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Smart camera networks have recently emerged as a new class of sensor network infrastructure

that is capable of supporting high-power in-network signal processing and enabling a wide range
of applications. In this paper, we provide an exposition of our effort to build a low-bandwidth

wireless camera network platform, called CITRIC, and its applications in smart camera networks.

The platform integrates a camera, a microphone, a frequency-scalable (up to 624 MHz) CPU, 16
MB FLASH, and 64 MB RAM onto a single device. The device then connects with a standard

sensor network mote to form a wireless camera mote. With reasonably low power consumption

and extensive algorithmic libraries running on a decent operating system that is easy to program,
CITRIC is ideal for research and applications in distributed image and video processing. Its

capabilities of in-network image processing also reduce communication requirements, which has

been high in other existing camera networks with centralized processing. Furthermore, the mote
easily integrates with other low-bandwidth sensor networks via the IEEE 802.15.4 protocol. To

justify the utility of CITRIC, we present several representative applications. In particular, concrete

research results will be demonstrated in two areas, namely, distributed coverage hole identification
and distributed object recognition.
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Fig. 1. An example of wireless camera network architecture.

1. INTRODUCTION

Traditionally, research in wireless sensor networks has been focused on low-bandwidth
sensors, e.g., acoustic, infrared, and temperature, which limit the ability to iden-
tify complex, high-level physical phenomena. This limitation can be effectively
addressed by integrating high-bandwidth sensors such as camera sensors. Recently,
smart camera networks have emerged as a new class of sensor network infrastructure
that is capable of supporting high-power in-network signal processing and enabling
a wide range of applications, such as visual verification, object recognition, and
tracking.

Figure 1 shows a typical network configuration for a surveillance system based on
a camera network. The camera motes are networked with each other and possibly
with other types of motes over standard wireless protocols such as IEEE 802.15.4
and Bluetooth. Some motes also communicate with gateway computers that are
connected to the Internet. The motes would first perform pre-processing functions
on images captured from the camera sensors and then send the results over the net-
work to a central server, which routes the information to various clients for further
processing and visualization. The server itself may also provide some centralized
processing and logging of data. This architecture allows various clients to interact
with different subsets of the motes and supports different high-level applications.

In this paper, we provide a comprehensive review of our effort to design a wireless
camera sensor platform, called CITRIC [Chen et al. 2008]. The platform is a
wireless camera mote with a 1.3 megapixel camera, a PDA class processor, 64 MB
RAM, and 16 MB FLASH. Given the existing technology constraints, our design
has to make appropriate performance and usability tradeoffs for emerging smart
camera network applications. These tradeoffs include computational power, power
consumption, ease of programming, and ease of integrating with existing wireless
sensor networks. The CITRIC platform enables a new set of in-network information
processing techniques, and also provides a suitable infrastructure to support the
development of high-level applications in the areas of sensor networks and computer
vision.

The CITRIC platform has been successfully deployed as basic camera sensor in-
frastructure in several smart camera applications. Examples include recovery of
ACM Journal Name, Vol. V, No. N, Month 20YY.
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camera network topology [Lobaton et al. 2009; Lobaton et al. 2010], distributed
object recognition [Yang et al. 2009; Naikal et al. 2010], cooperative event detec-
tion and tracking [Wang et al. 2009; Wang et al. 2010], and traffic modeling and
prediction [Shuai et al. 2010]. In the second part of the paper, we review these rep-
resentative applications to validate our choice of performance and usability tradeoffs
for the CITRIC platform. The reader is referred to the respective works for the
implementation detail.

2. SMART CAMERA PLATFORMS: AN OVERVIEW

In the literature, the design of many existing camera motes consist of a camera-
and-processor board and a networking mote, similar to the design of the CITRIC
platform. Before we discuss the architecture of CITRIC in the next section, we first
compare notable existing platforms in the literature. The comparison also justifies
the need for a new smart camera platform such as CITRIC for the applications we
are interested in. A good treatment on the baseline computation requirements for
in-network image processing can be found in [Downes et al. 2006]. More detailed
reviews of existing camera sensor platforms can be also found in [Akyildiz et al.
2008; Rinner et al. 2008].

Some platforms in the past focused on streaming video to a centralized server
for processing, such as eCAM [Park and Chou 2006], a small wearable camera
platform consisting of an image compression module (no programmable CPU) and
a networking node.

One of the earliest camera motes with significant on-board processing is Panoptes
[Feng et al. 2005]. The latest version of the Panoptes platform consists of a Stargate
“gateway mote,” an 802.11b PCMCIA wireless card, and a USB camera. Panoptes
targets applications where one would selectively stream video to conserve band-
width. The use of commercial devices in Panoptes, instead of a tightly integrated
design, imposes extra limitations. Most notably, the frame rate of the camera is
limited by the USB bus speed, which forces the USB camera to compress the image
and the Stargate processor to decompress the image to perform processing, thus
consuming extra computation and power.

On the other hand, the Cyclops [Rahimi et al. 2005], WiSN [Downes et al. 2006],
and WiCa [Kleihorst et al. 2007] platforms have much tighter camera and on-board
processor integration. Cyclops was designed for low-power operation and connects a
complex programmable logic device (CPLD) directly to the camera for basic image
processing such as background subtraction and frame differencing. However, the
8-bit, 7.3 MHz low-power CPU and 64 KB RAM limits the computation capability
for supporting higher-level computer-vision algorithms. WiSN uses a more powerful
32-bit, 48 MHz CPU and also 64 KB RAM, but the processor is shared between
networking and image processing processes. Similar to the Cyclops, the second
generation WiCa mote speeds up low-level image processing using an 84-MHz Xetal-
II SIMD processor, which has a linear processor array of 320 parallel processing
elements and a 16-bit global control processor for higher-level sequential processing.
It uses a separate 8051 MCU and ZigBee module for networking [Kleihorst 2008].

The platform most similar to CITRIC is a prototype platform used by [Teixeira
et al. 2006], which consists of an iMote2 [Memsic 2008] connected to a custom-

ACM Journal Name, Vol. V, No. N, Month 20YY.



4 · Allen Y. Yang et al.

built camera sensor board. The platform consists of an XScale CPU running at
a slightly lower clock speed, 32 MB RAM, 32 MB FLASH, and an OmniVision
camera. Unlike the CITRIC mote, the networking and image processing functions
are both performed on the XScale processor, and the platform does not have a built-
in microphone. The separation of the image processing unit from the networking
unit in the CITRIC mote allows for easy development and testing of various image
processing and computer vision algorithms.

Developed after iMote2 prototype camera mote and CITRIC, DSPcam [Kand-
halu et al. 2009] is another surveillance-oriented camera sensor system. DSPcam
uses a similar camera sensor from OmniVision as iMote2 and CITRIC, but uses a
different processor (BF537) and has a smaller memory size. On the other hand, the
platform integrates a WiPort communication module that supports a faster 802.11
b/g protocol. The software system is built on the uClinux OS and an open-source
image processing library.

Finally, multi-tiered camera networks have also been proposed to use low-cost,
low-power, and low-resolution camera motes to wake up higher-grade cameras to
capture and process interesting images. One such notable multi-tier camera network
system is SensEye [Kulkarni et al. 2005], which consists of 3 tiers of cameras.

Table I summarizes the key hardware specifications of the above smart camera
systems.

3. CITRIC SMART CAMERA PLATFORM

3.1 Architecture

The CITRIC platform consists of a camera daughter board connected to a TelosB
board [Polastre et al. 2005] (see Figure 2(a)), which uses a Texas Instruments
MSP430 microcontroller and Chipcon CC2420 IEEE 802.15.4-compliant radio, both
selected for low-power operation.

The camera daughter board is comprised of a 4.6 cm×5.8 cm processor board and
a detachable image sensor board (see Figure 2(b)). The design of the camera board
uses a small number of functional blocks to minimize size, power consumption, and
manufacturing cost.

The two main choices for the onboard processor are field-programmable gate ar-
rays (FPGAs) and general-purpose processors running embedded Linux. Although
FPGAs have advantages in terms of speed and low-power consumption, the user
would need to program in a hardware description language, making algorithm im-
plementation and debugging a time-consuming process. On the other hand, many
well-known image processing and computer vision algorithms have been efficiently
coded in C/C++, such as the OpenCV library [Bradski et al. 2005]. Therefore, we
chose to use a general-purpose processor running embedded Linux (as opposed to
TinyOS) for the camera board for rapid prototyping and ease of programming and
maintenance.

In the following, we discuss our choice of imaging and microphone sensors, mobile
processor, power management, and wireless networking modules for the CITRIC
architecture. More extensive justification for choosing these modules is given in
[Chen et al. 2008].
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Table I. Comparison of existing wireless camera mote platforms with the new CITRIC
mote platform.

Platform Processor RAM/ROM Camera Wireless

eCAM OV528 Serial Bridge - COMedia C328-7640 Eco node
(JPEG OV7640 camera nRF24E1 radio

Compression only) (640× 480 @ 30 fps) (1 Mb/s, 10 m)

Panoptes Intel XScale PXA255 64/32 MB Logitech 3000 USB 802.11 PCMCIA
(400 MHz, 32-bit CPU) (640× 480 @ ≈ 13 fps) (11 Mb/s

(160× 120 @ ≈ 30 fps) for 802.11b)

Cyclops Atmel ATmega128L 64/512 KB ADCM-1700 Mica2 mote
(7.3728 MHz, 8-bit CPU) (352× 288 @ 10 fps) TR1000 radio

Xilinx XC2C256 (40 kbps)
(16 MHz CPLD)

WiSN Atmel AT91SAM7S 64/256 KB ADCM-1670 CC2420 radio
(48 MHz, 32-bit (352× 288 @ 15 fps) (802.15.4,

ARM7TDMI CPU) ADNS-3060 250 kbps)
(30× 30 @ 100 fps)

WiCa Xetal-II 1.75 MB/- Philips Aquis Grain ZigBee
(84 MHz, (640× 480 @ 30 fps) CC2420 radio

320 PE LPA + GCP) (802.15.4, 250 kbps)

iMote2 Intel XScale PXA271 32/32 MB OV7649 CC2420 radio
+Cam (up to 416 MHz, (640× 480 @ 30 fps) (802.15.4, 250 kbps)

32-bit CPU) (320× 240 @ 60 fps)

DSPcam Blackfin BF537 32/4 MB OV9653 WiPort
(600 MHz) (1280× 1024 @ 15 fps) (802.11 b/g)

(640× 480 @ 30 fps)

CITRIC Intel XScale PXA270 64/16 MB OV9655 TelosB mote
(up to 624 MHz, (1280× 1024 @ 15 fps) CC2420 radio

32-bit CPU) (640× 480 @ 30 fps) (802.15.4, 250 kbps)

3.2 Imaging and microphone sensors

The camera for the CITRIC platform is the OmniVision OV9655, a low-voltage
SXGA (1.3 megapixel) CMOS image sensor that offers the full functionality of
a camera and image processor on a single chip. It supports image sizes SXGA
(1280 × 1024), VGA, CIF, and any size scaling down from CIF to 40 × 30, and
provides 8-bit/10-bit images. The image array is capable of operating at up to 30
frames per second (fps) in VGA, CIF, and lower resolutions, and 15 fps in SXGA.
The OV9655 is designed to perform well in low-light conditions [Omnivision Tech-
nologies Incorporated 2006]. The typical active power consumption is 90 mW (15 fps
@SXGA) and the standby current is less than 20µA.

In order to run high-bandwidth, multi-modal sensing algorithms that utilize both
audio and video sensor outputs, it is important to include a microphone on the cam-
era daughter board rather than use a microphone attached to the TelosB wireless
mote. This simplifies the operation of the entire system by dedicating the commu-
nication between the TelosB and the camera daughter board to data that needed
to be transmitted over the wireless network. The microphone on the board is con-
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(a) (b)

Fig. 2. CITRIC mote. (a) Assembled camera daughter board with TelosB. (b) Camera daughter

board with major functional units outlined.

Fig. 3. Block diagram of major components of the CITRIC camera daughter board.

nected to the Wolfson WM8950 mono audio ADC [Wolfson Micro PLC 2008], which
is designed for portable applications. The WM8950 features high-quality audio (at
sample rates from 8 to 48 ks/s) with low-power consumption (10 mA all-on 48 ks/s
mode) and integrates a microphone preamplifier to reduce the number of external
components.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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3.3 Processor and Memory

The PXA270 [Marvell Corporation 2010] is a fixed-point processor with a maximum
speed of 624 MHz, 256 KB of internal SRAM, and a wireless MMX coprocessor to
accelerate multimedia operations. The processor is voltage and frequency scalable
for low power operation, with a minimum voltage and frequency of 0.85 V and
13 MHz, respectively. Furthermore, the PXA270 features the Intel Quick Capture
Interface, which eliminates the need for external preprocessors to connect the pro-
cessor to the camera sensor. Finally, we chose the PXA270 because of its maturity
and the popularity of its software and development tools. The current CITRIC
platform supports CPU speeds of 208, 312, 416, and 520 MHz, which can be set in
a program by sending specific bit sequences to an I/O memory address.

The PXA270 is connected to 64 MB of 1.8 V Qimonda Mobile SDRAM and 16 MB
of 1.8 V Intel NOR FLASH. The SDRAM is for storing image frames during process-
ing, and the FLASH is for storing code. 64 MB of SDRAM is more than sufficient
for storing 2 frames at 1.3 megapixel resolution (3 Bytes/pixel × 1.3 megapixel ×
2 frames = 8 MB), the minimal requirement for background subtraction. 64 MB is
also the largest size of the Single Data Rate (SDR) mobile SDRAM components
natively supported by the PXA270 currently available on the market. As for the
FLASH, the code size for most computer vision algorithms falls well under 16 MB.

3.4 Power Management

The camera daughter board uses the NXP PCF50606, a power management IC for
the XScale application processors, to manage the power supply and put the system
into sleep mode. When compared to an equivalent solution with multiple discrete
components, the PCF50606 significantly reduces the system cost and size [NXP
Semiconductor 2003]. The entire camera mote, including the TelosB, is designed to
be powered by either four AA batteries, a USB cable, or a 5 V DC power adapter
cable.

3.5 Wireless Communications

Sensor data in a CITRIC system are designed to flow from the motes to a gateway
over the IEEE 802.15.4 protocol, then from the gateway over an Internet back-end
to a centralized server, and finally from the server to the client(s). The maximum
data rate of 802.15.4 is 250 kbps per frequency channel (16 channels available in the
2.4 GHz band), far too low for a camera mote to stream images back to the server
at a high enough quality and frame rate for real-time applications. A key tenet
of the design is to push computing out to the edge of the network and only send
post-processed data (for instance, low-dimensional features from an image) in real-
time back to the centralized server and clients for further processing. If an event
of interest occurs in the network, we can then send a query for the relevant image
sequence to be compressed and sent back to the server over a slightly longer period
of time. Since we are using commercial off-the-shelf motes running TinyOS/NesC,
we can easily substitute different standard routing protocols to suit an application’s
particular needs. For instance, the real-time requirements of surveillance imply that
typical communication does not need to run over a reliable transport protocol.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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4. PERFORMANCE BENCHMARKS

4.1 Energy Consumption

The power consumption of the camera mote is determined by logging the current
and voltage of the device when it is connected to four AA batteries (outputting
≈ 6 V). A Tektronix AM 503B Current Probe Amplifier is used to convert current
to voltage,1 and a National Instruments 9215 USB data logger is used to log both
the voltage of the batteries and the voltage of the current probe.

First, we measure the power consumption of the camera daughter board alone
running Linux but with no active processes (Idle). We then take the same mea-
surement but with the Tmote attached, although no data is sent to the Tmote
(Idle + Tmote). In this test, the Tmote is running an application that waits to
receive any packets from the camera board and transmits over the radio. On av-
erage, Idle consumes 428 – 478 mW, and Idle + Tmote consumes 527 – 594 mW,
depending on the processor speed.

We also measure the power consumption of the mote running a typical back-
ground subtraction function. The test utilizes all the components of the mote by
both running the CPU and using the Tmote to transmit the image coordinates
of the foreground. At the processor speed 520 MHz, the power consumption is
970 mW. Note that the power consumption may be reduced by enabling power
management on the Tmote. Using four fully charged AA batteries each with a ca-
pacity of 2870 mAh, the average life span of the CITRIC mote continuously running
background subtraction ranges from 5.7 hours at 520 MHz to 7.5 hours at 208 MHz.2

4.2 CPU Speed Benchmarks

The speed benchmarks for the camera board are chosen to reflect typical image
processing computations. We compare the benchmarks with and without the Intel
Integrated Performance Primitives (IPP) library to evaluate whether IPP provides
a significant performance increase:

(1) The Add benchmark adds two arrays.

(2) The Background Subtraction benchmark computes the difference of two arrays
and then compares the result against a constant threshold to get a boolean
array (mask).

(3) The Median Filter benchmark performs smoothing by taking the median pixel
value of a 3× 3 pixel area at each pixel.

(4) The Canny benchmark implements the first stage of the Canny edge detection
algorithm.

The benchmark results for Add and Background Subtraction are averaged over 1000
trials, while those for Median Filter and Canny are averaged over 100 trials.

Two sets of benchmarks are performed. Figure 4 shows the average run time for
each function when the processor speed varies from 208 MHz to 520 MHz, while the
image resolution is fixed at 512× 512. Figure 5 shows the average run time in the

1The current probe device converts current to voltage through the use of inductance.
2In comparison, the battery life of a completely idle CITRIC lasts approximately 20 hours.
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Fig. 4. Average run time of basic image processing functions on 512 × 512 images. The
fastest run time at 520 MHz is shown in parentheses.

Fig. 5. Average run time (in log scale) of basic image processing functions on various image
resolutions. The speed of the CPU is fixed at 520 MHz. The fastest run time (on 64× 64
images) is shown in parentheses.

logarithmic scale when the image resolution varies from 512× 512 to 64× 64, while
the CPU speed is fixed at 520 MHz.

First, note that the IPP versions of the functions are not necessarily always
faster than their non-IPP counterparts. For example, the Background Subtraction
benchmark consists of an arithmetic operation and a comparison. Implemented in
IPP, this requires two function calls and thus two iterations through the entire array.
But implemented without IPP, we can perform both operations in the same iteration
through the array, resulting in only one iteration and fewer memory accesses. Such
non-IPP optimizations should be taken into consideration when building future

ACM Journal Name, Vol. V, No. N, Month 20YY.
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applications in order to achieve optimal performance.
Second, the non-linear performance curve for different CPU frequencies in Figure

4 can be attributed to the constant speed of memory access (the bus speed is
208 MHz regardless of the processor speed).

Finally, in Figure 5, we can see that the change in the average run time of each im-
age processing function with respect to different image resolutions largely depends
on the complexity of the algorithm. For simple calculations such as image addition
and background subtraction, the computational complexity (and hence the average
run time) grows proportionally to the total number of pixels in the image. For more
expensive algorithms such as median filter and edge detector, reducing the image
resolution can still significantly improve the real-time performance. For example,
the fastest run time to execute Canny edge detector on a 64 × 64 downsampled
image is 5.2 ms.

4.3 Multihop Route Communication Performance

Although the CITRIC mote is designed for camera sensor networks that mainly
perform in-network processing and consume very little communication bandwidth,
some applications occasionally may transmit bursts of images over wireless channels
using multihop routing. This bursty, heavy traffic may result in congestion and
unpredictable behavior. In this experiment, we study the end-to-end performance
of communicating over a multihop route with a complete communication stack
that includes the popular WSN routing protocol, collection tree protocol (CTP)
[Gnawali et al. 2009], under bursty, heavy traffic loads [Hong et al. 2009]. CTP
is a tree-based, address-free, multihop routing protocol implemented in TinyOS.
We choose to evaluate the communication overhead introduced by CTP because
of its widespread use in WSNs and because its source code is readily available.
The experiments below are meant to help practitioners find the optimal network
configurations for different application scenarios.

In order to study the behavior of the network with a fixed number of hops, we first
need to modify the routing engine of CTP such that the path from a source CITRIC
mote to the gateway is fixed. As such, we are not studying routing instability (the
routing algorithm changing paths). Along the path, a line of TelosB motes relays
images from the source to the gateway. Each node is placed within the interference
range of all the other nodes to test the performance of CTP under the worst network
congestion conditions. The image data to be transmitted from the source node is
60 kByte, which is equivalent to the file size of a typical 640×480 JPEG color image
that captures a natural scene.

We conduct two experiments to measure the throughput, end-to-end packet de-
livery ratio, and latency under different packet payload sizes and packet generation
rates. Here, the packet generation period (1/rate) is the time the source CITRIC
mote waits between sending successive packets containing the parts of an image.
Each experiment include trials for 3, 5, 7, 9, and 11-hop topologies.

In the first experiment, we measure the network performance under 25, 50, 75,
and 100 byte packet payloads.3 The results are shown in Figure 6.

3The maximum packet size of an IEEE 802.15.4 packet is 127 bytes, and each packet has a header

of 25 bytes consisting of the CTP, IEEE 802.15.4, and CITRIC mote specific header fields.
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(a) Throughput as a function of hop count.

(b) End-to-end packet delivery ratio as a function of hop

count.

(c) Latency to send a 60 kB image as a function of hop

count.

Fig. 6. Network performance with different payload sizes while using the maximum packet gener-
ation rate (0 ms delay between generating/sending successive packets at the source).

As expected, the throughput and end-to-end packet delivery ratio decreases with
increasing hop counts because of increased self-interference. In addition, experi-
ments with a payload size of 100 bytes shows slightly lower throughput than the
other smaller payload sizes when the number of hops increases. This is because a
larger payload will take longer to transmit and have a higher chance of collision
with other packets (CTP runs on a CSMA MAC layer).

ACM Journal Name, Vol. V, No. N, Month 20YY.
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(a) Throughput vs. hop count.

(b) End-to-end packet delivery ratio vs. hop count.

(c) Latency to send a 60 kB image vs. hop count.

Fig. 7. Network performance with different packet generation periods while using a 100-byte packet

payload (0 ms means no delay between generating/sending successive packets at the source).

In the second experiment, we measure network performance when the packet
generation period is 0,4 40, 80, 120, and 160 ms. Packet generation intervals over
160 ms are not tested because we rarely observe retransmissions at 160 ms intervals.
The results are shown in Figure 7.

Note that using a packet generation period of 0 may not necessarily yield the best
throughput and packet delivery ratio in a multihop network. For instance, a packet

4There are always packet ready for transmission when the package generation period is 0.
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generation period of 40 ms performs better than other packet generation periods
in many of the experiment runs. Also, the throughput and packet delivery ratio
for different packet generation periods start to drop at different hop counts. This
shows that the packet generation period can be optimized based on the network
density.

5. DISTRIBUTED COVERAGE HOLE IDENTIFICATION

In the next two sections, we present two applications of CITRIC camera networks,
which demonstrate the utility of the computation and communication capabilities
of these systems. The first application is recovering the coverage of a distributed
camera network, which is defined as the set of locations in the physical space in
which an agent is visible by at least one of the cameras. Extracting topological
information (e.g., number of holes) about this coverage can enable surveillance
and optimal message routing in the network without the need for calibration of
the cameras. Holes in the coverage may be caused by lack of coverage or object
occlusion in the scene. Identifying holes in a camera network helps us determine
where new sensors need to be placed, and it also helps extract geometric information
about the environment, such as the existence of circular corridors, without relying
on exact localization. These two features are essential for ad-hoc camera networks.

Recovering network coverage and topology from sensor data has been a classical
problem in sensor networks. Many prior works [Meguerdichian et al. 2001; de Silva
and Ghrist 2007] have focused on estimating the static communication graph of a
sensor network. In this approach, each sensor node would be assumed to occupy
a radially symmetric broadcast region and a symmetric sensing region. However,
for camera sensor networks, it is more relevant to consider recovering the visual
coverage of the network, because the common field of view of a camera sensor
is not radially symmetrical and is susceptible to various image nuisances (e.g.,
occlusion and false detection). For example, computing the camera adjacency graph
(CAG) has been the topic of several recent studies, which are based on either
structure-from-motion techniques [Cheng et al. 2007; Turcot and Lowe 2009] or
object tracking algorithms [Khan and Shah 2003; Rahimi et al. 2004; Calderara
et al. 2005]. One of the main constraints of the CAG approach is that, due to the
computational complexity of extracting and matching robust image features across
multiple images, the algorithm/system typically requires considerable power and
communication bandwidth, and therefore is implemented in a centralized fashion.

5.1 A Topological Approach

Our objective of distributed coverage hole identification is the distributed aggrega-
tion of observations from the nodes in order to localize holes in the coverage of the
camera network. An approach for solving this problem requires the estimation of
the overlap between cameras in order to extract some topological invariants [Loba-
ton et al. 2009; Lobaton et al. 2010] without localizing the cameras. In Figure 8,
we illustrate a graphical representation of the coverage of a CITRIC camera net-
work. The representation is in a distributed fashion based on the CN -Complex,
a concept that will be introduced below. As our focus is to identify holes in the
coverage of a camera network, we can assume that all the nodes are synchronized,
a communication network has been established, and they are capable of detecting

ACM Journal Name, Vol. V, No. N, Month 20YY.



14 · Allen Y. Yang et al.

(a) (b)

Fig. 8. A graphical representation of the CN -Complex, built using CITRIC camera network in

Figure 9. (a) The physical layout with a sample path for the target. (b) The CN -Complex where

the mapping of the path is determined by specifying the sequence of cameras for which the target
is visible. Each vertex represents a single decomposed region; edges correspond to the pairwise

intersection between regions; triangles correspond to the three-way intersections, etc. Coordinates

for the vertices are assigned arbitrarily and are irrelevant in the identification of holes using the
homology of the complex.

agents in their field of view.5

The distributed algorithm to find coverage holes is illustrated in Figure 9, in
which the CITRIC cameras are used and no calibration information is assumed
(i.e., camera locations and the scene are unknown). The paper [Lobaton et al.
2009] first introduced a simplicial representation called the CN -Complex, which
captures accurate topological information about the coverage of the network. The
CN -Complex is built by following two simple steps:

Step 1. Decomposing the coverage of each camera utilizing the observed occlu-
sions of agents moving through the scene, and

Step 2. Determining the overlap between the resulting regions.

The CN -Complex is the nerve complex of the decomposed regions. In simple words,
the nerve of a collection of regions is a list where each element corresponds to the sets
of regions with a non-empty intersection. The CN -Complex can be used to identify
holes in the coverage by computing the homology from the simplicial complex.

Using the CN -Complex model, the coverage hole of the test bed shown in Figure 9
can be established as follows (see [Lobaton et al. 2009] for more details). Each
mote observes a remote controlled car moving through the environment. Occluding
contours are detected in the image domain of each camera as the target appears
and disappears behind the obstacles. Figure 9(b) illustrates how these contours
can be used to decompose the image domain of camera 5, which in turn specifies a
decomposition of the coverage of the camera (Figure 9(c)). Figure 9(d) illustrates

5Synchronization can be accomplished by methods such as the Flooding Time Synchronization

Protocol (FTSP) [Maroti et al. 2004] for TinyOS. Agents can be detected using simple computer
vision algorithms such as background subtraction for which some benchmarks have been provided

for the CITRIC platform in Section 4.2.
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Fig. 9. A network setup consisting of six CITRIC motes. (a) The testbed in which the network is

deployed and where a remote controlled car is used as a target. (b) Occluding contours detected
in the view of camera 5 are used to decomposed its image domain. (c) This decomposition of the

image domain leads to a decomposition of the coverage of camera 5 into regions 5a and 5b. (d)

The decomposed regions for all cameras are shown.

all of the decomposed regions (e.g., the coverage of camera 1 is decomposed into
region 1a and 1b). Note that this process is performed locally without transmitting
any information or using calibration of the cameras. The detections of the target is
done using the background subtraction function described in Section 4.2 followed
by a median filtering step. As observed in Figure 4, these computations can be done
at about 8 frames per second using 512 × 512 images. The detection of occluding
contours is accomplished by detecting the edges along which a target disappears
and then fitting lines.

Next, the overlap between the resulting regions is obtained by having each mote
transmit an appearance or disappearance message to the network every time that
an agent enters or leaves a region. Given that the motes have already synchronized
their clocks, this is sufficient information to determine the overlap between the
decomposed regions. The overlap information is captured in the collection of sets
of overlapping regions, the nerve. The following collection determines all overlaps
in the network:

{[1a 1b 4b], [1b 2a 2b], [2b 3a 3b], [3b 4a 4b 5a], [3b 5a 6a], [5a 5b 6a]} . (1)

This collection specifies an abstract simplicial complex that is depicted visually in
Figure 8(b). This is a visual representation displayed to a user logging into the
CITRIC network. Note that this representation captures the fact that there is a
hole in the coverage corresponding to a circular corridor. In [Lobaton et al. 2009], it
is proven that the decomposition step using the occluding contours in the images is
essential to guarantee that the complex accurately captures topological information
of the network coverage.

During the construction process using the CITRIC platform, the amount of in-
ACM Journal Name, Vol. V, No. N, Month 20YY.



16 · Allen Y. Yang et al.

formation transmitted is minimal (a few transmission per minute) since the only
observations transmitted were due to the agent moving in and out of the view of
cameras. Note that direct streaming of video from multiple motes to a centralized
location could not be supported by our network due to bandwidth and battery
power limitations.

Finally, a distributed version of the CN -Complex that uses observations from
multiple unidentifiable agents has been proposed without localization information
of the cameras or the objects in the scene by exploiting temporal correlation of
the detections of unidentified agents [Lobaton et al. 2010]. Imperfect foreground
regions can be used to identify occluding contours in the image domain of each
camera, and then the detection results of agents entering or leaving each of these
regions can be aggregated in a distributed fashion in order to discover overlaps
between camera regions. This process requires the storage of a few arrays of size
equal to an image which could be easily accommodated by the CITRIC platform
thanks to its 64 MB of SDRAM. In [Lobaton et al. 2010], the CN -Complex is also
used for tracking unidentified agents.

5.2 Discussion

This particular application illustrates a family of distributed algorithms that require
real-time processing of images with low-bandwidth communication requirements.
The following are the key hardware requirements for the implementation of these
algorithms:

Video Processing. The video from the cameras need to be processed in real-time
in order to detect agents in the field of view of each node. Since the only events
broadcasted by the nodes are the entrance/exit of agents within each camera view,
the camera resolutions and frame rates need to be sufficient to identify these events.
Each node needs to have enough memory and computational power in order to
achieve this goal. A frame rate of 5 fps with an image resolution of 512 × 512
pixels was sufficient for the experiments outlined in this section. However, higher
temporal and special resolution would be required for more complex scenarios.

Communication. For this application, the bandwidth requirements were minimal.
Latency of packets is not a concern as long as enough agent detections can be stored
in memory, which is the case for our platform. In order to further reduce the number
of messages transmitted from each node, it is possible to aggregate detection events
and transmit them as a batch of observations.

Power. As stated in Section 4.1, we expect a lifetime of about 5 hours for each
node running the algorithm presented in this section, which requires the continuous
detection of agents using background subtraction. However, as the probabilities of
overlaps between cameras can be learned, they can be used to predict the transitions
of agents tracked in the network. Under these assumptions, the camera daughter
board in each node could be placed in Idle mode whenever there are no agents
present nearby. This adaptation procedure can significantly extend the life of the
network.
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6. DISTRIBUTED OBJECT RECOGNITION

Object recognition is one of the most active topics in computer vision. As human
perception is known to excel in recognizing complex objects with little effort in
images, it is reasonable to expect that a well designed computer vision system
may also perform the same functionality. Traditionally, this problem has been
studied with respect to only single camera sensors. The development of smart
camera sensors such as CITRIC has led to growing interests to be able to recognize
object images in a distributed fashion. One of the advantages is that the multi-
view information can effectively compensate many well-known visual nuisances in
the shared field of view, such as object occlusion and pose variation, and hence
boost the recognition accuracy. In this section, we discuss several novel algorithmic
techniques that enable such distributed object recognition systems.

6.1 Literature Review

First, we shall briefly review existing methods to recognize object images on sin-
gle cameras. In the literature, there exist two dominant approaches, namely,
appearance-based methods and feature-based methods. Appearance-based meth-
ods classify query images based on their raw pixel values, edges, color histograms,
or image gradients. The solutions usually appeal to only a small class of object
categories such as human faces and vehicles. One of the challenges for appearance-
based methods is that with varying illumination, camera vantage point, and object
surface texture and shape, it is quite impossible to measure and train all appear-
ances of the objects in question. Therefore, in our discussion, we will only focus on
feature-based methods.

One influential theory in human vision explains the object recognition function
on the basis of decomposing objects into constituent parts (i.e., distinctive image
patches) [Oram and Perrett 1994; Agarwal and Roth 2002]. This approach in
computer vision is generally referred to as bag-of-words (BoW) methods [Nistér
and Stewénius 2006]. Local invariant features such as SIFT-type6 features (e.g.,
SIFT [Lowe 1999], SURF [Bay et al. 2008], or CHoG [Chandrasekhar et al. 2009])
are first extracted from images. The vector representation of these features are
also called codewords. Each codeword can be shared among multiple object classes.
Hence, the codewords from all object categories can be clustered into a vocabulary
(or codebook). The size of a typical vocabulary ranges from thousands to hundreds
of thousands. One popular representation of the object features computes the
frequencies of the instances of the codewords in an image, which is called a histogram
[Nistér and Stewénius 2006; Chen et al. 2009] (as an example shown in Figure 10).
As a result, the histogram becomes a compact representation of the object(s) that
appear in the image.

6SIFT stands for scale-invariant feature transform. In computer vision, certain 2-D image fea-

tures are considered viewpoint-invariant, such as corner points, T-junctions, and local extremal
illumination regions, as their relative pixel values compared to the neighboring pixels are invariant

to moderate camera viewpoint changes.
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Fig. 10. Left: CHoG feature points detected in an image of a building. Right: The
corresponding histogram vector based on a 10,000-D codebook.

Fig. 11. The flow diagram of a distributed object recognition system consisting of multiple
smart camera sensors and a base station computer.

6.2 Distributed Object Recognition with Camera Sensor Networks

Object recognition solutions have been demonstrated on several smart camera plat-
forms, such as SensEye [Kulkarni et al. 2005] and Panoptes [Feng et al. 2005]. Using
the CITRIC platform, we have recently studied more sophisticated distributed ob-
ject recognition systems with bandwidth constraints [Yang et al. 2009; Naikal et al.
2010]. Figure 11 illustrates the flow diagram of a typical distributed object recogni-
tion system. The key idea is that the light-weight module that extracts and encodes
high-dimensional image features should be implemented on the smart camera and
can be deployed in a distributed fashion, while the second module that decodes
the compressed features over the network and performs classification should be
implemented on a base station computer.

To execute this design strategy, we note that the implementation of feature ex-
traction on CITRIC is straightforward, as existing public computer vision code
(e.g., SIFT and SURF) can be simply recompiled on the embedded Linux system.
However, when the sensor measurements are received at the base station, it becomes
more involved to achieve higher the recognition rate using multiple camera views
compared to single cameras. More specifically, one needs to find good answers to
the following problems:

(1) When a common object appears in a shared field of view, shared object features
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and their correspondence need to be identified across multiple camera views.

(2) Once the local measurements from the camera sensors are transmitted to a
network computer, the classification algorithms should be able to harness the
multi-view information about the objects to boost the recognition accuracy.

In the rest of the section, we will highlight several approaches to these two problems.
The most important factor that one needs to consider in distributed object recog-

nition is whether the sensors are allowed to exchange viewpoint information during
the recognition. If information exchange between sensors is permitted, the power
consumption to support such communication will increase significantly compared
to the alternative scenario. This will be a major disadvantage in wireless sensor
networks. Nevertheless, if the object of interest is a rigid body, its feature corre-
spondence in multiple views can be established by standard structure-from-motion
techniques [Turcot and Lowe 2009]. Using random sample consensus (RANSAC)
algorithms [Fischler and Bolles 1981], the existing methods would iteratively sam-
ple a small set of image features that have similar vector representation in a pair
of images to establish a hypothesis of a rigid-body motion. The motion model
that achieves the highest consensus among the correspondences in the two views
is declared as the optimal solution. In [Ferrari et al. 2004], the authors further
proposed to improve the robustness of the matching process by building a group of
aggregated matches (GAM) to cover larger image regions than individual features,
and subsequently establishing a dense two-view correspondences using a sorted list
of GAMs with the largest sizes.

In addition to the excessive power consumption involved in information exchange
between sensors, the computational complexity of the structure-from-motion algo-
rithms typically grows exponentially with the number of camera views. Namely,
estimating consensus rigid-body models in three or four images is significantly more
expensive than in a pair of images. Furthermore, if BoW methods are used for
classification, the location information of the image features often does not play
a significant role. Therefore, complementary to the above multi-view geometric
algorithms, our works [Yang et al. 2009; Naikal et al. 2010] have studied signal pro-
cessing algorithms to simultaneously compress high-dimensional visual histograms
from multiple views and identify shared object features without resorting to prior
training data, camera calibration, or inter-sensor communication.

Our proposal has been motivated by the theory of compressive sensing [Donoho
2006; Candès and Tao 2006] and its recent extension in sensor networks [Baron
et al. 2006]. The key observation on the visual histograms that describe the object
feature instances in individual images is that the representation is often spare on
a large vocabulary, more specifically, all coefficients are nonnegative and most of
them are (approximately) zero (as shown in Figure 10), as only a small number of
features may be exhibited in a single image. Furthermore, since SIFT-type features
are robust to some degree of camera rotation and translation, images from different
vantage points may share a subset of the same features, thus yielding histograms
with similar nonzero coefficient values. This phenomenon is called joint sparsity
(JS).

Denote L as the number of the camera sensors that observe the same object in
3-D, and let x1,x2, . . . ,xL ∈ RD be the corresponding SIFT histogram vectors.
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The problem of encoding multiple-view object images can be formulated as follows.
For the high-dimensional histogram vectors extracted from the L images, define a
JS model as

x1 = xc + z1,
...

xL = xc + zL,

(2)

where xc called the common component represents the JS pattern, and each zi

represents an innovation pertained to the ith view. Furthermore, both xc and zi

are also sparse.
On each camera sensor i, a linear sampling function is sought using a random

matrix Ai ∈ Rd×n:

fi : xi ∈ Rn 7→ bi
.= Aixi ∈ Rd. (3)

At the base station, upon receiving b1, . . . , bL compressed features, the multi-view
JS model can be modeled in a single linear system:[

b1

...
bL

]
=

[
A1 A1 0 ··· 0

...
. . . . . .

AL 0 ··· 0 AL

]  xc
z1

...
zL


⇔ b′ = A′x′ ∈ RdL.

(4)

This underdetermined linear system of equations with respect to the unknowns
xc, z1, . . . ,zL can be then solved via `1-minimization [Naikal et al. 2010]:

min ‖x′‖1 subj. to b′ = A′x′, (5)

The equation (5) can be formulated as a linear programming problem, and has
stable and efficient numerical solvers [Yang et al. 2010]. Using the JS model, one
can flexibly choose different sampling rates (i.e., d/n) determined by the sampling
matrix Ai for individual camera channels, and the subset of shared image features
together with the innovations are simultaneously decoded without any prior infor-
mation about the objects and camera locations.

6.3 Experiments

In the following, we present experimental results to validate the performance of
the JS model under network bandwidth constraints. To aid peer evaluation, we
have released a public multiple-view image database called the Berkeley Multiview
Wireless (BMW) database in [Naikal et al. 2010].7 The BMW database consists
of multiple-view images of 20 landmark buildings on the campus of University
of California, Berkeley, collected by the CITRIC cameras. For each building, 16
different vantage points have been selected to measure the 3-D appearance of the
building.

Using the BMW database, we have benchmarked the performance of the dis-
tributed object recognition system shown in Figure 11 (more detail presented in
[Naikal et al. 2010]). We design two testing scenarios to evaluate the performance

7The database can be accessed online at: http://www.eecs.berkeley.edu/~yang/software/

CITRIC/.
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Fig. 12. Comparison of the CHoG recognition rates (in color) in the small-baseline scenario
with different random projection dimensions.

of the distributed recognition scheme, namely, the small-baseline and the large-
baseline scenarios. In the small-baseline scenario, images captured concurrently
from multiple cameras at one vantage point are used to determine the object cat-
egory. In the large-baseline scenario, images captured from one to three different
vantage points are randomly chosen from the same testing category for recognition.
In all the experiments, the query histograms are projected from 10,000-D space via
random projection to lower projection dimensions ranging from 1000 to 9000 using
the encoding function (3).

Figure 12 shows the recognition rates for one to three cameras in the small-
baseline scenario. With small projection dimensions close to 1000, the recognition
rates using two or three cameras improves significantly compared to the single-view
recognition rates. For instance, at d = 1000, the recognition rate from a single
camera is about 45%. The rate is boosted to 68% with two cameras and 82%
with three cameras. It is also important to note that the improved recognition
rates using the multiple-view information are also higher than merely increasing
the projection dimension (i.e., the bandwidth) in the single-camera scenario. For
instance, The recognition rate for 2-Cam at d = 2000 is higher than the rate for
1-Cam at d = 4000.

The large-baseline performance is evaluated using the same procedure as in the
small-baseline experiments. Figure 13 shows the recognition rates versus the ran-
dom projection dimension. Clearly, the recognition rates using a single camera
does not change from the small-baseline scenario. As shown in the plot, the recog-
nition rates at the low projection dimension of 1000 are lower than those of the
small-baseline scenario for the 2 and 3-Cam cases. However, as the projection di-
mension increases, the multiple-view recognition rates reach about 95% and begin
to plateau. Such rates are never achieved even without lossy compression in the
single view case.
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Fig. 13. Comparison of the CHoG recognition rates (in color) in the large-baseline scenario
with different random projection dimensions.

7. OTHER APPLICATIONS

In addition to the elementary image processing functions and the two applications
we have discussed so far, we here summarize a few more classes of camera network
applications that could utilize the CITRIC camera platform.

(1) Cooperative object detection and tracking. Object/event detection and tracking
has been a classical problem in computer vision and sensor networks [Javed
et al. 2003; Dick and Brooks 2004; Gilbert and Bowden 2006; Song and Roy-
Chowdhury 2008]. Traditional solutions have been based on a centralized
scheme where the system relies on a back-end layer of computer servers to pro-
cess the video sequences. Utilizing the computational power of CITRIC, the
authors of [Wang et al. 2009; Wang et al. 2010] have studied how to perform
cooperative object detection and tracking based on only peer-to-peer communi-
cation, and therefore completely forgo the centralized server model. The system
is designed to locally detect certain well-defined primitive events on individual
CITRIC sensors. When an event is detected on a camera sensor, it will inform
its neighboring sensors about the event. Over time, more complex events can
be recognized by aggregating several primitive local events in the perimeter of
the camera network.

(2) Traffic modeling and prediction. Beyond the low-level object detection and
tracking, there has been a consistent interest in modeling and predicting traffic
patterns using information obtained from camera sensor networks. The goals
of the application typically include path discovery [Kettnaker and Zabih 1999;
Melo et al. 2006], traffic statistics prediction [Guitton et al. 2007; Tubaishat
et al. 2009], and accident detection [Kamijo et al. 2000; Bramberger et al. 2006],
to name a few. A concrete example using CITRIC motes is presented in [Shuai
et al. 2010]. Without assuming camera calibration and reconstruction of global
object tracks, the work utilizes a Bayesian framework to predict the traveling
time of moving objects, estimate the object paths probabilistically, and perform
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object association between multiple camera views in the region of interest.

(3) Human behavior interpretation. Another important topic in camera sensor
networks is interpreting more complex human behavior, activities, and intent.
The intent of humans under surveillance must be considered in the context
of the surrounding environment. Therefore, analyzing the relations between
humans and their surrounding 3-D structures has been the main focus of several
studies (see [Sankaranarayanan et al. 2009] and the references therein). A recent
work [Tron et al. 2008] also studied robust estimation of object poses using a
camera network. When an object is observed by multiple cameras, its 3-D pose
would be determined by a distributed averaging consensus algorithm directly
on the manifold of 3-D rigid-body transformations. Finally, systems based on
grammatical inference have been proposed to classify more complex human
behavior and intent (see [Lymberopoulos et al. 2008; Geyik and Szymanski
2009] and the references therein). For instance, [Lymberopoulos et al. 2008]
proposes a system called BScope to interpret human activity patterns in an
assisted-living application.

(4) Large-scale, multi-purpose camera sensor networks. Eventually, any real-world
deployment of a large-scale camera sensor network would prefer the system to
support a diverse list of applications, which may or may not be well-defined at
the time of deployment. In [Kulkarni et al. 2005], the authors advocate a het-
erogeneous, multi-tier sensor network to reconcile the traditionally conflicting
design goals of latency and energy-efficiency. In VideoWeb [Nguyen et al. 2009],
the authors argue that it is still a challenge to crease a robust wireless network
to support multiple high-bandwidth video cameras at their peak performance;
while another challenge is to make the entire camera system reconfigurable to
implement a variety of real-world, real-time surveillance applications. Despite
these pioneering works, it is fair to say that many open problems abound in
this topic.

8. CONCLUSION AND FUTURE WORK

We have presented a comprehensive review of the architecture of CITRIC, a wireless
camera mote system for low-bandwidth networks. The system enables the captured
images to be processed locally on the camera board so that only compressed, low-
dimensional features or other small pieces of data need to be transmitted over the
wireless network. To this end, the CITRIC mote has been designed to have state-
of-the-art computing power and memory (up to 624 MHz, 32-bit XScale processor;
64 MB RAM; 16 MB ROM), and runs embedded Linux. The mote communicates
over the IEEE 802.15.4 protocol, which also makes it easy to integrate with exist-
ing WSNs. In this paper, we have also discussed several convincing examples to
demonstrate the utility of the platform in smart camera networks.

For future work, we plan to continue improve the usability of our system by
enabling clients to manage and interact with clusters of motes instead of individual
motes. We will also expand the available C library of image processing functions
on our camera motes and evaluate their performance. Finally, we are interested in
integration of CITRIC and other heterogeneous sensor modalities to create a truly
large-scale, multi-purpose sensor network for urban surveillance applications.
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