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Introduction
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What is Sparsity

A signal is sparse if most of its coefficients are (approximately) zero.

e
e

(a) Harmonic functions (b) Magnitude spectrum
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(b) Magnitude spectrum

(a) Harmonic functions
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Sparsity in spatial domain

@ gene microarray data [Drmanac et al. 1993]
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o Sparsity in human visual cortex [Olshausen & Field 1997, Serre & Poggio 2006]
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@ Feed-forward: No iterative feedback loop.

@ Redundancy: Average 80-200 neurons for each feature representation.

© Recognition: Information exchange between stages is not about individual neurons, but
rather how many neurons as a group fire together.

Berkeley

Allen Y. Yang  <yangQeecs.berk: Compressed Se Meets Machine Learning


<yang@eecs.berkeley.edu>

Introduction
[e]e]e] lele)

Sparsity and #!-Minimization

O “Black gold” age [Claerbout & Muir 1973, Taylor, Banks & McCoy 1979]
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Figure: Deconvolution of spike train.
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Sparsity and ¢1-Minimization

O “Black gold” age [Claerbout & Muir 1973, Taylor, Banks & McCoy 1979]

Figure: Deconvolution of spike train.
@ Basis pursuit [Chen & Donoho 1999]: Given y = Ax and x unknown,
x* = arg min ||x||1, subject to y = Ax
© The Lasso (least absolute shrinkage and selection operator) [Tibshirani 1996]

x* = arg min ||y — Ax|

2, subject to ||x||1 < k
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Taking Advantage of Sparsity

What generates sparsity? (d’aprés Emmanuel Candes)

o Measure first, analyze later.

o Curse of dimensionality.
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Taking Advantage of Sparsity

What generates sparsity? (d’aprés Emmanuel Candes)

o Measure first, analyze later.

o Curse of dimensionality.

@ Numerical analysis: sparsity reduces cost for storage and computation.

@ Compressed sensing [Donoho 2006, Candes & Tao 2006]
If signal x is sufficiently sparse, perfect reconstruction from y = Ax with sampling rate much
lower than Shannon-Nyquist bound.
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Taking Advantage of Sparsity

What generates sparsity? (d’aprés Emmanuel Candes)

o Measure first, analyze later.

o Curse of dimensionality.

@ Numerical analysis: sparsity reduces cost for storage and computation.

@ Compressed sensing [Donoho 2006, Candes & Tao 2006]
If signal x is sufficiently sparse, perfect reconstruction from y = Ax with sampling rate much
lower than Shannon-Nyquist bound.

© Regularization in classification:
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(a) decision boundary (b) maximal margin
Figure: Linear support vector machine (SVM) Berkeley
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One-Pixel Camera

Low-cost, fast, sensitive
optical detection

Compressed, encoded
image data sent via RF
for reconstruction

"""" (((

y = Ax, where A € R9%D s a random projection matrix, d < D.

Image encoded by DMD
and random basis

Y1 = A(17 :)X
Y2 = A(27 :)X
Yd = A(d7 :)X
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This Lecture

O C(lassification via compressed sensing

@ Performance in face recognition

© Extensions

o Outlier rejection
o Occlusion compensation
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Classification via Sparse Representation
o0

Problem Formulation in Face Recognition

@ Notations
o Training: For K classes, collect training samples {vi,1,- - ,via }, -+, {vk,1," - ,VKY,,K} € RP.
o Test: Present a new y € RP, solve for label(y) € [1,2, - - , K].
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Problem Formulation in Face Recognition

@ Notations
o Training: For K classes, collect training samples {vi,1,- - ,via }, -+, {vk,1," - ,VKY,,K} € RP.
o Test: Present a new y € RP, solve for label(y) € [1,2, - - , K].

@ Construct RP sample space via stacking

I

Figure: For images, assume 3-channel 640 x 480 image, D = 3 - 640 - 480 ~ 1e6.
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o0

Problem Formulation in Face Recognition

@ Notations
o Training: For K classes, collect training samples {vi,1,- - ,via }, -+, {vk,1," - ,VKY,,K} € RP.
o Test: Present a new y € RP, solve for label(y) € [1,2, - - , K].

@ Construct RP sample space via stacking

I

Figure: For images, assume 3-channel 640 x 480 image, D = 3 - 640 - 480 ~ 1e6.

© Assume y belongs to Class i [Belhumeur et al. 1997, Basri & Jacobs 2003]

: : Yy = qivi1+Qiavio+ o+ Qg Vi,
IR - A
n where A; = [v;1,Vj2,  ,Vjn]
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Sparse Representation

@ Nevertheless, i is the variable we need to solve.
Global representation:

aq
a2
y = [A, A Akl - |,
= Axp.
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@ Nevertheless, i is the variable we need to solve.

Global representation:
aq
a2

[A1, A2, --- LAk - |

<
Il

= Axp.

@ Over-determined system: A € RPXn where D> n=ny + --- + ng.
xo encodes membership of y: If y belongs to Subject i,

Xg=1[0-0a;0-0]T €R"
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tion via Sparse Representation

@ Nevertheless, i is the variable we need to solve.

Global representation:
aq
a2

[A1, Az, - LAKT | - ],

<
Il

= Axp.

@ Over-determined system: A € RPX" where D > n=ny + --- + ng.
xo encodes membership of y: If y belongs to Subject i,

Xg=1[0-0a;0-0]T €R"

Problems to face

@ Solving for xg in RP is intractable.

@ True solution xq is sparse: Average % terms non-zero.
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Dimensionality Redunction

@ Construct linear projection R € RI%D d is the feature dimension, d < D.
§ = Ry = RAxo = Axp € RY.

A e RIXM put xo is unchanged.
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Dimensionality Redunction

@ Construct linear projection R € RI%D d is the feature dimension, d < D.
§ = Ry = RAxo = Axp € RY.
A e RIXM put xo is unchanged.
@ Holistic features
o Eigenfaces [Turk 1991]

o Fisherfaces [Belhumeur 1997]
o Laplacianfaces [He 2005]

© Partial features

@ Unconventional features
o Downsampled faces

o Random projections
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Eigenfaces vs Fisherfaces

O Eigenfaces: Principal component analysis (PCA)
Denote projection vector w € RP : wTx; = y; € R.

n
w* = arg mvexZ(y; —7)? = argmaxw’ Zw.
i=1
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Eigenfaces vs Fisherfaces

O Eigenfaces: Principal component analysis (PCA)
Denote projection vector w € RP : wTx; = y; € R.

n
w* = arg mvexZ(y; —7)? = argmaxw’ Zw.
i=1

Numerical solution: Singluar value decomposition (SVD)

svd(A) = USVT, where U e RPXP 5 e RPX" v ¢ R"™",
Denote U = [U; € RP*9; U, ¢ RPX(P=d)]. Then R = U] .
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Eigenfaces vs Fisherfaces

O Eigenfaces: Principal component analysis (PCA)
Denote projection vector w € RP : wTx; = y; € R.

n
w* = arg mvexZ(y; —7)? = argmaxw’ Zw.
i=1

Numerical solution: Singluar value decomposition (SVD)

svd(A) = USVT, where U e RPXP 5 e RPX" v ¢ R"™",
Denote U = [U; € RP*9; U, ¢ RPX(P=d)]. Then R = U] .
@ Fisherfaces: Linear discriminant analysis (LDA)
Define within class covariance matrix W = %7 + -+ + X k.
w’'Iw

.
w* = arg max ———.
woowT Ww
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Eigenfaces vs Fisherfaces

O Eigenfaces: Principal component analysis (PCA)
Denote projection vector w € RP : wTx; = y; € R.

n
w* = arg mvexZ(y; —7)? = argmaxw’ Zw.
i=1

Numerical solution: Singluar value decomposition (SVD)

svd(A) = USVT, where U e RPXP 5 e RPX" v ¢ R"™",
Denote U = [U; € RP*9; U, ¢ RPX(P=d)]. Then R = U] .

@ Fisherfaces: Linear discriminant analysis (LDA)
Define within class covariance matrix W = %7 + -+ + X k.

wTw

.
w* = arg max ———.
woowT Ww

Numerical solution: Generalized eigenvalue problem for (X, W).

U = eig(X, W).
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Classification via Sparse Representation
@00

£°-Minimization

© Ask for sparsest solution of underdetermined system § = Axp € RY.
il T

04 4
e |

o1

TestingInput  Feature Extraction
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@00

£°-Minimization

© Ask for sparsest solution of underdetermined system § = Axp € RY.
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0 200 400 600 800 1000 1200

@ (°-Minimization .
xo = argmin |x||o s.t. § = Ax.
X

|| - |lo simply counts the number of nonzero terms.
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£°-Minimization

© Ask for sparsest solution of underdetermined system § = Axp € RY.
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@ (°-Minimization .
xo = argmin |x||o s.t. § = Ax.
X

|| - |lo simply counts the number of nonzero terms.
Q (-Ball

o %-ball is not convex.

v 10 ball
o (°-minimization is NP-hard. ’ ’/'
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¢* /0 Equivalence

@ Compressed sensing: If xq is sparse enough, £°-minimization is equivalent to
(P1) min||x||; s.t. § = Ax.

lIxlle = Pal+ |xef + - - =+ [xnl.
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¢* /0 Equivalence

@ Compressed sensing: If xq is sparse enough, £°-minimization is equivalent to
(P1) min||x||; s.t. § = Ax.
lIxlls = Pxal + xa| + -+ - 4 |xnl.
Q (-Ball

y=Ax
o £ -Minimization is convex.

-0 ball

" A b

o Solution equal to £°-minimization.
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¢* /0 Equivalence

@ Compressed sensing: If xq is sparse enough, £°-minimization is equivalent to
(P1) min||x||; s.t. § = Ax.

lIxlle = Pal+ |xef + - - =+ [xnl.

Q (-Ball
y = Ax
o £ -Minimization is convex.
o Solution equal to £°-minimization. ‘h 1-0 ball

" A b

(5] ZI/ZO Equivalence: [Donoho 2002, 2004; Candes et al. 2004; Baraniuk 2006]
Given § = Axg, there exists equivalence breakdown point (EBP) p(A), if ||xo]lo < p:

o ¢'-solution is unique
@ X1 = Xp
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Classification via Sparse Representation
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1-Minimization Routines

o Matching pursuit [Mallat 1993]
@ Find most correlated vector v; in A with y: i = argmax (y, vj).
Q A A X — (y,vi),y —y— xivi.
© Repeat until |ly|| < e.
o Basis pursuit [Chen 1998]
@ Assume xq is m-sparse. .
@ Select m linearly independent vectors B, in A as a basis
Xm = B;,y.
© Repeat swapping one basis vector in B, with another vector in Aif improve ||y — BpnXm||.
Q If |ly — Bmxmll2 < €, stop.
o Quadratic solvers: § = Axg +z € RY, where ||z]2 < ¢

x* = argmin{|[x||1 + Ally — Ax|l2}

[Lasso, Second-order cone programming]: More expensive.
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1-Minimization Routines

o Matching pursuit [Mallat 1993]
@ Find most correlated vector v; in A with y: i = argmax (y, vj).
Q A A X — (y,vi),y —y— xivi.
© Repeat until |ly|| < e.
o Basis pursuit [Chen 1998]
@ Assume xq is m-sparse. .
@ Select m linearly independent vectors B, in A as a basis
Xm = B;,y.
© Repeat swapping one basis vector in B, with another vector in Aif improve ||y — BpnXm||.
Q If |ly — Bmxmll2 < €, stop.
o Quadratic solvers: § = Axg +z € RY, where ||z]2 < ¢

x* = argmin{|[x||1 + Ally — Ax|l2}

[Lasso, Second-order cone programming]: More expensive.

Matlab Toolboxes

o /-Magic by Candes at Caltech.
o SparseLab by Donoho at Stanford.
@ cvx by Boyd at Stanford.

Allen Y. Yang y C .berk: Compressed Sensing Meets Machine Learning


<yang@eecs.berkeley.edu>

ation via Sparse Representation

Classification

TestingInput  Feature Extraction ol i el e T "
h e i £ e 00 0
@ Project x; onto face subspaces:
ay 0 0
0 an 0
Si(xi))=| . | %)= . |, .0k(x)=1| . |. (1)
0 0 ak
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Classification

TestingInput  Feature Extraction

i e P I .
h e i e e 00 0
@ Project x; onto face subspaces:
ay 0 0
0 ap 0
ilx))=| . [,00x) =1 . |, dk(x1) = 1
0 0 ak

@ Define residual r; = ||§ — Ad;(x1)||2 for Subject i:

1500

o id(y) = argminj—1,... xk{ri} R

Residual

15 20
Subject
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AR Database 100 Subjects (Illumination and Expression Variance)

Table: I. Nearest Neighbor Table: Il. Nearest Subspace
[ Dimension [ 30 ] 54 [ 130 | 540 | [ 30 | 54 [ 130 [ 540 |
Eigen [%] 68.1 | 748 | 79.3 | 80.5 64.1 | 77.1 82 85.1
Laplacian [%] | 73.1 | 77.1 | 83.8 | 89.7 66 775 | 84.3 90.3
Random [%] 56.7 | 63.7 | 71.4 75 59.2 | 68.2 80 83.3
Down [%] 51.7 | 60.9 | 69.2 73.7 56.2 | 67.7 77 82.1
Fisher [%] 83.4 | 86.8 | N/A | N/A 80.3 | 85.8 | N/A | N/A
Table: Ill. Linear SVM Table: IV. £*-Minimization
[ Dimension [ 30 ] 54 [ 130 | 540 | [ 30 | 54 [ 130 [ 540 |
Eigen [%] 73 84.3 89 92 71.1 80 85.7 92
Laplacian [%] | 73.4 | 85.8 | 90.8 | 95.7 73.7 | 847 91 94.3
Random [%] 541 | 70.8 | 81.6 | 88.8 57.8 | 755 | 87.6 94.7
Down [%] 51.4 73 83.4 | 90.3 46.8 67 84.6 | 93.9
Fisher [%] 86.3 | 933 | N/A | N/A 87 92.3 | N/A | N/A
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Sparsity vs. Non-sparsity: ¢! and SVM decisively outperform NN and NS.
@ Our framework seeks sparsity in representation of y.
@ SVM seeks sparsity in decision boundaries on A = [vy,--- ,v,].

© NN and NS do not enforce sparsity.
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Sparsity vs. Non-sparsity: ¢! and SVM decisively outperform NN and NS.
@ Our framework seeks sparsity in representation of y.
@ SVM seeks sparsity in decision boundaries on A = [vy,--- ,v,].

© NN and NS do not enforce sparsity.

£1-Minimization vs. SVM: Performance of SVM depends on the choice of features.
@ Random project performs poorly with SVMs.
@ /-Minimization guarantees performance convergence with different features.
© At lower-dimensional space, Fisher features outperform.

Table: Ill. Linear SVM Table: IV. £1-Minimization
[ Dimension [ 30 [ 54 [ 130 [ 540 ] [ 30 [ 54 [ 130 [ 540 ]
Eigen [%] 73 84.3 89 92 71.1 80 85.7 92
Laplacian [%] [ 73.4 | 85.8 | 90.8 | 95.7 73.7 | 847 91 94.3
Random [%] 541 | 70.8 | 81.6 | 88.8 57.8 | 75.5 | 87.6 94.7
Down [%] 51.4 73 83.4 | 90.3 46.8 67 84.6 93.9
Fisher [%] 86.3 | 93.3 | N/A | N/A 87 92.3 | N/A | N/A
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Randomfaces

Blessing of Dimensionality [Donoho 2000]

o In high-dimensional data space RP, with overwhelming probability, ¢} /¢° equivalence holds
for random projection R.

o EBP: p — 0.49d with both n,d — oo proportionally!
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Variation: Outlier Rejection

o ('-Coefficients for invalid images

EFE—'EJPMLH\ ”}Hw WJ’ ﬂ\ -

03
Testinglnput  Feature Bxtraction

0 200 a0 oo 1400
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3
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Classification via Sparse Representation
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Variation: Outlier Rejection

o ('-Coefficients for invalid images

E&EzT'\M[WWW%JM m -LN 1

03r
Testinglnput  Feature Extraction

0 200 a0 600 30 1000 1200 1400
260
2000
5 1500
& 1000
500
0
o s o0 1 2 2 30 3
Subject

Outlier Rejection

When ¢1-solution is not sparse or concentrated to one subspace, the test sample is invalid.

K - max; [|6; -1
Sparsity Concentration Index: SCI(x) = max | ’;(X)Hll/”X”l

€ [0,1].
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Variation: Occlusion Compensation
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Classification via Sparse Representation
[e]e]e]e] }

Variation: Occlusion Compensation

@ Sparse representation + sparse error

y=Ax+e

5
XEE +

.|
T e

@ Occlusion compensation:
X
y=(A | I) (e) = Bw

Reference: Robust face recognition via sparse representation. Submitted to PAMI, 2008.
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Conclusion

Conclusion

@ Sparsity is important for classification of HD data.
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@ A new recognition framework via compressed sensing.
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Conclusion

@ Sparsity is important for classification of HD data.

@ A new recognition framework via compressed sensing.

© In HD feature space, choosing an “optimal”’ feature becomes not significant.
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Conclusion

Conclusion

@ Sparsity is important for classification of HD data.

@ A new recognition framework via compressed sensing.

© In HD feature space, choosing an “optimal”’ feature becomes not significant.

© Randomfaces, outliers, occlusion.
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