Math. 55 Solutionsto Problemsin H.W. Lenstra’'s Notes  July 9, 1999 7:38 am

Here are solutionsto all 27 problems at the end of the noteson Probability theory by H.W.
Lenstra Jr. (1988). Hiscombinatorial coefficient ELE is here rendered "C, = n!/(k!-(nk)!) .

P (Andrew) 0 1/721/2] |1/3 1/3
1 |p(Beatrix)| =| 0 0 1/2/01/3 = |1/6| -
P(Charles) 1 1/2 0] |13 |12

2. Without a Joker, the independent pairsare (A, B) and (A, C) butnot (B, C) . Witha Joker
in the deck, no pair isindependent.

3. Let p:=P(A) and 3:=P(B), sothat P(A') =1 and P(B') =1-3. Since A and B are
independent, P(AnB) = u:3. Then p=P(A) =P(AnB) + P(AnB') = u-B+ P(AnB') , whence
follows P(AnB') = u-(1-3) . Similarly P(A'nB) = (11)-R, and P(A'nB") = (1)-(1-) .
Thus A" and B' are independent because P(A'nB') = P(A")-P(B') . Likewisefor A and B'.
But A and A' cannot be independent, since P(AnA") =P(&d) =0, unless u=0 or p=1.

4. Yes, independent because P(divisible by 3)-P(divisibleby 5) = (1/3){(1/5) = 1/15 =
= P(divisibleby 3 and by 5). Then P(GCD(number, 15) = 1) = 1 — 1/3 — 1/5 + 1/15 = 8/15 .

5. $ (5000 + 700 + 3-100)/10000 = $0.60 .

6. For any number n, the probability that n balls of any particular color will be drawn isthe
same for every color because of the situation’s symmetry: permuting the color’s names does not
change their probabilities. Thereforethe Expected number of balls drawn is the same for every
color. Sinceall three colors Expected numberssumto 12, each Expected numberis 4.

7.(@) f(x):=xmod 3 and g(x) :=xmod 4, so x =4f(x) +9-g(x) mod 12 by the Chinese
Remainder Theorem. Since 900=0mod 12, as s rangesover theset S:={1, 2, ..., 900}
with uniform probability 1/900 per element, P(f(s) = m) = 1/3 foreach m in {0, 1,2} and
P(g(s) =n) =1/4 foreach n in {0, 1, 2,3}, andthen
P(f(sy)=m and g(s)=n) = P(s=4m+9-nmod 12) =1/12

because (4-m+ 9-n) mod 12 runsthrough al 12 membersof {0, 1, 2, ..., 11} as (m, n) runs
through all 12 pairs. Therefore f and g are independent.
7.(b) E(f+g)=E(f)+E(Q)=1+3/2=5/2. E(f-g) = E(f)-E(g) = 1-3/2=3/2, and

Variance V(f+g) = V(f) + V(g) = 2/3+ 5/4 =23/12 because f and g are independent.

8. E(emales) =9/3=3; V(emales) = 9-(2/9) = 2 assuming independence of sex of each birth.

9. The number of ways of choosing 5 volumes out of 10 is 1OC5 =252 . The number of ways

to get no complete novel is 2° =32 . The number of ways to get one complete novel is
5C,4C32° =160 . The number of waysto get two complete novelsis °C,-3C;-21 =60. Asa

check we observe that 60+160+32 = 252 . Assuming each way as likely as every other,
P(i=0) = 32/252 = 8/63 . P(i=1) = 160/252 = 40/63. P(i=2) = 60/252 = 15/63 .
E(i) = 70/63 =10/9. Variance(i) = 200/567 .
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10. This solution takes advantage of three identities obtained by differentiating the first twice :

1/(1-0) = Y e0d"; U(1-0)?=Smond™t;  2/(1-0)% = 3o n(n-1)-g"2.
V() = Yoo d™p(n=Up)? = Troo " p2 =23 o g + Yo g Hp
= PO Yo N (=12 + (P-2)- s NG + T 1m0 q™p .. recal (1-q) =p

2pglp® + (p-2)/p? + Up* = (2q+p-2+1lp? = glp®.

11. Any positive integer n and nonnegative fraction p< 1 determinea Binomial Random
Variable f ; itisthe count of the successesin n independent Bernoulli trials each with

probability p of success: P(f =k) = ”Ck-pk-(l—p)”‘k . Now

P(f iseven) = Y ogciya'Cyp?-(1-p)™3 and  P(fisodd) = 1 P(f iseven) .
In the special casethat p = 1/2 these expressionssimplify to P(f iseven) = P(fisodd) = 1/2, as
isobviousif n isodd because then each term ”CZJ- 2" includedinthesum ... can be paired
with an equal term "C,, -2 excluded from that sum; if n iseven the simplification of the sum

isnot obvious. However, the 2" equally likely outcomes of n trials can be put into pairs that
differ only intheir first trials, since the members of each pair have opposite even-odd parity, the
odd counts f must be as numerous as the even counts and equally likely.

12. The same reasoning asworked in Example 7 impliesthat 2 isthe expected number of
children whose first name starts with the letter that they get. The variance cannot be determined
because it is positive unless al children’s names begin with the same letter, in which case the
variance is zero.

13. Thereare 210 = 1.26765.10% subsets of aset with 100 elements. The subsets with
cardinalities between 41 and 59 inclusive number
Y s1<keso 2 °Ck = 1PCs + 2:F 1co T PCo0 ¢ = 1.19554-10%.

Their ratiois 1.19554/1.26765 = 0.9431 . Thisratio isthe same as the probability that a binomial
random variable counting the successesin n =100 independent Bernoulli trialswith p=1/2
will depart from the mean n-p =50 by lessthan 10/5= 2 times the standard deviation
V(n-p-(1-p)) =5. Chebyshev's Inequality saysthis probability isat least 1 - 1/2°=0.75. The
Central Limit Theorem usesa Normal random variable ( seethe classnotestitled Law of Large
Numbers) distributed continuously with the same mean and standard deviation to estimate that a
departure from the mean smaller than p times the standard deviation has probability near
®(u) — P(—) ; but what value of p should be used for the given discrete distribution?

If u:=10/5=2 then ®(u) — d(—u) = 0.955 overestimates the probability.

If u:=9/5=1.8 then ®(u) — d(—) = 0.928 underestimates the probability.

If £1:=955=19 then ®(u)—P(—) =0.943 getsit about right.
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14. Random variable f hasmean T := E(f) and variance 02 := E((f-f)?), and random variable
g:=[f—f] hasmean 1:=E(g). Thevarianceof g is

V = E((g-1)? = E(g?) - 2T-E(g) + 1° = E((f-)?) - 212+ 1% = 0?°—1°.
Sinceall threeof V, 0 and T arenonnegative, 0 =1 asclaimed, with equality just when
V =0, which occursjust when g isconstant ( T ) instead of random, which occursjust when f
takes at most two values each with probability 1/2.

15. Let random variable f have mean f := E(f) and variance o2 := E((f—f)?) . Chebyshev's
Inequality says P(ff-f|=r) < 0?/r?> ( meaningfully only if r>0) because

0% = Tant tH*PE=) = Ty (FHZPE=) + T P

2 s HPPI=t) 2 S PPt = PR3 21),

with equality just when 3y f; (t=F)2P(f=t) = 0 and 3 g r*P(f=t) = 0. Thefirst equation here
implies P(0 < [f—f| <r) =0 and the second implies P(|f—f|>r) =0, sorandom variable f can
take on at most threevalues f—, f and f+r. Apparently P(f =f—) = P(f = f+r) to ensure that
E(f) =T ; andto ensurethat E((f-)?) = 0% wefind P(f = f—r) = P(f = f+r) = 6%/(21%) . Then
P(f =F) = 1—0%/r? and Chebyshev's Inequality becomes an equality, barely.

16. Random variable f takesthevalue 1 with probability p:=P(A), O with probability
(1) =P(A") . Thenmean f := E(f) = p-1+ (1-p)-0=p, andthevarianceof f is
P-(1-p)* + (19)(0-p)* = p(1-p) asclaimed.

17. For each ordering in which thelist’s i-th itemismarked, weobtain i—1 equally likely

orderingsin which that i-th itemisunmarked by swapping the i-th item with one of its i—1

lesser predecessors; and all orderings are enumerated once apiece thisway. Thus the probability

that the i-th itemismarkedis 1/i . Therefore the expected number of marked itemsis
Hyo=1+12+ 13+ ... +1/20=3.59774 .

Had the number of items been anumber N rather bigger than 20, the Harmonic Number Hy
would have been better approximated as described in the class notes on Some Inequalities.

18. Seethe class notes about Derangements, or our text, for the facts about the number D,, of
derangements of aset of n elements; thisisthe number of permutations that |eave no member of
the set unmoved. Therewefindthat D=1, D; =0, D, =1, andfor n=1,2,3, ... inturn
Dp=nDpq+(-1)" .
18(a). P(no one gets hishat back) = D;¢/10! = (10-Dg + 1)/10!
> (10-Dg)/10!' = P(just one man gets his hat back) .

If the number of men were N instead of 10, theinequality would go the same way for all even
N >1, theoppositeway for al odd N>0.
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18(b). P(Just nine out of ten men get their hats back) =0 ; it can’t happen.

18(c). For any i choseninadvancefromtheset {1, 2, ..., 10} , Example 7 explained why
Probability(Man #i gets his hat back) = 1/10 . For any two different i and j chosen in advance
from that set, Probability(Men#i and# get their hats back) = (10-2)!/10! = 1/90 . Thisdiffers
from 1/100, which iswhat this probability would be if the events “Man #i gets his hat back”
and “Man #j getshishat back” wereindependent. These events are correlated; when one occurs
it enhances the other’s likelihood.

18(d). Let fi:=(1 if man# getshishat back, O otherwise), andlet f:=3;f;. Wealready
know from Example 7 that Probability(f; = 1) = 1/10, sothat E(f;) = /10 and therefore f's
expected value T :=E(f) =1; andthereisaformulafor f’svariance: V :=E(f%) -F?. To
compute this we need to know that E(fiz) = E(f;) = /10 and, from 18(c), that E(f;-f;) = 1/90
if i #j. Then E(f3) =E((Zif)%) = Y E(fi®) + 3 3j= E(fi-f}) = 10/10+90/90 =2, whence
variance V=2-1=1.

19. Let fi :=P(f =k) and & :=P(f 2k) = 3>« f; foreveryinteger k=0; inparticular ag=1
because we aretold that f takes only nonnegative integer values. Then we find that
Qi1 = ket 2jekfj = 2jz121<ksjfj ... fter the order of summation isreversed

= 2j=1lfy = E(f) .

20. Thisproblem is essentially the same asthe Monty Hall Three Door Puzze, Example 10 on
p. 265 of our text Discrete Mathematics and its Applications 4th. ed. by K.H. Rosen (1999,
McGraw-Hill). Interms of coin and cups, | have two choices only one of which israndom. The
random choice answersthe question “To which of three cupswill | point first?’. The non-random
choice selects in advance one of two strategies:
Strategy 1 : Uncover the cup to which | first pointed. Its probability of covering my coinis
1/3, which isnot changed by the performer’s knowledge (which | do not share) of which
of the other two cups does not cover my coin. When he lifts that cup he does not change
what | shall receive.
Strategy 2 : Uncover not the cup to which | first pointed but the other cup still unlifted. The
probability that the cup to which | first point does not cover my coinis 2/3. Thisprobability
is not changed by the performer’s revelation of the other cup not covering my coin when he
liftsit, so 2/3 isalso the probability that my coin will lie under the third cup, the cup I will
uncover.
Evidently strategy 2 istwice aslikely asstrategy 1 to recover my coin. The sum of their
probabilities, 1/3+2/3=1, corresponds to athird strategy of the kind favored by historical
figureslike Alexander the Great at Gordium: knock over both unlifted cups.
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21. Thishard exercise challenges the student to construct an accurate mathematical model for a
complicated game. It is complicated partly because it can terminate in two ways, either in step
(i) orinstep (ii), and each way requiresits own peculiar proof. Thefirst proof treats values of
the “debt” x that compell the game to terminate either in step (ii) orinstep (i) after at most a
predetermined finite number k of coin-flips. The second proof will treat “debts’ x that prevent
the game from terminating in step (i), alowing it to continue for arbitrarily many coin-flips

( though with ever diminishing probability ) until it terminatesin step (ii).

If the holder of the coin (initially Klaas) owea “debt” x tothenon-holder (initially Karel ),
let agx) bethenon-holder’sexpectation, so 1-agx) isthe coin-holder’s expectation. Evidently
ag0) =0 and ag1) =1, both determined by step (i) of the game without any coin-flip. When
0 <x < 1/2 the coin-holder can expect to win the coinin step (ii) with probability 1/2 and end
the game leaving nothing for the non-holder, or elsewith probability 1/2 the “debt” will double
and the game continue with the same coin-holder; consequently

if 0<sx<1/2 then a&gXx)= 0/2+a&g2x)/2 =ad2xX)/2 M
isthe non-holder’s expectation, and the coin-holder’s expectation is 1-ag2x)/2 . On the other
hand when 1/2<x <1 step (i) reversestherolesof coin-holder and non-holder and replacesthe
“debt” x by 1-x; consequently

if Y2<x<1 then &gXx)= 1-a42(1x))/2 (€9
isthe former non-holder’s expectation. Thetwo equations (1) and (1) are functional equations
from which we shall deduce by mathematical induction that agx) = x whenever 0<x <1, but
our process of deduction will work on only those values x for which the game can’t run forever.

The game can terminatein step (i) only if x isan integer multiple of apower of 1/2, which

case will be considered now. Consider x = m/2X for nonnegativeintegers k and m< 2K (since
0<x<1). Every coin-flip that shows tailswill replace x by either 2x or 2(1—x) ; both
replacements will decrement k by 1, soat most k coin-flipscan occur, after which the game

must terminatein step (i). For just such values x = m/2K we shall useinduction on k to prove

the formula agm/2) = m/2K . We have already noted its validity when k=0 and m=0 and

m=1=2%. Let our induction hypothesis be that the formulaisvalid for some k=K =0 while

0<m< 2% To verify the formulafor k = K+1 we need examine just two cases:

« If 0sm< 2K then 0<m/2%*1 < 1/2 and equation (1) plusthe induction hypothesisimplies

m/2X) = agqm/2X)/2 = m/2K*1 asclaimed.

o If 2%<m< 2% then /2 <m/2%*1 <1 and equation (%) instead of (1) implies
am/2K) = 1 — (2K 1m)/2X)/2 = m/2K*1 because 0< 22X lm < 2K .

Therefore agx) =x whenever x isan integer multiple of apower of 1/2 between 0 and 1.

We could infer that Karel’s expectation agx) = x for all real values x between 0 and 1 if we
proved that agx) isamonotoneincreasing function of x . Such aproof isfeasible but would suit
students of Real Analysis (Math. 104) better than students of Discrete Math. (55); besidesit
would reproduce alarge fraction of the next proof, which runsalong linesthat Lenstra seemsto
have intended, judging by hishint. However the next proof worksfor only those “debts” x that
let the game run forever albeit with probability 0.
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First let us model coin-tosses as a sample-space of infinitely many mutually exclusive outcomes
H, TH, TTH, ..., T¥IH, ... inwhich “ T“IH " standsfor k coin-flipsof whichthefirst k—1
show tails and the last shows the head of Queen Beatrix. The probability of TIH js 1/2%
because the coin isfair. Notethat all these probabilitiesadd upto Y -q 1/2K=1, leaving zero

for the probability that the game will run forever because the Queen’'s head never showsup. (A
Dutch guilder with no head isunfair and illegal, so Klaas can’'t possibly have one.)

To determine who will hold the coin for the k-th flip, let usrepresent the “debt” x asa twos-
complement binary fraction X =-—xg+ ZPOXJ-/ZJ inwhich each bit x; iseither 0 or 1, butwe
disallow the possibility that all but finitely many of those bits are the same. In other words, we
allow no binary representation to end with an infinite string of ones nor with an infinite string of
zeros, thusexcluding values x that are integer multiple of apower of 1/2; thisexclusionis
tolerable because such values have already been handled by the previous proof. Except for such
values, every other number x intherange —1 < x <1 hasanontrivially nonterminating twos-
complement binary representation, as the reader should be able to verify, athough theinitial
“debt” x liesinthe narrower range 0 <x < 1. For example, 1/3=0.01010101...in binary and
—1/3=1.10101010..=-1+ 2/3. Moregeneraly, x>0 when xg=0 and x <0 when xg=1;

in other words, Sign(x) :=1-2xg =1 asexpected. ( Sign(0) won’'t occur.)

Because x cannot be an integer multiple of apower of 1/2, the sameistruefor itsreplacements
2x and 2(1—x) inthe course of thegame. Therefore the game cannot terminateinstep (i) ; only
the appearance of the Queen’s head in step (ii) can end the game, and then the coin-holder who
flipped the coin will retainit. Our next task isto figure out how the bitsof x determine who that
coin-holder will be.

Tothatend set Xg:=x, sO0 0<Xg<1, andfor k=1,2,3, ... inturndefine X thus:

If | Xy_q| <1/2 thenset X, :=2-X,_q; otherwise, since X,_; #*1/2,

when 1/2 < |Xk—1| <1, set Xk = 2( Xk_l—Sign(Xk_l) ) .

Either way, mathematical induction confirmsthat —1 < Xy ==X + ¥ >k xj/ZJ"k <1 foral k>0
asfollows: Thetested condition “ [X, 4] <1/2” istantamountto “ x,_; =X~ and, if true,
ensuresthat |X,|<1 and Sign(Xy) := 1-2x, = Sign(Xy_;) . ( Overflow could spoil these |ast
equationsonly if x werean odd integer multiple of 1/2% | but this possibility has been ruled out.)
If the alternative condition “ [X,_4|> /2" tantamountto “ x,_; # X" istrueit ensures that
0< Xyl <1 and Sign(Xy) =-Sign(Xy_y) - (Overflow could spoil thislast equation only if x
were an odd integer multiple of 1/2K ) Apparently x = [X,/2| isthe “debt” owed by the coin-
holder to the non-holder immediately before the k-th flip, and Sign(Xy) reversesjust when the
coin changes handsin step (i). Immediately after the k-th coinflip, if it showstails, X, isthe
signed “debt” Klaas owes Karel, positiveif Klaas owes |X,| to Karel, negativeif Karel
owes [X,| to Klaas. Hereisasummary of how the signed “debt” X, correlates with the game:

(o) Initialy Klaas, who holdsthe coin, owes Karel a “debt” of x =X, where 0<x<1.
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(i) After k=1 coin-flips, the“debt” standsat x = |X\_4|; if X1 >0 Klaas owesitto Karel
and holds the coin, butif X,_; <0 then Karel owes x to Klaas and holdsthe coin. If now
Xx<12, set Xy :=2X,_4 sothat x=|X,[/2. Otherwise, when 1/2<x <1, thecoin must
change hands and the “debt” change from x to 1-x = [X,}/2 in the opposite direction, where
now Sign(Xy) =-Sign(Xy_4) . Thesigned “debt” X, /2 must still be nonzero becauseit is never
an integer multiple of apower of 1/2.

(if) The coin-holder isnow Klaas if x, =0, Karel if x,=1. Thecoin-holder, who owesthe
non-holder [X,|/2, flipsthecoin. If the queen’s head shows after this k-th flip, the coin-holder

retains the coin and ends the game. Otherwise the debt isdoubled, k isincremented by 1, and
the game continues from step (i) above.

If the k-th coin-flip ends the game, an outcome TK"IH with probability 1/2%, the game ends
with Klaas holding thecoinif x, =0, Karel if x,=1. Therefore Karel’s expectation is

&) = Tio0Xid 2 =X,
as claimed.

22. The probability generating function of the random variable f is g(x) := Zkzofk'xk wherein
fk=P(f =k)=20. Since f takesonly nonnegativeinteger values, g(1) = >y>ofx=1. The
assumption that “ the radius of convergence of g islarger than 1” isessential because
otherwise, for instanceif f, = 1/((k+1):(k+2)), the expected value E(f) =g'(1) could be o .
Thus we can assume that the expected value f := E(f) = 30 kfx = g'(2) isfinite. The variance

V(f) =E(f-f)2) = E(f) -T2 = Ske0k*f—g' (1)
Y 100 K(k=1) fic + Tyso kfye —g'(D)?
g +g@)-g@)?.

23. When Lenstrawrote “... mapsthe n-th variableto n” | think hemeant “... mapsthe n-th
element of {h, mh, mmh, mmmh, ...} to n.” Thus, P(f =n)=qg" " p. The probability
generating function of f is g(X) := > >1 q”‘l-p-xn = pXx/(1—0x). The expected value
T:=E(f) =g (1) = p/(1-q) + p-o/(1-0)? = Up because 1-q=p. Thevarianceof f is
V=g'(0)+g@)-g(1)? = 2pg/(1-0)*+ 2pgl(1-0)° + Up—Lp?* = g/p?.

24. Lenstra's notation for this problem has too many subscripts, so let’'ssimplify it. Let f, g
and h:= f + g berandom variables that take exclusively nonnegative integer values, and let

their respective probability generating functionsbe F(X) := 30 fe X<, G(X) 1= 3 a0 O X<, and
H(X) := 3 o0 XK . Provided f and g are independent, ...
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hy= Ph=Kk) = P(f +9=k) = Joqk P(f =] & 9=k
= Yosj<k P(f =))-P(g=k+) ... because f and g areindependent
= Yosjsk Oy

which is the same as the coefficient of xK in

FO)GO) = (T me0 fTmnX™(Zn20 90X = Y mz0 Tre0 i OnX™™ = T o0 XS ogjsk fi- O -
Therefore H(x) = F(x)-G(x) , though to believe thisyou may have to take for granted infinite
series manipulations whose validity is established in advanced Calculus courses.

25. Asin Exercise 17, the sample space S isthe set of all lists formed by permuting a given set
of N distinct numbers. (N =20.) Each suchlistisaslikely as any other to be chosen at
random. Thefirst element in each list is marked and so isits every element that exceeds all its
predecessorsin thelist, but no other elements are marked. For any positiveinteger i <N let A;

denote the subset of listswhose i-th element is among the marked elements. Exercise 17’'s
solution explained why P(A;) = #(A;)/#(S) = 1/i . Notethat every AjnA; isnonempty.

25(a) For every positiveinteger K <N and for every subset of K integers {i, j, ..., k} drawn
fromtheset {1,2,3,...,N} wewishtoshow that P(AjnAjn...nAy) = P(Aj)-P(A)-...-P(A)) .
Theformulaistrivialy truefor K =1; andtheformulaistruefor K =N because only onelist
liesin AjnAosn...nAy soitsprobability P(AjnAsn...nAN) = UN! = P(A1)-P(A))-...-P(AN)
thanksto Exercise17. Let'sprovetheformulafor every K between 1 and N by induction:
Supposetheformulaistrue for some K between 1 and N-1 inclusive. What about K+1 ? Let
the subset of K+1 integersbe {i, j, ..., k, m} ; thereisno loss of generality in assuming them so
ordered that i <j <... <k <m sincedoing so changes neither AjnA;n...nAnAp nor
P(A)P(A)... P(A)-P(Ay) . Thelistsin Ajn...nAnAp, can now be partitioned into two
subsets: thelistsin AjnAjn...nAnAp, andtherestin Ajn...nAgnAny, —A; . Fromeach list
in AinAjn...nAgnAy wemay generate i-1 listsin Ajn...nAgnAp —A; by swapping the
marked i-th item in the former list with one of its i—1 lesser predecessors; doing so generates
every listin Ajn...nAnAp justonce, so #A;n...nANAR) =iH#HANAN...0ANAL) .
Thisimplies P(AjnAjn...nAnAR) = P(Ajn...nAnAp)/i = P(A)-P(Ajn...nAgnAy) since
al thelistsare equally likely. Finally invoke the induction hypothesis upon the K integers

{i, ...k, m} toinfer P(AjnAjn...nANAy) = P(A)-PA))-... P(A)-P(An) asclaimed.

25(b) The number of marked elementsin alistisarandom variable f :=f; +f, + ... + f\, where
fi =1 just when the randomly selected list’s i-th element exceeds all its predecessorsin thelist;
otherwise f; =0. Inother words, f; =1 justfor theliststhat liein A;, so P(fi=1)=1/i.
Moreover, we havejust seenin 25(a) that the random variables f; are independent. Therefore
variance V(f) =V(f)) +V(f,) + ... + V(f\) . Now, fi2 =fi=0o0r1, E(f) =P(fj=1) =1/ and
V(f) = E(f?) —E(f)* = 1/i - 1/i%, so

V)= (1+12+13+ ... +UN)—(1+14+1/9+ ... +1/N?)

= 2.001576 when N =20.
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25(c) Exercise 24 showed that the probability generating function of a sum of independent
nonnegative integer-valued random variables is the product of their individual probability
generating functions. The probability generating function for f; is (1-1/i) + z/i , sothe

probability generating function for their sum f must be z:(1+2)-(2+2)(...)-(N-1+2)/N! , as
claimed.

26(a). Thisproblem resembles Lenstra's Example 8. After buying one box, the probability that
any subsequent purchase will contain aletter different from thefirst'sis p =5/6, analogousto
the probability of hitting atarget. The expected number of additional purchased boxes, likethe
expected number of shots until thefirst hit, is 1/p = 6/5. Therefore the total number of
purchased boxes expected before two different letters are acquired is 1 + 6/5.

26(b). Let p; be the probability that any purchased box will contain a letter different from j
previously chosen letters. Evidently pj=1-j/6. Let random variable n; be the number of

boxes purchased to get a letter different from | previously chosen letters. As before, we find
E(nj) = U/p; = 6/(6+) . No claim is made yet that these random variables n; are independent.

Still, the number of boxes purchased to get at least one instance of every letter is a random
variable n:= 3o 5N because, whatever the order in which letters appear, the sequence of

purchases can be broken into batches, each a batch of purchases of which the last acquired aletter
not seen before. The problem’s solutionis E(n) = 3 ocj<5 E(N}) = 3 o<j<5 6/(6+) = 147/10..

26(c). Asin Exercise 23, when 0<j<5 wefind the probability generating function for n; to
be Nj(X) = Yys1 Py-(1-p)*Lx* = (1-j/6) X/(1 — jx/6) . Moreover each ny isindependent of the
others because, first, it isunchanged by changes among the prior set of | lettersin boxes already
purchased, and second because n; does not depend upon which new letter turns up so long asiit

isdifferent from the prior set of j. Thanksto Exercise 24, the probability generating function
for n=Yogesnj is N(X) = Mogjes Ni(¥) = (51/6°) X 1<j<5 (1~ X/6) .

27. Seetheclassnoteson Derangements to find out about D,,, the number of derangements of

n objects ( permutationsthat |eave no object unmoved ), and about the number F, | = "Cr Dk
of permutations of n objectsthat leave exactly k unspecified objects unmoved. Those notes
explainwhy D, = nDp g+ (-1)" = nl-Yogen (1)1

27(@). P(fr=K) = Frn! = (UK!D-Sogieny (L1 for Osks<n.

27(0).  9n(2) = Tke0 @9k Sogjcnk CIVi! = Yocken Yosjenk @IKD)(DVjE ... set m:=j+k
= 3 ogmen 2osksm @IKD(D)™ (MK = T ogmen (Z-)™m!, 0
(1_t)'2n209n(z)'tn = 2 n=0 2.0<m<n (tn_tn+l)_(z_1)m/m! = 2m=0 2n=m (tn_tn+l)_(z_1)m/m!
= Y reot™(@z-)™m! ... because ¥ oy (") telescopes
exp(t-(z-1)) asclaimed.
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