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A M - -  purpose of this paper is to unify results from three 
separate and, at least superf~cially, unrelated subject matters, namely, 
team decision theory, market s igmbg  m economics, and the classical 
Shannon information theory. 

I. INTRODUCTION 

HE STUDY of the role of different information in 
T m a n y  person decision  problems called team theory 
was initiated by Marschak in the 1950's. More recently, 
through the pioneer  work of Witsenhausen  and others, 
this has been  extended and unified  with literatures on 
decentralized or nonclassical stochastic control theory 
which  emphasized the role of information structure in 
problems  involving  dynamics, or sequential order of ac- 
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tions. During the same period sporadic and  not  too 
successful attempts have been made to relate Shannon's 
information theory with feedback control system  design. 
Again  with  the recent maturity of control theory as a 
subject in applied mathematics, the two disciplines  begin 
to exhibit much closer connection  than heretofore dis- 
played, e.g., d e  Viterbi algorithm and the Kalman-Bucy 
filter, the recent work of Whittle and Rudge [9]. Lastly, 
one of the current interests in mathematical economics  is 
associated with the role of information in organizations 
and the market place.  Various interesting phenomena 
arise as a result of imperfect or incomplete information in 
person-to-person interactions. The  purpose of this paper is 
to attempt to weave a  common thread among these three 
apparently unrelated subjects; team theory, market signal- 
ing, and information theory.  While no particularly signifi- 
cant new  results are obtained, we believe the conceptual 
unity displayed here among the three subjects is new and, 
hopefully, will lead to much future cooperative effort 
among researchers in these different fields.  We should 
point out that the first hint of the connection between 
dynamic team  theory and information-theoretic issues 
was due to Witsenhausen [4,p. 14-61 and [7,  p. 3341 (see 
problem (P-1) and (A) in Section I11 later). Also, the idea 
of signaling in a noneconomic context has also been  used 
previously  in  game  [24] and stochastic control theory [25]. 
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11. FUNDAMENTALS OF INFORMATION STRUCTURE 
AND DECENTRALIZED DECISION MAKING 

There are five basic ingredients of decision theory. 
(1) The state of the world <-[[,,- ,&,I EQ which can 

be thought of as a vector of random variables defined on 
a probability space having a density (or distribution or 
measure) ~ ( 5 ) .  [ represents all the uncertainties in the 
problem under consideration, e.g., unknown initial condi- 
tions, measurement noise, uncertain parameters, etc. 

(2) A set of decision  variables u =tu,, - . ,urn] E U each 
representing one decision  maker (DM) .  One  person 
making two decisions at different times  is regarded as two 
DIMS in  this setup. 

(3) A loss (payofflfunction which  is a  measurable func- 
tion of u and 5, i.e., L(u,[) .  We assume L is expressed in 
appropriate utility  units. 
(4) A set of informtion functions z = g( t )  E Z = 

[ql(<) , - - -  ,grn(<)], one for each DM. In other words z j =  
gj(& what DMi knows, is in general different from z,, 
what DMj knows.  Alternatively,  in place of q ( 0 ,  we can 
be given subalgebras induced by the g’s on the underlying 
probability space. The set of 9’s or the subalgebras are 
known as the information  structure of the problem. 

5 )  A set of strategies y=[y , ;  - - ,y,] Er, one for each 
DM, where yj is a mapping  from the +space to the 
u,-space. Thus, each DM must  choose actions uj =y j ( z j )  
based on different information. It is in  thls  sense the 
problem is decentralized. 
Since for  fixed y, E [ L ( u  = y(g(Q),t)] is  well-defined’ 

and  depends on y, we can state the decision  problem as 

MinJ(y)=  MinE[L(u=y(q(<)),<)] 

a deterministic optimization problem in the r-space which 
is  usually taken to be the space of all measurable func- 
tions  from U -lly= , Uj to Z = IIy’ ,Z j .  

This problem is known as the static ream problem. It is 
static in  the  sense that information zj available to DM 
depends only on 5. The evaluation of posterior probability 
such as p ( < / z j )  can  be separately camed out from the 
problem of choosing the actions uj. However,  in general 
when different DM’S act  at different times, information zj 
received later by DMi may be  dependent  upon the action 
9 of DMj, who acted earlier. Thus, in  general  decision 
problems, we must  consider 

(4‘) Z = g ( 5 , u ) - [ 7 7 , ( 5 , u ) , ” ’ , g ~ ( 5 , u ) ]  

where g must  satisfy  some causality conditions [l]. When 
the  team problem is characterized by the information 
structure‘ (4)’ instead of (4), it is called a 4namic team 
problem [5].  The word dynamic is used to indicate the 
presence of order of actions of the DM’S. 

A superficially  simple  example  which we shall  use 
throughout this paper is now stated below. 

‘Provided, of course, y and 9 are  appropriately  measurable functions. 

Let t = [ x , u ]  where x-N(O,l) and u-N(0,a2), x,o 
independent. 

(6) L(u , ( )=  f ( x + a u , + b ~ , ) ~ + f ~ ~ ~  

a,b, c > O  
21 = X  

2, = gx+hu,+u g,h>O, h=ga.  

One interpretation of the example  is that x is  the initial 
condition; the state after DM, acts is x, = x  + au,; 
s idar ly   x2=xI  + bu,; z,  is the measurement of the initial 
state by DM,, and 2, is a noisy measurement of a linear 
transformation of x, = x + au, by DM,. The objective is to 
minimize the final state x, and the energy, or power, f cu: 
of DM,, a control-theoretic problem.  Note that this infor- 
mation structure is dynamic and  that DM, can signal or 
control the  knowledge of x to DM, through this action 
u,  = y,(x). A rather different interpretation can  be given if 
we take a=g=O,  b= - 1, h =  1. In this case, DM,, know- 
ing x ,  is trying to transmit a decision ul, subject to energy 
constraints, through a noisy  media so that DM, can act 
based on z2 in order to minimize the difference (distor- 
tion)  between x and u2. If DM,  is called the “encoder” 
and DM, the “decoder”, then the information-theoretic 
significance of this interpretation is obvious [7]. In  any 
case,  this  example appears to be the simplest  type of team 
decision  problem  which incorporates dynamic informa- 
tion  structure’  [2] and all its attendant complexities. 

With regard to the general team  problem, the condi- 
tions for optimality are (letting m =2 for simplicity) 

(P-1) ( findy:,y: 3 

J(Y:,Y2*) Q J(Y19Y’) VY19Y2Er- 

A necessary condition for y: and y: to satisfy  (P-1) is that 
they  solve 

i 

1 

find y:,y; 3 

(P-2) J(Yf,Y,*) GJ(YI ,Y2*)  VY,ET 
J(Y:3Y:) QJ(Y:,Y*) VY,Er. 

which is known as person-by-person optimality (PBPO) or 
equilibrium solutions. The reason for the latter terminol- 
ogy  becomes  clear if we realize  that, in general, DM, need 
not  necessanly  have the same loss function or criterion of 
performance as DM,. For i =  1,2, let J j  be the criterion of 
DMi, and let J,# J,. No conceptual Uficulties  are in- 
volved if we extend (P-2) to 

find y 7, yz 3 

(P-2)’ J, (Y:,Y:) GJ, (Yl ,Y2*> VYl 

J’(Y:,YZ*)GJ,(Y:,Y’) VY’Er. 

This is  known as Nash equilibrium in the parlance of 

2Dynamic in the  sense of (43. 

~~ 
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game  theory. If J1 #J,, the problem is  called  a  nonzero-  propriately). Then the problem becomes 
sum (NZS) game. If J, = - J2 A J, the problem is a zero- 
sum (ZS) game because J, + J2 = 0. (P-2)' becomes I &E[ y1 .n  (x - Y 2 ( Y 1 ( 4  + .,)'I 

(A) s.t. E [  y1 (x)]' Q 1 
find ( Y  r, Yz*) 3 with z1 = x  
J(Y:,Y2& J(Y:YY;) J(YI,Yz*)  z ,=u,+u 

the saddle point condition. With this condition, the exam- 
ple problem now admits a  game-theoretic interpretation. 
D M ,  wishes to  act to cancel out x without using too much 
energy, but his action reveals  the  knowledge of x to DM, 
through z,: DM, wishes to maximize  the terminal state 
x + au, + bu, which he  can do if he  knows x well.3 

More  will be said about (P-2)' and (P-3) later on in 
Section  IV and elsewhere  [3]. For  the moment let us 
return to (P-1) and (P-2). The principal difficulties in- 
troduced by dynamic information structure (1)' are two- 
fold: 

i) The observation z2 is not a  well-defined random 
variable until the strategy y, is specified. This makes the 
various probability measures  required in the solution pro- 
cess solution-dependent. There is a  vicious  circle and the 
problem of estimation is no longer separable from that of 
control. 

ii) The optimization problem ~ , , y 2 J ( y l , y J  is not 
necessarily  convex  in y,. This is because y1 enters in 

Since there is no reason to expect y2 to be  convex, there is 
no assurance that J is convex in y1 even  though L may be 
convex in u,. 

Both difficulties  were  fully  investigated by  Witsenhau- 
sen  [4] for the case of (P-1)  with a = g = h = I. Since  his 
seminal  work, other efforts have been  made  to isolate 
cases  where  these  difficulties can  be  circumvented [5]. In 
fact, it can  be  argued  that whatever  success we have in 
optimal stochastic control theory  is  based on the  existence 
result under the special information structure of perfect 
memory  which bypasses the above  mentioned difficulties 

J(Y,Y Y2(Y1)) also through Y2(ZJ = Y 2 b  + hY,(X) + 0). 

[6, P. 4611. 

111. SIGNALING AND INFORMATION THEORY 

with optimal solutions y:(x)= x and yz(zz)= E ( x / z J  = 
1/(1+ u2)z2. But (A) is recognized as a  special case of 
Shannon's information-theoretic problem involving  a 
memoryless Gaussian source and an additive memoryless 
Gaussian  channel where the source rate  and  channel  rate 
are equal! In the language of (A), this means we require 
the  dimensions of x and u,,  if regarded as a  vector, to  be 
equal (and in the case of (A), equal to 1). The  encoder 
yl(zl), and the decoder y2(zJ, are instantaneous and linear. 
Here is  a situation where information theory  provided  a 
solution to a dynamic  team  problem which, in the absence 
of this  knowledge,  would  have  been  most  difficult to 
solve.5 

This interesting connection between  team and informa- 
tion  theory can  be further exploited  by  considering  several 
variants of (A). First, consider the general case  with 
dimension (x)= n and  dim(u,)= m. In other words, the 
source has block  length n and the channel block length m. 
Then (A) becomes 

x,--N (0, I), xi and xi independent for i # j  

r u l l + u I  1 r z2, 1 

u,--N (0,u2), vi and vi independent for i # j .  

In view  of the difficulties mentioned  above and in [4], it 
is  somewhat surprising that, in fact, something can  be  The variants of (A)' that we  will consider are as follows: 
done for (P-I). Suppose we take instead the information- 
theoretic interpretation of the problem (2) with a =g=O, 
b =  - 1, h = 1 (the problem in [4]  is the same except that 
a = g = I), but with  average  signal  power constrained to  be let n-co, but - =constant 
less that  or equal to 1 (that is,  choose c in (2) ap- 

general n and m 
n 
m 

( A 4  { 
30f course,  some  penalty  term on u2 must be  added  to (2). See 5There  exist no general  sufficiency  conditions to verify the optimality 

4See introduction  of this paper and also Whittle  and  Rudge [9]. 

problem (C) later. of a solution  besides  the Shannon bounds. 
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(A-2) n =  m 

(A-3) n =  1, m=2 

(A-4) n=2, m = I  

I n =  1, m=2, but zI  = 

(A-5) then uI ,  = yl l  (x) 

Problem (A-1)  is a statement of the  well-known Shannon 
information theory problem [S, p.  91 11 where one is only 
concerned with the rate of information transmission (n/m 
=constant)  but initial delay is acceptable (n-oo). The 
optimum performance (minimum distortion) J* is known 
and is obtained when one equates Req( p), the equivalent 
source rate for a given distortion p, to the equivalent 
channel rate C,(a) for a given  signal  power  level a [SI. 
That is, J* = b*, where p* is defined by R ( p*) = C,(a). 
However, the encoder and decorder (yf,  y;) pair to realize 
J* is  still unknown. Problem (A-1) can be generalized 
considerably by allowing  memory in both the source and 
the channel. But  even  with memory, within the linear 
(memory structure)-quadratic  (distortion)-Gaussian 
(source and channel) setup (LQG), the minimum distor- 
tion can still be obtained from Shannon theory (see Whit- 
tle and Rudge [9]). 

Once we leave problem (A-1), it may be argued that we 
have entered the realm of “real-time information theory.” 
In problems  (A-2) through (A-5), we are not allowed to 
encode a large number of messages (x’s) together before 
transmission. Arbitrary delay is not permitted. Equiv- 
alently, the block length is fixed. The emphasis here is 
more decision-theoretic. However, much information-the- 
oretic insight can still be borrowed to provide solutions or 
partial solutions to these  problems, as the following ds- 
cussion will show. 

As mentioned earlier, Problem (A-2) corresponds to the 
situation where the channel rate and source rate  are equal. 
The asymptotic results are the same as if the vector, or 
block, lengths are fixed: the optimal encoder and decoder 
are linear [9], [7], [21]. This is not true if n f m ,  as will now 
be  discussed. 

Problem  (A-3) is the prototype of situations where one 
is  allowed to signal  more than once for each piece of 
information he  wishes  to send. In the language of com- 
munication, we are allowed to trade bandwidth for perfor- 
mance.  Both of the following are optimal linear strategies: 
uI = [ :], and u1 = [ ? X ] .  The latter clearly  shows that 

the only  gain is in increasing power and not in making use 
of the expanded bandwidth. Hence, far better nonlinear 
strategies must  exist, and a construction of a near-optimal 
strategy in the small  noise  case can be obtained by using 
Shannon’s  twisted modulation idea [22],  [23]. It should be 
pointed out that the optimum J* is not even known in this 
case, although a lower bound is possible  via the Shannon 
theory. Whether or not a better bound is  possible  with a 

different definition of mutual information in the spirit of 
Ziv and Zakai [lo] is an open question. 

Problem (A-4) is the opposite of (A-3) and is repre- 
sentative of source coding, where data compression is 
desired. In many respects, it is similar to a problem in 
optimal quantization. From topological considerations, we 
know that if the mapping is to be invertible in the absence 
of noise, then it cannot be continuous. Hence, even 
without considering the effect of noise in detail, we know 
that an optimal mapping must be nonlinear! Similar 
remarks on J* apply here as in (A-3). 

Problem (A-5)  is the same as (A-3)  except that noiseless 
feedback is  allowed. DM, is allowed to send the second 
signal based on x and zZI. It turns out  that the solution to 
this problem is known. The best (y:,y:) is linear for (A-5) 
and realizes the Shannon bound in real time [ 1 I],  [12], 
[13],  [26]. The solution consists of sending x as the first 
signal, then sending an amplified innovation term x -  
E(x/zZI)= v which  is independent of z21 as the second 
signal, resulting in zu = kv + c2, where k = (( 1 + 0 ~ ) / 2 ) ” ~  
is the amplification factor such that E (k%’)= 1. Heuristi- 
cally, this result can be understood in terms of our knowl- 
edge of (A) where dimx= 1 =dimu. Since the innovation 
term  is independent of the first received  signal zZ1, the 
sender, in sending the second signal, essentially faces a 
new  (A)  type of problem which is known to possess linear 
solutions. Roughly speakmg, we have transformed via 
noisless feedback a problem of unequal  source and channel 
rates to that of equal rates. 

Iv. ZERO- AND NOhZERO-SUM VERSIONS OF 
SIGNALING 

While none of the results in the previous sections taken 
by  themselves are particularly sigmficant, taken together 
they do provide considerable insight into the relationship 
between nonclassical decision and control theory on the 
one hand  and Shannon’s information theory on the other. 
We  see  how  knowledge in  one subject provides solutions 
in another. In fact, results in (A-l)-(A-5) form a sigmfi- 
cant portion of all the nontrivial knowledge concerning 
explicit solutions to dynamic information structure prob- 
lems. Information-theoretic results play a crucial role in 
the solution or partial solution of these  problems. On the 
other hand, viewed in this  light, we also realize that  the 
information theory problem is a very special kind of 
problem in dynamic teams. In a sense,  it  is the simplest 
kind of such problem: only two DM’S are involved and 
are explicitly and exclusively concerned with  signaling.  As 
we have mentioned briefly in Section 11, a natural gener- 
alization to other classes of dynamic information structure 
problem exist, This development will be pursued now. 

Once we consider the nonzero- or zero-sum  version of 

6See the  Appendix  for  examples of (A-3) and (A-4) where  explicit 
nonlinear schemes  are illustrated and which  are  better  than  the  best 
linear schemes. 
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the signaling problem, (P-2)’ and (P-3) become  the  govern- 
ing conditions of optimality. This permits a considerable 
simplification. Either one of the two inequalities of (P-2)’ 
of (P-3) defines  a one-person decision problem for fixed 
strategy of the other DM. The difficulties of solution-de- 
pendent convexity  discussed in Section  I1 are largely 
ameliorated. One still has to solve  a pair of implicit 
equations in ( y , ,   y J .  But  this  is  a  much  simpler  task as the 
discussion  below  will  show. 

A current problem of interest in  economics  is that of 
market signaling  by  Spence [14]. In terms of our basic 
formulation, the problem  can  be stated as follows. An 
employer  must hire someone for a job without knowing 
how productive that individual will  be. In other words, the 
employer has imperfect information about  an individual’s 
ability.  Spence  suggests that the employer can improve his 
information by  looking on the job application for some 
signal,  such as educational level. The employer  offers 
wages  based on the signal he sees; that is,  a  person  with 
more education is offered  higher  wages,  because the em- 
ployer  believes that the higher education indicates higher 
ability. The individual applying for the job, on the other 
hand, knowing  he  will  receive  wages based on his educa- 
tional level,  must decide how  much education to get, 
taking into consideration that education is  costly.  Let 
DM, = all potential employees considered together, DM, 
=the employer, x =an individual’s ability (known to that 
individual, but not to the employer), u1 (or u,  +noise)= 
educational level, and u2 =wages. The payoff or loss 
function of DM, is [ x  - uJ2; he does not wish to overpay 
or underpay with  respect to x .  The payoff of DM, is 
simply the net profit u2 - c ( u , , x )  where c is the cost of 
signaling. Thus, we have  precisely the following  example, 
where  the appropriate optimality conditions are (P-2)’. 

~maxJl=E[Y2(z,)-c(Y,(z,),x)] 

I minJ2 = E [  ( Y z ( Z 2 )  - x,’] 
(B) where z 1  = x 

z 2 = u 1  oru ,+u  
p ( x ,  u )  given. 

A reasonable special  case of (€3) is for c ( u , , x ) = u , / x ,  
p ( x , u ) = p ( x ) p ( u )  each being  a  uniform distribution, U, = 
a  discrete  set, and U,= R +. Under this and other similar 
set-ups, equilibrium solutions y:,y; can  be obtained. The 
details and economic  interpretations  are available 
elsewhere [3], [21]. Two noteworthly features of the solu- 
tion are worth mentioning. 

i) There are multiple equilibrium solutions (y:,y;) .  
This is  a phenomenon  that seems to  occur only  with 
dynamic  information  structure.  Essentially,  the 
equilibrium conditions are not sufficiently constraining, so 
that a  large number of ( y , , y J  pairs can satisfy  them. It is 
for  the same reason that  team solutions satisfying (P-2) do 
not usually produce solutions which also satisfy (P-I) in 
the case J ,  = J2. (P-2) is far  from sufficient  a condition. 
On  the other hand, in static team  problems, (P-2), under 

reasonable conditions on J ,  often turns out to  be neces- 
sary and sufficient [2]. 
ii) There  are threshold phenomena in market signaling. 

If the  cost of signaling  is too high, or the signaling 
channel too noisy, or the underlying  signal x itself too 
predictable, then signaling will suddently cease altogether, 
i.e., u1 =O. This phenomenon may be  due  to the nonzero- 
sum nature of the problem. In the cooperative case of 
information theory, it is always  worthwhile to send some 
message, at least in the Gaussian case. 

Finally, we can consider the case of J ,  = - J2. As de- 
scribed  earlier, we have  a situation of “antisignaling”. A 
prototype problem  can be formulated by  slight  modifica- 
tion of (6) 

[Find the saddle point pair (u t ,  y f )  for 

z , = g x + h u , + u  
a ,b ,g ,h>O c,d>O 
x--N(O,l) u--N(0,02), x , u  independent. 

(C) is different from (2) only  in the addition of the 
- d/2u: term in L(u,[)  and maximization  with  respect to 
u2= y2(z2) instead of minimization. In addition to the 
advantage of solving  only  for equilibrium solutions, we 
have  the added structure of J ,  = - J2. Any saddle point 
solution is as good  globally as any other solution on the 
product set of admissible ( y1 , y2 )  solutions by virtue of 
interchangability [15,  p. 661. Linear or affine saddle point 
strategies can  be obtained for (C). In fact, (C) can be 
generalized considerably to include state (as well as infor- 
mation) dynamics resulting  in  a stochastic differential 
game problem  and solved  similarly [16], [ 171. Other  non 
LQG setups are also  possible [ 181, [ 191. The underlying 
idea of solutions is apparently a  tradeoff  between  “reveal- 
ing  knowledge of x through u,” versus  “achieving some 
desirable  payoff through u,”. 

In terms of information-theoretic ideas, a  possible fur- 
ther  tie  with  discussion  in  this paper is through the prob- 
lem of wiretap channel [20] which  clearly  embodies the 
concept of “anti-signaling”.  However, we shall  leave the 
formulation and unification of these ideas to future work 
of interested parties. 

V. CONCLUSION 

The previous  discussions can be  summarized  in  Fig. 1. 
Considerable obvious and easy generalizations of the re- 
sults to (A-1)-(A-5) are possible.  However, nothing con- 
ceptually  new  is added. 

Several  conclusions can be drawn  from this study. 
i)  Simple  two-person  decision problems with dynamic 

information structure have  many interesting areas of ap- 



310 JEEE TRANSACTIONS ON AUTOMATIC comob VOL. AC-23, NO. 2, APRIL 1978 

PROBLEM 

COUMEREXAMRE PSOELEM 

REAL-TIME 
(FIXED n AND rnl ASYMPTOTIC 

( n - m l  

J' KNOWN 

16-21  (A-31 [A-41 

J' KNOWN 

PIXI 

- B  0 B 

Fig. 2. Stretched  mapping  of x to two dimensions. 
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Fig. 1. Teams,  signaling, and information theory. r . 3  _ _ _ _ _ _ _  _ _ _ _ _ _  

-1 4 
r;2 _ _ _ - _ _ -  ------ 

-4  

- 
- 2  

4 plication, such as real-time  (fixed  block lena@h) encoder 
and  decoder design,  economic theory, and (possibly) 

ii) Dynamic information structure leads to a new kind 
of deterministic optimization problem in which  composi- 
tion of functions is  involved,  namely, J(yl,y2(yl)). NO 
reasonable algorithm  seems to exist for this class of prob- 
lems. 

r ' l  - _ _ _ - _ 3 - - _  - - - _- 

cryptography * Fig. 3. Transformation of square  to  dotted  line. 

APPENDIX' 

A .  (A-3): One Sample to Two Signah Encoding  and  Decod- 
ing 

r = 4  r.3 r = 2  r = l  

Fig. 4. Transformation of dotted  line to uj.  

x--N(O,l) u--N(0,021,). 
satisfied.  Let the estimates be 

Divide x into four equiprobable regions, as shown  in  Fig. 
2. For the encoder, let u I 1  represent the region r ( x )  that x i=argmaxp(r/z,,), z2, = cr+ ul .  
is from  and u12 be  a linear transformation of x in a 
stretched out version of this  region  (see  Fig. 2). More fi,2=z22=u12+u2. 
precisely, ul l  = cr(x)  and 

Then, inverting  the  expression for uI2, yields 

uI2= B (7 - + 5 - 2 r ( x ) ) ,  

where c and B are chosen so that the power constraint is 
For small noise, the mean square error distortion with this 

'See Appendices 111-B and 111-C in [21] for  details. scheme  is better than with any linear scheme. 
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B. (A-4): Two Samples to One Signal Encoding and 
Decoding 

x--N(O,I,) u--N(0,a2). 

Transform xi to  O,=2/ntan-’xi, i =  1,2. Then O i € [ -  1,1]. 
Map all points in the resulting square to the dotted lines 

r = 1,2,3,4, as shown in Fig. 3, where 

14 z < e 2 ~ 1 .  1 

Straighten out the dotted line and compress it to fit into 
the interval [ - 1,1], and call the variable ul ,  as shown in 
Fig. 4. Then it can  be shown that 

Let the estimates be ti, = z1 = u1 + z; and 

11 if + < G I  
2 if 0 < l i 1 < ;  

i={ 3 if -+<Ei1<0 

14 if 2i1<-; 

( -1 ) i (4 t i1 -5+2r) ,   - l< t i l< l  
a l < - l  
a, > 1 

so that 8, E[ - 1,1]. Then let 8,=(5 -2i)/4 and gi = 
n/2  tanh, i= 1,2. Again, for small  noise,  the mean square 
error distortion with  this  scheme is better than with any 
linear  scheme. 
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The  Optimal  Decentralized  Control of a Large 
Power  System: Load  and 

Frequency Control 
EDWARD J. DAVISON, FELLOW, EEE, AND NAND K. TRIPATHI, STUDENT MEMBER, IEEE 

Abstract--The load  and  frequency control of a multi-area intemn- 
nected power system is studied. In this problem,  the  system is assrrmed to 
be subject to unknom constant dktmhnces, and it is desired to obtain, if 
possible, robust  decentralized  controllers so that the  frequency  and tie- 
line/net-area power flow of  the  power system are regulated. 'Ihe  problem 
is solved by using some strudmal results recently obtained in decentra- 
lid control, in conjnndion with a parameter  optimization method which 
minimizes the dominant  eigenvalue  of  the closed-lo~p system A dass of 
minimum order robust  decentralized  controllers wbi& solves this general 
multi-area load and  frequency control problem is obtained.  Application of 
these resalts is then made to  solve  the  load  and  frequency control problem 
for a power system comisting of  nine syncbrowus machines (desaibed by 
a 119th-order system). It is shown that the  load  and  frequency  controller 
obtained in this c ~ s e  is not  likely to be significantly  improved  by usiog 
more complex  controllers; in particular,  it is shown that the conventional 
controller, used in regulating the  net-area  power  flow  of a system, is not 
likely to be signifimnliy improved upon by using more  complex con- 
trollerS 
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I. INTRODUCTION 

T HE purpose of this paper is to use  some structural 
results recently obtained in decentralized control to 

study the load and frequency control problem for a 
multi-area interconnected power  system, and then obtain, 
if possible, realistic minimum order controllers which wiU 
solve the problem. Elgerd and Fosha [l], [2] studied this 
problem for a two-area. system based on a ninth-order 
model, without explicitly dealing with the decentralization 
constraint. Since  this study, additional work [3H6] based 
on 17th-order models or less has been carried out for the 
problem, again without explicitly dealing with the de- 
centralization constraint. In this work, a minimum order 
robust decentralized controller will be proposed to solve 
this  general multi-area load and frequency control prob- 
lem, and it will be shown that the controller is not likely 
to be significantly improved using higher order compensa- 
tors. The main contribution of the proposed design 
method over  existing  design methods is that 1) the de- 
centralized controller constraint is  explicitly taken into 
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