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Given two positive integers  a 

 

≥

 

 b > 0  we seek their  

 

Greatest Common Divisor

 

  ( GCD ),  which 
is the biggest integer  d  that divides both  a  and  b  leaving no remainder.  Ordinary long division 
computes a positive integer quotient  q := 

 



 

a/b

 



 

  and leaves a remainder  r := a – q·b  that satisfies  
0 

 

≤

 

 r < b .  Clearly every divisor of both  a  and  b  divides  r  too,  and conversely every divisor of 
both  b  and  r  divides  a = q·b + r  too;  therefore  GCD(a, b) = GCD(b, r) .  But the pair  (b, r)  is  

 

smaller

 

  than the pair  (a, b)  in the sense that  b 

 

≤

 

 a  and  r < b .  This leads to an algorithm …

 

Euclid’s  GCD  Algorithm

 

Given integers  a 

 

≥

 

 b > 0 ,  set  r

 

0

 

 := a  and  r

 

1

 

 := b  and perform successive long divisions getting,  
for  j = 1, 2, 3, …, n  in turn until  r

 

n+1

 

 = 0 ,  quotients  q

 

j

 

  and  remainders  r

 

j

 

  that satisfy
r

 

j–1

 

 = q

 

j

 

·r

 

j

 

 + r

 

j+1

 

   with   0 

 

≤

 

 r

 

j+1

 

 < r

 

j

 

 .
( Here at step  j  we divide  r

 

j–1

 

  by  r

 

j

 

  to get quotient  q

 

j

 

  and remainder  r

 

j+1

 

 ,  stopping when a 
remainder  r

 

n+1

 

 = 0 .  At that point  q

 

n

 

 > 1 ;  can you see why?)  The algorithm stops because this 
decreasing sequence of  n+1  positive integers,  r

 

0

 

 = a 

 

≥

 

 r

 

1

 

 = b > r

 

2

 

 > … > r

 

n–1

 

 > r

 

n

 

 > r

 

n+1

 

 = 0 ,  
cannot have  n > b .  Then  GCD(a, b) = r

 

n

 

  because,  as explained in the first paragraph,
GCD(a, b) =: GCD(r

 

0

 

, r

 

1

 

) = GCD(r

 

1

 

, r

 

2

 

) = … = GCD(r

 

n–1

 

, r

 

n

 

) = GCD(r

 

n

 

, r

 

n+1

 

) = r

 

n

 

 .

The quotients  q

 

j

 

  appear to play no important role in the foregoing algorithm,  but appearances 
can mislead.  By translating the algorithm’s recurrence into matrix language we find uses for  q

 

j

 

 :

Set  :=   first;  then for  j = 1, 2, 3, …, n  in turn confirm that   =  ,  with  

0 

 

≤

 

 r

 

j+1 

 

< r

 

j

 

  and  r

 

n+1

 

 = 0 ,  so   = …  .  

Now set row   := …   to obtain two 

integers  A  and  B  (not both positive)  satisfying  GCD(a, b) = r

 

n

 

 = = = B·a + A·b .  

We have just found that  GCD(a, b)  is a linear combination of  a  and  b  with integer coefficients,  
thus proving the following …                                                ( Cf. text p. 137,  and  p. 201 ex. 58.)

 

Theorem 1:

 

  As  A  and  B  run independently through all integers the expression  B·a + A·b  runs 
through a set of integers among which the smallest positive integer is  GCD(a, b) = B·a + A·b .

 

Hard Exercise:

 

  Running  A  and  B  through  

 

all

 

  integers is unnecessary:  Theorem 1  remains true after restrictions  
|A| < a  and  |B| 

 

≤

 

 b 

 

≤

 

 a  are imposed;  why?  Can you prove  |A| < a/GCD(a, b)  and  |B| 

 

≤

 

 b/GCD(a, b) ?  See below.

 

There are two ways to compute  A  and  B .  The easiest is to evaluate from-left-to-right the matrix 

product defining    

 

after

 

  all the  q

 

j

 

’s  have been computed;  this gives rise to a recurrence:

s

 

n

 

 := 1 ;   s

 

n–1

 

 := –q

 

n–1

 

 ;   for  j = n–2, n–3, …, 2, 1  in turn   s

 

j

 

 := s

 

j+2

 

 – q

 

j

 

·s

 

j+1

 

 .
Finally  A := s

 

1

 

  and  B := s

 

2

 

 .  Another way to compute them is to evaluate from-right-to-left the 

matrix product defining row    

 

simultaneously

 

  with the computation of the  q

 

j

 

’s :

r0

r1

a

b

rj

r j 1+

0 1

1 qj–

rj 1–

rj

rn

0

0 1

1 qn–

0 1
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1 q2–

0 1

1 q1–
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r1
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   :=  ;  :=  ;  for  j = 2, 3, …, n–1  in turn    :=  .

Finally   :=  .  Note that  q

 

n

 

  never figures in the computation of  A  and  B .  

Whichever way be chosen to compute  A, B  and  GCD(a, b) = B·a + A·b ,  the algorithm is called 
“the Extended Euclidean Algorithm”  and has important applications.  Here is one of them:

 

Exercise:

 

  Given integers  a, c  and  b > 0 ,  when does  “ a·x 

 

≡

 

 c  

 

mod

 

 b ”  have integer solutions  x ?  Here  
“ p 

 

≡

 

 q  

 

mod

 

 b ”  is pronounced  “ p  is congruent to  q  mod b ”  and means that  p–q  is divisible by  b .  Let  
d := GCD(a, b) .  Exhibit all  d  noncongruent solutions  x  if and only if  d  divides  c ;  otherwise prove no solution  
x  exists.

 

Continued Fractions
If  d = GCD(a, b)  then  (a/d)/(b/d)  exhibits  a/b  “in lowest terms”  but is not the only unique 
encoding of rational numbers.  By substituting  rj–1/rj = qj + 1/(rj/rj+1)  repeatedly for  j = 1, 2, …, 
n  in turn we obtain a  Terminating Continued Fraction

 .

This is  the continued fraction for the rational number  a/b .  Here  q1 ≥ 1  because  a ≥ b > 0 ;  in 
fact every  qj ≥ 1  and the last  qn ≥ 2  to ensure that the encoding of each rational  a/b > 1  by a 
finite sequence  (q1, q2, q3, …, qn–1, qn–1)  of positive integers be unique.  Euclid’s  algorithm 
converts a rational number given as a ratio of integers into its continued fraction;  how do we get 
back?  The obvious way evaluates the continued fraction  “bottom-up” :  Rn+1 := 0 ;  Rn := 1 ;   for  
j = n, n–1, n–2, …, 2, 1  in turn  Rj–1 := qj·Rj + Rj+1 ;  finally  a/b = R0/R1  in lowest terms.
Exercise:  Confirm that every integer  Rj = rj/GCD(a, b) .

Translating the bottom-up evaluation of the continued fraction into matrix terms yields first  

=  ,  then  = …  .  This last expression offers 

two interesting opportunities.  One is a way to evaluate the continued fraction  “top-down” :

:=  ;   :=  ;   for  j = 2, 3, …, n  in turn   :=  ;  finally  :=  .

This top-down evaluation turns out to be a good way to evaluate endless continued fractions that 
encode non-rational numbers;  successive ratios  hj/gj  can be shown to converge alternatingly.
Exercise:  The endless continued fraction in which every  qj = 1  represents  µ := (1 + √5)/2 ;  can you see why?

Another opportunity offered by that long matrix product is a clear proof of  Lamé’s Theorem :  To 
compute  d = GCD(a, b)  for  a ≥ b > 0  Euclid’s  algorithm needs  n ≤ 1+ln(b/d)/ln(µ)  divisions.
Exercise:  Prove it by showing every  Rj  is at least as big as if every  qj = 1  except  qn = 2 ,  so  R1 ≥ ƒn+1 ,  a  

Fibonacci  number,  and  ƒn+1 = (µn+1 – (–1/µ)n+1)/(µ + 1/µ)  ≥  µn–1 .                                         ( Cf. text p. 206.)
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Exercises:

Suppose given integers  M > 1  and  N > 1  have  GCD(M, N) = 1 = n·M – m·N  for some integers  
m  and  n  whose signs are not yet determined.

1)  Show why  m  and  n  must have the same nonzero sign.

Henceforth we can assume that  n > 0  and  m > 0 ;  otherwise swap  M  and  N ,  etc.

2)  What is  GCD(m, n) ?

3)  Show how to replace  m  and  n  respectively by  m  and  n  satisfying
0 < m < M ,    0 < n < N   and   1 =  n·M – m·N  =  n·M – m·N  .

Henceforth we can assume that   0 < m < M   and   0 < n < N   and   n·M – m·N = 1 .        (†)

4)  Exhibit instances of pairs  (M, N)  and  (m, n)  which satisfy these assumptions  (†),  but for 
which  M > N  in one instance,  and  M < N  in another.

5)  Given that the pairs  (M, N)  and  (m, n)  satisfy  (†),  show how to obtain a pair  (m, n)  that 
satisfies   0 < m < M   and   0 < n < N   and   m·N – n·M = 1 ,  as if  M  and  N  had been swapped.

6)  Show why  (†)  implies that  M–N  and  m–n  have the same nonzero signs unless  m = 1 = n .
( Hint:    (m+n)·(M–N) – 1  =  (m–n)·(M+N) + 1  .)


