∪ {z}) + δMε(X , z) − log2 π̂ + O(m−1) (30)

with limiting form

δL∞ε (z) =
1

2 ln 2
(z − µ)T

(
Σ +

ε2

n
I

)−1

(z − µ) − Dε(Σ)

2 ln 2
+ Rε(Σ) − log2 π. (31)
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We will need the following deviation bounds on the empirical class probability, π̂ = 1
m

∑
i Iyi=j ,

the sample mean, µ̂ = 1
m

∑
i xi and sample covariance Σ̂ = 1

m−1

∑
i(xi − µ̂)(xi − µ̂)T .

Lemma 6: Suppose the fourth moment E[ ‖x − µ‖4 ] exists. The following three equations

then hold simultaneously with probability at least 1− 3α :

|π̂ − π| ≤
√
π(1− π)

mα
, (32)

‖µ̂− µ‖ ≤
√

tr (Σ)

mα
, and (33)

‖Σ̂− Σ‖F ≤ g(m,α) + o(m− 1
2 ). (34)

where

g(m,α)
.
=

√
E[‖z − µ‖4]− ‖Σ‖2

F

mα
+ 2‖µ‖

√
tr (Σ)

mα
(35)

and the residual o(m− 1
2 ) in (34) is independent of α.

Proof: Notice that E[π̂] = π and var(π̂) = π(1− π)/m. By Chebyschev’s inequality,

P

[
|π̂ − π| ≥

√
π(1− π)

mα

]
≤ α. (36)

Similarly,

P [‖µ̂− µ‖F ≥ η] ≤ E[‖µ̂− µ‖2]

η2
=

tr (cov(µ̂))

η2
=

tr (Σ)

mη2
, (37)

so that P
[
‖µ̂− µ‖ ≥

√
tr(Σ)
mα

]
≤ α.

Let Σ̃
.
= 1

m

∑
i(xi − µ)(xi − µ)T . Then

‖Σ̂− Σ̃‖F =

∥∥∥∥ 1

m− 1
Σ̃ + µ(µ̂− µ)T + µ̂(µ− µ̂)T

∥∥∥∥
F

(38)

≤ 1

m− 1
‖Σ̃‖F + (‖µ‖+ ‖µ̂‖) ‖µ̂− µ‖ (39)

≤ 2‖µ‖
√

tr (Σ)

mα
+ o(m− 1

2 ) (40)

on the event (33). We will next bound ‖Σ̃ − Σ‖F . Let ξ
.
= vec((x − µ)(x − µ)T ). Then

E[ξ] = vec(Σ) and cov(ξ) = E[ξξT ]− vec(Σ)vec(Σ)T . Then,

P [‖Σ̃− Σ‖F ≥ γ] ≤ E[‖Σ̃− Σ‖2
F ]

γ2
=

tr
(
cov(vec(Σ̃))

)
γ2

(41)

=
E[‖ξ‖2]− ‖vec(Σ)‖2

mγ2
=

E[‖x− µ‖4]− ‖Σ‖2
F

mγ2
. (42)
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Setting the left hand side of (42) equal to α and solving for the upper bound γ gives

P

[
‖Σ̂− Σ‖F ≥

√
E[‖x− µ‖4]− ‖Σ‖2

F

mα

]
≤ α. (43)

‖Σ̂ − Σ‖F ≤ ‖Σ̃ − Σ‖F + ‖Σ̂ − Σ̃‖F , so (40) and (43) give (34). Applying a union bound,

Equations (32), (33) and (34) hold simultaneously with probability at least 1− 3α.

We will analyze, term by term, the convergence of (30) to (31), proving the following theorem:

Theorem 2 (MICL Convergence Rate) Suppose the fourth moment E[ ‖x − µ‖4 ] exists. As

m→∞, the MICL discriminant functions converge to their asymptotic form at a rate of m− 1
2 .

More specifically, with probability at least 1− 3α,

|δLε(z)− δL∞ε (z)| ≤ g(m,α)

2 ln 2

(
‖Ψ−1(z − µ)‖2 + ‖Ψ−1ΣΨ−1‖F +

√
n‖Ψ−1/2‖2

F

)
+

1

ln 2

√
tr (Σ)

mα
‖Ψ−1(z − µ)‖+

1

ln 2

√
1− π

mπα
+ o(m− 1

2 ). (44)

where Ψ
.
= Σ + ε2

n
I , and g(m,α) is defined in (35).

Proof: For compactness of notation, let Ψ̂(m)
.
= Σ̂ + ε2

n
m+1

m
I . Fix α > 0 and let E be the

event that the three conditions in Lemma 6 are satisfied. From Lemma 6, P [E] ≥ 1− 3α.

a) Quadratic term.: We first analyze the difference between the quadratic term in (30) and

its limiting form: ∣∣∣∣(z − µ̂)T Ψ̂(m)−1(z − µ̂) − (z − µ)T Ψ−1(z − µ)

∣∣∣∣ (45)

Writing z − µ̂ = (z − µ) + (µ− µ̂) and expanding gives

(z − µ̂)T Ψ̂(m)−1(z − µ̂) = (z − µ)T Ψ̂(m)−1(z − µ)

+ 2(z − µ)T [Ψ̂(m)−1 −Ψ−1 + Ψ−1](µ− µ̂) + o(m− 1
2 ) (46)

= (z − µ)T Ψ−1(z − µ) + (z − µ)T Ψ−1(Σ− Σ̂)Ψ−1(z − µ)

+ 2(z − µ)T Ψ−1(µ− µ̂) + o(m− 1
2 ). (47)

In (46) we have used that ‖µ − µ̂‖2 = o(m− 1
2 ), and in (47) that Ψ̂(m)−1 = Ψ−1 + Ψ−1(Σ −

Σ̂)Ψ−1 + o(m− 1
2 ). On event E, (45) is bounded above by

‖Ψ−1(z − µ)‖2‖Σ− Σ̂‖F + 2‖Ψ−1(z − µ)‖ ‖µ− µ̂‖+ o(m− 1
2 ) (48)

≤ g(m,α)‖Ψ−1(z − µ)‖2 + 2

√
tr (Σ)

mα
‖Ψ−1(z − µ)‖+ o(m− 1

2 ) (49)
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b) Dimension term.: We next consider the convergence of the dimension term, Dε:∣∣∣∣∣m ln

[
det(I + n

ε2 Σ̂)

det(I + n
ε2

m
m+1

Σ̂)

]
− tr

(
Σ(Σ +

ε2

n
I)−1

)∣∣∣∣∣ (50)

Let B .
= Σ− Σ̂. Then

ln det(I +
n

ε2

m

m+ 1
Σ̂)− ln det(I +

n

ε2
Σ̂) (51)

= ln det(Ψ−B − 1

m+ 1
Σ̂)− ln det(Ψ−B) (52)

= ln det(I −Ψ−1(B +
1

m+ 1
Σ̂))− ln det(I −Ψ−1B) (53)

= ln det(I − (I −Ψ−1B)−1Ψ−1 1

m+ 1
Σ̂) (54)

= ln det(I − (I + Ψ−1B)Ψ−1 1

m+ 1
Σ + o(m− 3

2 )) (55)

= ln det(I −Ψ−1 1

m+ 1
Σ) + ln det(I −Ψ−1BΨ−1 1

m+ 1
Σ + o(m− 3

2 )). (56)

where in (55) we have used that (I −Ψ−1B)−1 = I + Ψ−1B + o(m− 1
2 ).

Let the ζi be the eigenvalues of Ψ−1Σ, and ωi the eigenvalues of Ψ−1BΨ−1Σ. Then,

m ln

[
det(I + n

ε2 Σ̂)

det(I + n
ε2

m
m+1

Σ̂)

]
= ln

n∏
i=1

(1− ζi
m+ 1

)m + ln
n∏

i=1

(1− ωi

m+ 1
)m (57)

= ln
n∏

i=1

e−ζi(1 +
ζi
m

+ o(m−1)) + ln
n∏

i=1

e−ωi(1 +
ωi

m
+ o(m−1)) (58)

= tr
(
Ψ−1Σ

)
+

n∑
i=1

ln(1 +
ζi
m

+ o(m−1)) + tr
(
Ψ−1BΨ−1Σ

)
+

n∑
i=1

ln(1 +
ωi

m
+ o(m−1))

(59)

= tr
(
Σ(Σ +

ε2

n
I)−1

)
+ tr

(
Ψ−1ΣΨ−1(Σ− Σ̂)

)
+ o(m−1). (60)

On E, (50) is bounded above by∣∣∣ tr(Ψ−1ΣΨ−1(Σ− Σ̂)
)∣∣∣+ o(m−1) ≤ ‖Ψ−1ΣΨ−1‖F‖Σ− Σ̂‖F + o(m−1) (61)

≤ g(m,α)‖Ψ−1ΣΨ−1‖F + o(m−1). (62)
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c) Rate, mean and class label.: We now consider the convergence of Rε(X ∪ {z}) to

Rε(Σ). Let Γ
.
= m

(m+1)2
(z − µ̂)(z − µ̂)T .

|Rε(X ∪ {z})−Rε(Σ)| =

∣∣∣∣12 log2 det(
ε2

n
I +

m

m+ 1
Σ̂ + Γ)− 1

2
log2 det(

ε2

n
I + Σ)

∣∣∣∣
=

1

2

∣∣∣∣log2 det

(
I + Ψ−1/2

[
(Σ̂− Σ)− 1

m+ 1
Σ̂ + Γ

]
Ψ−1/2

)∣∣∣∣ (63)

≤ n

2
log2

(
1 +

1√
n

∥∥∥∥Ψ−1/2

[
(Σ̂− Σ)− 1

m+ 1
Σ̂ + Γ

]
Ψ−1/2

∥∥∥∥
F

)
(64)

≤
√
n

2 ln 2
‖Ψ−1/2(Σ̂− Σ)Ψ−1/2‖F + o(m− 1

2 ) (65)

≤
√
n

2 ln 2
‖Ψ−1/2‖2

F‖Σ̂− Σ‖F + o(m− 1
2 ). (66)

In going from (63) to (64), we have used that for symmetric A ∈ Rn×n with eigenvalues {λi},

| det(I + A)| ≤
∏

i

(1 + |λi|) ≤
(

1 +

∑
i |λi|
n

)n

≤

1 +
1√
n

(∑
i

λ2
i

)1/2
n

(67)

=

(
1 +

1√
n

tr
(
ATA

)1/2
)n

=

(
1 +

1√
n
‖A‖F

)n

. (68)

On E, the first term of (66) is is bounded above by
√
n

2 ln 2
g(m,α)‖Ψ−1/2‖2

F . (69)

Next, consider the excess cost to code the sample mean, and let ν .
= m

m+1
, ν̄ .

= 1
m+1

. Then

|δMε(X , z)| =

∣∣∣∣n2 log2(1 +
‖νµ̂ + ν̄z‖2

ε2
)− n

2
log2(1 +

‖µ̂‖2

ε2
)

∣∣∣∣ (70)

≤ n

2
log2

(
1 +

∣∣∣∣‖νµ̂ + ν̄z‖2 − ‖µ̂‖2

ε2

∣∣∣∣) (71)

=
n

2
log2(1 +O(m−1)) (72)

= o(m− 1
2 ). (73)

Finally, we consider the convergence of the cost of coding the class label, Y . On E, |π̂−π| ≤√
π(1−π)

mα
. Then,

| log2 π̂ − log2 π| = log2

(
1 +

|π̂ − π|
min(π̂, π)

)
≤ log2

(
1 +

|π̂ − π|
π − |π̂ − π|

)
(74)

≤ 1

ln 2

√
1− π

√
mπα−

√
1− π

=
1

ln 2

√
1− π

mπα
+ o(m− 1

2 ). (75)

Combining (49), (62), (69), (73) and (74) gives the result, (44).
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APPENDIX III

EFFICIENT IMPLEMENTATION IN HIGH DIMENSIONAL SPACES

Given training samples X ∈ Rn×m, and a test sample z ∈ Rn, the MICL decision rule requires

us to compute the following discriminant function:

δLε(x, j) = Lε(Xj ∪ {x})− Lε(Xj)− log2 πj (76)

where

Lε(X )
.
=
m+ n

2
log2 det

(
I +

n

ε2
Σ̂(X )

)
+
n

2
log2

(
1 +

µ̂T µ̂

ε2

)
(77)

In high dimensional spaces, i.e. when n� m, it is generally advantageous to work with the

kernelized version of the rate function, in which the sample covariance Σ̂ is replaced by the

mean-centered matrix of inner products 1
m−1

ΦmX TXΦm, where Φm
.
= I − 1

m
11T is the mean-

centering matrix. Notice that the second and third terms of (76) can be precomputed offline,

during the training stage. However, the first term depends on the new sample, z, and requires

computing the log-determinant of a n× n or m×m matrix. Straightforward numerically stable

implementations require Θ(m3) time (computing log det either via Cholesky decomposition or

singular value decomposition). In this section we show how the online computation required to

evaluate (76) can be reduced to Θ(m2), with a corresponding practical speedup of several orders

of magnitude for the datasets considered in this paper.

We will work with the kernelized version of the rate function:

Rε(X ) =
1

2
log2 det

(
I +

n

ε2

1

m− 1
X̄ T X̄

)
=

1

2
log2 det

(
I +

n

ε2

1

m− 1
ΦmX TXΦm

)
, (78)

where Φm
.
= I − 1

m
1m1T

m ∈ Rm×m.

The quantity of interest, then, is the coding rate when test sample z is introduced:

Rε(X ∪ {z}) =
1

2
log2 det

I +
n

ε2m
Φm+1

 K b

bT c

Φm+1

 . (79)

Here Kij = 〈xi,xj〉, bi = 〈xi, z〉 and c = 〈z, z〉, where the inner product 〈·, ·〉 can be the

standard Euclidean inner product (global MICL), or some nonlinear kernel function (kernel

MICL). (79) can be written as

1

2
log2 det

 I +Q+ 1pT + p1T + λ11T q

qT ξ

 , (80)
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where, letting Υ
.
= Im − 1

m+1
1m1T

m denote the upper left block of the mean-centering matrix,

Φm+1,

Q
.
=

n

ε2m
ΥKΥ, p

.
= − n

ε2m

1

m+ 1
Υb, λ

.
=

n

ε2m

c

(m+ 1)2
,

ξ
.
= 1 +

n

ε2m

1

(m+ 1)2

(
1TK1− 2m1T b + cm2

)
q

.
=

n

ε2m

1

m+ 1

(
−ΥK1 +mΥb +

1T b

m+ 1
1− mc

m+ 1
1

)
. (81)

Here, Q is constant for each class, and can be precomputed during the training phase. Notice

that the total time to compute p, q, λ, ξ is quadratic in the dimension n.

We will apply the following identities regarding small-rank-adujstments of matrix quantites

(the third of which is the Sherman-Woodbury-Morrison matrix inversion lemma):

det

 A b

bT c

 = det(A)(c− bTA−1b). (82)

det(A+BCBT ) = det(A) det(C) det(C−1 +BTA−1B). (83)

(A+BCBT )−1 = A−1 − A−1B(C−1 +BTA−1B)−1BTA−1. (84)

Let Γ
.
= I +Q+ 1pT + p1T + λ11T .

= I +Q+
[

1 p
]
Λ

 1T

pT

 . The determinant in (80)

becomes

det

 Γ q

qT ξ

 = (det Γ)(ξ − qT Γ−1q)

= det(I +Q) det(Λ) det

Λ−1 +

 1T

pT

 (I +Q)−1
[

1 p
] (ξ − qT Γ−1q).

Here, the first follows from (82), and the second from (83). det(I +Q) and (I +Q)−1 can be

precomputed offline. A straightforward application of (84) gives that

Γ−1 = (I+Q)−1 − (I+Q)−1
[

1 p
]Λ−1 +

 1T

pT

 (I +Q)−1
[

1 p
]−1  1T

pT

 (I+Q)−1.
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Then, for u,v ∈ Rm, let suv
.
= uT (I + Q)−1v. We can write the above in terms of quadratic

products involving 1, q and p:

det

 Γ q

qT ξ

 = det(I +Q) det(Λ) det

Λ−1 +

 s11 s1p

s1p spp

 ×

ξ − sqq +

 sq1

sqp

T Λ−1 +

 s11 s1p

s1p spp

−1  sq1

sqp

 (85)

The su v can be computed in quadratic time, and given these the remaining operations are constant

time.

APPENDIX IV

IMPLEMENTATION OF KERNEL MICL

We start with the coding length function

Lε(X )
.
=

m+ n

2
log2 det

(
I +

n

ε2
Σ̂(X )

)
+
n

2
log2

(
1 +

µ̂T µ̂

ε2

)
(86)

=
m+ n

2
log2 det

(
I +

n

ε2

1

m− 1
(X − µ̂1T )(X − µ̂1T )T

)
+
n

2
log2

(
1 +

µ̂T µ̂

ε2

)
=

m+ n

2
log2 det

(
I +

n

ε2

1

m− 1
XΦmΦT

mX T

)
+
n

2
log2

(
1 +

1TX TX1

m2ε2

)
. (87)

Here, Φm
.
= I − 1

m
11T ∈ Rm×m is the mean-centering matrix. Noticing that the nonzero

eigenvalues of (XΦm)(XΦm)T and (XΦm)T (XΦm) are equal, the above is equal to

m+ n

2
log2 det

(
I +

n

ε2

1

m− 1
ΦT

mKΦm

)
+
n

2
log2

(
1 +

1TK1

m2ε2

)
, (88)

where K = X TX ∈ Rm×m is the kernel matrix, or Grammian: Kij = 〈xi,xj〉.

As discussed in Section III, when the data X are nonlinear or non-Gaussian, MICL can still

be applied if we know a map ψ : Rn → H such that ψ(x) is approximately linear or Gaussian.

Suppose we are given such a map from the data space to a Hilbert space H of finite dimension

N , and suppose that we know a kernel function k(x1,x2) = 〈ψ(x1), ψ(x2)〉H. Often, H is very

high-dimensional and it is computationally costly to actually compute ψ(x). However, since

k(·, ·) is known, we can still efficiently compute the coding length in the high dimensional space

H by replacing n with N in (88) and replacing Kij = 〈xi,xj〉 with Kij = k(xi,xj). Notice that

ΦmKΦm still corresponds to the mean-centered matrix of inner products (of the vectors ψ(xi)),

and 1
m21

TK1 corresponds to the norm-squared of the sample mean of the ψ(xi).
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Example 7 (Homogeneous Polynomial): Setting k(x1,x2) =
(
γ xT

1 x2

)d gives the homoge-

neous polynomial kernel used in Section III-B for handwritten digit recognition. In this case,

ψ : x = [x1, . . . , xn] 7→ γd/2
[
xd

1,
√
dxd−1

1 x2, . . . ,
√
dxn−1x

d−1
n , xd

n

]
∈ RN , (89)

where N = M
[d]
n =

(
n+d−1

d−1

)
.

Example 8 (Radial Basis Function): Another popular choice is

k(x1,x2) = exp

(
−‖x1 − x2‖2

2

2σ2

)
. (90)

In this case, H is infinite-dimensional, and (88) is not valid (i.e.the coding length is infinite).

However, we can instead consider the renormalized discriminant functions

δLε(x, i) =
2δLε(x, i)− n log2 n

n
. (91)

For every finite n, δLε(x, i) gives the same classification as δLε(x, i), but as n→∞,

δLε(x, i) → log2 det+

(
1

ε2m
Φm+1K

′Φm+1

)
+ log2

(
1 +

1TK ′1

ε2(m+ 1)2

)
− log2 det+

(
1

ε2(m− 1)
ΦmKΦm

)
− log2

(
1 +

1TK1

ε2m2

)
, (92)

where K and K ′ are the kernel matrices before and after introducing the test sample x and

det+(A) denotes the product of the positive eigenvalues of A � 0. It is interesting to notice that

if rank(K ′) = rank(K) + 1 for each group,

δLε(x, i) + 2 log2 ε → log2 det+

(
1

m
Φm+1K

′Φm+1

)
+ log2

(
1 +

1TK ′1

ε2(m+ 1)2

)
− log2 det+

(
1

(m− 1)
ΦmKΦm

)
− log2

(
1 +

1TK1

ε2m2

)
. (93)

The “covariance” portion of the discriminant function becomes independent of the choice of

distortion! Only the cost of encoding the µ̂ still depends on ε.
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