

Math. 55

Euclid’s GCD Algorithm

 May 10, 1999 6:15 pm

Prof. W. Kahan Page 1

Given two positive integers a

≥

 b > 0 we seek their

Greatest Common Divisor

 (GCD), which
is the biggest integer d that divides both a and b leaving no remainder. Ordinary long division
computes a positive integer quotient q :=



a/b



 and leaves a remainder r := a – q·b that satisfies
0

≤

 r < b . Clearly every divisor of both a and b divides r too, and conversely every divisor of
both b and r divides a = q·b + r too; therefore GCD(a, b) = GCD(b, r) . But the pair (b, r) is

smaller

 than the pair (a, b) in the sense that b

≤

 a and r < b . This leads to an algorithm …

Euclid’s GCD Algorithm

Given integers a

≥

 b > 0 , set r

0

 := a and r

1

 := b and perform successive long divisions getting,
for j = 1, 2, 3, …, n in turn until r

n+1

 = 0 , quotients q

j

 and remainders r

j

 that satisfy
r

j–1

 = q

j

·r

j

 + r

j+1

 with 0

≤

 r

j+1

 < r

j

 .
(Here at step j we divide r

j–1

 by r

j

 to get quotient q

j

 and remainder r

j+1

 , stopping when a
remainder r

n+1

 = 0 . At that point q

n

 > 1 ; can you see why?) The algorithm stops because this
decreasing sequence of n+1 positive integers, r

0

 = a

≥

 r

1

 = b > r

2

 > … > r

n–1

 > r

n

 > r

n+1

 = 0 ,
cannot have n > b . Then GCD(a, b) = r

n

 because, as explained in the first paragraph,
GCD(a, b) =: GCD(r

0

, r

1

) = GCD(r

1

, r

2

) = … = GCD(r

n–1

, r

n

) = GCD(r

n

, r

n+1

) = r

n

 .

The quotients q

j

 appear to play no important role in the foregoing algorithm, but appearances
can mislead. By translating the algorithm’s recurrence into matrix language we find uses for q

j

 :

Set := first; then for j = 1, 2, 3, …, n in turn confirm that = , with

0

≤

 r

j+1

< r

j

 and r

n+1

 = 0 , so = … .

Now set row := … to obtain two

integers A and B (not both positive) satisfying GCD(a, b) = r

n

 = = = B·a + A·b .

We have just found that GCD(a, b) is a linear combination of a and b with integer coefficients,
thus proving the following … (Cf. text p. 137, and p. 201 ex. 58.)

Theorem 1:

 As A and B run independently through all integers the expression B·a + A·b runs
through a set of integers among which the smallest positive integer is GCD(a, b) = B·a + A·b .

Hard Exercise:

 Running A and B through

all

 integers is unnecessary: Theorem 1 remains true after restrictions
|A| < a and |B|

≤

 b

≤

 a are imposed; why? Can you prove |A| < a/GCD(a, b) and |B|

≤

 b/GCD(a, b) ? See below.

There are two ways to compute A and B . The easiest is to evaluate from-left-to-right the matrix

product defining

after

 all the q

j

’s have been computed; this gives rise to a recurrence:

s

n

 := 1 ; s

n–1

 := –q

n–1

 ; for j = n–2, n–3, …, 2, 1 in turn s

j

 := s

j+2

 – q

j

·s

j+1

 .
Finally A := s

1

 and B := s

2

 . Another way to compute them is to evaluate from-right-to-left the

matrix product defining row

simultaneously

 with the computation of the q

j

’s :

r0

r1

a

b

rj

r j 1+

0 1

1 qj–

rj 1–

rj

rn

0

0 1

1 qn–

0 1

1 qn 1––

0 1

1 qn 2––

0 1

1 q2–

0 1

1 q1–

r0

r1

B A 1 0
0 1

1 qn–

0 1

1 qn 1––

0 1

1 qn 2––

0 1

1 q2–

0 1

1 q1–

1 0
rn

0
B A

a

b

B A

B A

This document was created with FrameMaker 4 0 4

Math. 55

Euclid’s GCD Algorithm

 May 10, 1999 6:15 pm

Prof. W. Kahan Page 2

 := ; := ; for j = 2, 3, …, n–1 in turn := .

Finally := . Note that q

n

 never figures in the computation of A and B .

Whichever way be chosen to compute A, B and GCD(a, b) = B·a + A·b , the algorithm is called
“the Extended Euclidean Algorithm” and has important applications. Here is one of them:

Exercise:

 Given integers a, c and b > 0 , when does “ a·x

≡

 c

mod

 b ” have integer solutions x ? Here
“ p

≡

 q

mod

 b ” is pronounced “ p is congruent to q mod b ” and means that p–q is divisible by b . Let
d := GCD(a, b) . Exhibit all d noncongruent solutions x if and only if d divides c ; otherwise prove no solution
x exists.

Continued Fractions
If d = GCD(a, b) then (a/d)/(b/d) exhibits a/b “in lowest terms” but is not the only unique
encoding of rational numbers. By substituting rj–1/rj = qj + 1/(rj/rj+1) repeatedly for j = 1, 2, …,
n in turn we obtain a Terminating Continued Fraction

 .

This is the continued fraction for the rational number a/b . Here q1 ≥ 1 because a ≥ b > 0 ; in
fact every qj ≥ 1 and the last qn ≥ 2 to ensure that the encoding of each rational a/b > 1 by a
finite sequence (q1, q2, q3, …, qn–1, qn–1) of positive integers be unique. Euclid’s algorithm
converts a rational number given as a ratio of integers into its continued fraction; how do we get
back? The obvious way evaluates the continued fraction “bottom-up” : Rn+1 := 0 ; Rn := 1 ; for
j = n, n–1, n–2, …, 2, 1 in turn Rj–1 := qj·Rj + Rj+1 ; finally a/b = R0/R1 in lowest terms.
Exercise: Confirm that every integer Rj = rj/GCD(a, b) .

Translating the bottom-up evaluation of the continued fraction into matrix terms yields first

= , then = … . This last expression offers

two interesting opportunities. One is a way to evaluate the continued fraction “top-down” :

:= ; := ; for j = 2, 3, …, n in turn := ; finally := .

This top-down evaluation turns out to be a good way to evaluate endless continued fractions that
encode non-rational numbers; successive ratios hj/gj can be shown to converge alternatingly.
Exercise: The endless continued fraction in which every qj = 1 represents µ := (1 + √5)/2 ; can you see why?

Another opportunity offered by that long matrix product is a clear proof of Lamé’s Theorem : To
compute d = GCD(a, b) for a ≥ b > 0 Euclid’s algorithm needs n ≤ 1+ln(b/d)/ln(µ) divisions.
Exercise: Prove it by showing every Rj is at least as big as if every qj = 1 except qn = 2 , so R1 ≥ ƒn+1 , a

Fibonacci number, and ƒn+1 = (µn+1 – (–1/µ)n+1)/(µ + 1/µ) ≥ µn–1 . (Cf. text p. 206.)

B0 A0 0 1 B1 A1 1 q– 1 Bj Aj 1 q– j

Bj 2– Aj 2–

Bj 1– Aj 1–

B A Bn 1– An 1–

a
b
--- q1

1

q2
1

q3
1

… 1

qn 1–
1
qn
-----+

------------------------+
-------------------------------------+

---+
---+=

Rj 1–

Rj

qj 1

1 0

Rj

Rj 1+

R0

R1

q1 1

1 0

q2 1

1 0

qn 1– 1

1 0

qn 1

1 0

1

0

h0

g0

1

0

h1

g1

q1

1

hj

gj

hj 1– hj 2–

gj 1– gj 2–

qj

1

R0

R1

hn

gn

Math. 55 Euclid’s GCD Algorithm May 10, 1999 6:15 pm

Prof. W. Kahan Page 3

Exercises:

Suppose given integers M > 1 and N > 1 have GCD(M, N) = 1 = n·M – m·N for some integers
m and n whose signs are not yet determined.

1) Show why m and n must have the same nonzero sign.

Henceforth we can assume that n > 0 and m > 0 ; otherwise swap M and N , etc.

2) What is GCD(m, n) ?

3) Show how to replace m and n respectively by m and n satisfying
0 < m < M , 0 < n < N and 1 = n·M – m·N = n·M – m·N .

Henceforth we can assume that 0 < m < M and 0 < n < N and n·M – m·N = 1 . (†)

4) Exhibit instances of pairs (M, N) and (m, n) which satisfy these assumptions (†), but for
which M > N in one instance, and M < N in another.

5) Given that the pairs (M, N) and (m, n) satisfy (†), show how to obtain a pair (m, n) that
satisfies 0 < m < M and 0 < n < N and m·N – n·M = 1 , as if M and N had been swapped.

6) Show why (†) implies that M–N and m–n have the same nonzero signs unless m = 1 = n .
(Hint: (m+n)·(M–N) – 1 = (m–n)·(M+N) + 1 .)

