

Filename: ISSAC_07 Version dated July 28, 2007 8:15 am

Prof. W. Kahan Page 1/15

The Top of a Wish-List for the
Integration of Hardware Floating-Point Computation

into Computerized Algebra Systems

Prof. W. Kahan
Math. Dept., and Computer Science Dept.,

University of California
Berkeley CA 94720-1776

For presentation to ISSAC 2007
30 July 2007

University of Waterloo, Canada

Abstract:

 Numerical software for Scientific and Engineering Computation using fast
floating-point hardware is becoming impossible to debug when afflicted by data-
dependent hypersensitivity to roundoff. At the same time, the experience that would help
programmers avoid that hypersensitivity is disappearing, replaced all too often by mere
superstition. Neither Interval Arithmetic nor arbitrarily high precision but slow arithmetic
by themselves can help enough. What is needed is known but not by enough programmers
to create a market worth entering by the vendors of program development systems.

This document will be posted at <www.eecs.berkeley.edu/~wkahan/ISSAC_07>

William Kahan
I am grateful to the organizers of
ISSAC 2007 for this opportunity
to solicit your support for a better
environment to support numerical
computations by mathematicians, scientists and engineers.
 ...

I figure you read faster than I talk.

Please feel free to interrupt me with
a question or correction at any time.
My students would, and so would I
were our positions swapped.

Filename: ISSAC_07 Version dated July 28, 2007 8:15 am

Prof. W. Kahan Page 2/15

My Wish List:

• Diagnostic Tools to help debug roundoff-induced anomalies in computations:
Which subprograms are above suspicion, which not?

 Which statement’s rounding error spawned the fatal departure from accuracy?

• Better control of variable precision, especially if arbitrarily high.

• Truly linear algebra and geometry instead of lists and arrays. (cf. L

INALG

 system)

• Integration of

Interval Arithmetic

 with geometry and with arbitrarily high precision.

• Help to locate singularities of sufficiently simple kinds.

• Appeal to the

Monodromy Theorem

 to help correctly simplify complex arithmetic
expression involving principal branches of multi-valued algebraic functions.

• . . .

But there is time now only for the top of the list.

William Kahan
Everyone seems to agree with
the goal of closer integration of
fast floating-point hardware into
Computerized Algebra Systems,
if only to get rid of the translation
into Fortran or C that slows
down software development
and correction, even if those
languages' compilers may yield
faster executing object code.

William Kahan
Good precision-control is very
different for hardware floating-
point than for slower software- implemented floating-point of
variable and very high precision.

William Kahan
... and the
incircle
example
below.

William Kahan
... including branch-cuts.

William Kahan
Sometimes no single statement nor module
 is more egregiously at fault than any other.

William Kahan
For example, over what domain in the complex z-plane does ...
 sqrt(1 - z^2) = sqrt(1-z)*sqrt(1+z) ? ... or ...
 sqrt(z^2 - 1) = sqrt(z-1)*sqrt(z+1) ? ... And why?

William Kahan

Filename: ISSAC_07 Version dated July 28, 2007 8:15 am

Prof. W. Kahan Page 3/15

We urgently need …

• Diagnostic Tools to help debug roundoff-induced anomalies in computations:
Which subprograms are above suspicion, which not?

 Which statement’s rounding error spawned the fatal departure from accuracy?

… and …

• Better ways to lower such anomalies’ incidence in programs inadequately debugged

(Has any large program ever been fully debugged ?)

How Harmful are Anomalies Induced by Roundoff ? We cannot know.

Such anomalies are almost always misdiagnosed if not shrugged off as too costly to find.

e.g.: P

ATRIOT

 anti-missile missile fails to stop SCUD from falling upon barracks.
The failure to hit the SCUD was ultimately traced to roundoff-induced drift.

(Even if a hit had been scored, it would not have stopped the warhead.)

Filename: ISSAC_07 Version dated July 28, 2007 8:15 am

Prof. W. Kahan Page 4/15

So there are exceptions.

Why are anomalies due to roundoff almost never diagnosed correctly?

The biggest change in computers over the past few decades has

not

 been …
… millions-fold increase in speed, nor …

… millions-fold increase in memory capacity, …
… but their decrease in price. Now almost everybody can afford one or more, and

most computers are cheap enough to be left idle most of the time.

Floating-point computation has become so cheap that most of it is used for entertainment.

Most computed results are not worth the cost of hiring a Ph.D.
 to find out whether they are wrong, much less why.

For lack of a steady demand, the kind of expertise needed to perform competent floating-
point error-analysis gets harder to find. There are places to learn about error-analysis:

• Web pages like mine and Jim Demmel’s and a few others …
• Texts like Nick Higham’s (700 pages) and Pete Stewart’s and a few others …

But it is so difficult that hardly any students choose to learn about it.

William Kahan
The stock price index at the
Vancouver Stock Exchange
(mainly dubious mining stocks)
was underestimating stock
prices because of roundoff.
When diagnosed and corrected,
the index jumped by about 500
points one day.

William Kahan
Sussman and Wisdom at MIT
built an electronic Orrery out of
computer boards donated by HP.
It simulated the orbits of the
outer planets in order to find
out whether Pluto's orbit was
stable. But roundoff limited the
simulation's credibility to only
400 million years. After we
talked about tricks to suppress
roundoff i.a., th simulation went
on credibly to 4 billion years.

They concluded that after that
time Pluto may well be gone
from our descendants' view,
if we have descendants.

William Kahan
In the early 1960s a graduate
student at the U. of Toronto
though he had a design for a
STOL wing less blighted by
abrupt onset of stall than all
others. But simulations on the
IBM 7090 showed abrupt
onset of stall in both single
and double precision. It was
abrupt because of roundoff
trouble different for single than
for double. When diagnosed
and cured of these troubles,
the simulation's onset of stall
became gradual. See my "A
Survey of Error-Analysis" (but
not the errors you think) in Info.
Proc. 71 (1972, North Holland).

William Kahan
And the time needed to carry
out a competent diagnosis
may exceed the service life
of the platform suffering the
anomaly allegedly due to
roundoff. This has happened
during the development of
ScaLAPACK.

William Kahan

William Kahan

Filename: ISSAC_07 Version dated July 28, 2007 8:15 am

Prof. W. Kahan Page 5/15

 CS grads don’t have to know more about floating-point than about an hour’s worth in a
programming language course. Apparently …

Numerical Analysis has become a sliver
under the fingernail of Computer Science.

No Numerical Analysis appears in

Educational Testing Service

’s C

OMPUTER

 S

CIENCE

Major Field Test (4CMF) of students’ mastery of a CS curriculum.

Applied Math. students have to learn some Numerical Analysis, but the readable texts
treat N.A. as algebra applied to the transformation of standard problems into algorithms.
And those algorithms are simplified for didactic purposes, not the algorithms packaged
software like M

ATLAB

 uses to solve those problems. Hardly any students learn about the
algorithms’ failure modes:

• Roundoff can bloat intolerably only if a problem’s data is too close to a singularity.
• Some singularities are intrinsic to the problem --- “Ill Conditioned data”
• Some are spurious artifacts of the program’s algorithm --- “Numerical Instability”
• Recognizing a singularity can be difficult; deciding whether it is spurious more so.

Let’s look at an example …

Filename: ISSAC_07 Version dated July 28, 2007 8:15 am

Prof. W. Kahan Page 6/15

Example:

 Given the vertices

u

,

v

 and

w

 of a triangle in Euclidean 3-space,
we seek its

incenter

c

 , the center of its inscribed circle.

c

 is characterized by these requirements:
•

c

 lies in the plane containing the vertices.
• The line segment joining

c

 to any vertex makes equal angles with
the triangle’s two edges at that vertex.

The requirements must be translated by vector algebra into equations whose solution is

c

 .

This example is one of many in my classroom notes
“Computing Cross-Products and Rotations in 2- and 3-Dimensional Euclidean Spaces”
posted at

<www.eecs.berkeley.edu/~wkahan/MathH110/Cross.pdf>

 .

These notes have a better cross-product notation and details omitted from what follows.

•
u v

w

c

Filename: ISSAC_07 Version dated July 28, 2007 8:15 am

Prof. W. Kahan Page 7/15

c

 satisfies a system M·

c

 =

m

 of linear equations whose 3-by-3 matrix M := [

p

,

b

,

q

]

T

and column

m

 := [

π

, ß,

θ

]

T

 are computed from these formulas:

p

 := (

v

–

u

)

×

(

w

–

u

) ,

π

 :=

p

•

u

 , … in the triangle’s plane

b

 := ||

u

–

v

||·(

w

–

v

) – ||

w

–

v

||·(

u

–

v

) ,

β

 :=

b

•

v

 , … bisect angle at

v

q

 := ||

v

–

w

||·(

u

–

w

) – ||

u

–

w

||·(

v

–

w

) , and

θ

 :=

q

•

w

 . … bisect angle at

w

Now

c

 = M–1·m .

Where are its singularities? This linear system’s determinant is

 det(M) = p•b×q = ||v–w||·(||u–v|| – ||v–w|| + ||w–u||)·||(v–u)×(w–u)||2 .
which vanishes just when the given triangle is degenerate (has area zero). This suggests

that c = M–1·m should lose accuracy when applied to excessively narrow triangles.

Let’s apply the formula c = M–1·m to some numerical data:

•
u v

w

c

William Kahan
This expression.says WHAT to compute to get c but not HOW to compute it. There are too many ways to (mis)compute this expression.

William Kahan
Whence come "excessively narrow triangles? They are usually accidental.

Filename: ISSAC_07 Version dated July 28, 2007 8:15 am

Prof. W. Kahan Page 8/15

 u := [255429.53125, -139725.125, 140508.53125]T,

 v := [10487005., 8066347., -11042884.]T,

 w := [-5243521., -4033150., 5521499.]T .
These are vertices of a narrow triangle 80 times as long as wide. Its accurate incenter is

 c = [128615.61552…, -69127.510715…, 69282.163604…]T

 ≈ [128615.6171785, -69127.5078125, 69282.1640625]T
when rounded to 4-byte wide 24 sig. bit float s. The data all fit into float s too.

When c = M–1·m is computed carrying just 24 sig. bits throughout, its every element is
in error by about ±400.00, leaving fewer than half as many correct digits as were carried.

Would this much error disturb you? If so, what would you blame for it? The condition
number κ(M) ≈ 100 ; should a loss of 2 sig. dec. be expected? If so the error should not
be worse than ±1.00 , far smaller than what is observed. Is this puzzle worth solving?

•
u v

w

c

William Kahan
Would you notice an error too big to ignore but too small to be obvious before too late? It's the worst kind of error.

Filename: ISSAC_07 Version dated July 28, 2007 8:15 am

Prof. W. Kahan Page 9/15

The foregoing is a taste of what passes too often for error-analysis. It is utterly wrong, but
in ways that almost all practitioners find extrememly difficult to unravel.

First, the condition number κ(M) ≈ 100 that is generally interpreted as an amplification
factor for roundoff tells only a small part of the story. Actually, roundoff did most of its

damage when M := [p, b, q]T and m := [π, ß, θ]T were computed from the formulas
 p := (v–u)×(w–u) , π := p•u , … in the triangle’s plane
 b := ||u–v||·(w–v) – ||w–v||·(u–v) , β := b•v , … bisect angle at v
 q := ||v–w||·(u–w) – ||u–w||·(v–w) , and θ := q•w . … bisect angle at w

Were the triangle degenerate, at least one row of [M, m] and perhaps three would vanish;

most digits of [M, m] get lost before c = M–1·m is computed if the triangle is narrow.

This loss is utterly unnecessary.

If a computerized algebra system could Simplify the foregoing formula for c (but I know
none that can do so) the result would be a numerically far superior formula

 c = (u·||v–w|| + v·||w–u|| + w·||u–v||)/(||v–w|| + ||w–u|| + ||u–v||) .

When this formula is used carrying, as before, just 24 sig. bits, the error is not ±400.
but about ±0.3 , and is that big only because ||w||/||c|| > 53 and ||v||/||c|| > 106 .

How easily could you explain all that?

William Kahan
Incenter c is a
positively weighted
average of u, v, w.

William Kahan
How many rows of {M, m] could vanish? One, two or all, depending upon the order in which the vertices u, v, w are presented as data. But incenter c should not depend upon that order. Hmmm.

Filename: ISSAC_07 Version dated July 28, 2007 8:15 am

Prof. W. Kahan Page 10/15

 c = (u·||v–w|| + v·||w–u|| + w·||u–v||)/(||v–w|| + ||w–u|| + ||u–v||) .

How many people know this formula nowadays? How many of the rest could find it if
they had to compute c somehow? Can Google find it before I post it on my web page?

It is unreasonable to expect that …

… so benign a solution exists for every numerical problem.

… everyone who needs such a solution can find it when it exists.

… every numerical program, benign or not, is error-analyzed by its programmer.

How can we defend ourselves and our loved ones from numerical computations
programmed by clever and knowledgeable but numerically naïve programmers?

•
u v

w

c

William Kahan
Please raise your hand to
be counted if you can
recall seeing this formula
AND were educated in
the U.S.A. or Canada
AND are less than 65
years old.

Filename: ISSAC_07 Version dated July 28, 2007 8:15 am

Prof. W. Kahan Page 11/15

How can we defend ourselves and our loved ones from numerical computations
programmed by clever and knowledgeable but numerically naïve programmers?

We need a defence against programs that have been tested for accuracy with all due
diligence but suffer from spurious singularities that amplify rounding errors intolerably for
very rare and otherwise innocuous data that the program seems to dislike. Though very
rare, such data can be distributed either almost everywhere (as was the case for the
Pentium FDIV bug) or tightly close to some smooth surface in data space. A frightful
example of the almost-everywhere kind afflicted one of the earliest computers for two
years; see “Marketing vs. Mathematics” <.../MktgMath.pdf> on my web page.
Other perplexing examples appear in “Do MATLAB ’s lu(…) , inv(…) , / and \ have
Failure Modes ?” <…/Math128/FailMode.pdf> . Such anomalous behavior often
escapes notice during diligent testing only to be discovered by one of the program’s users
later. Then the program’s vendor and programmer need help to find and cure the anomaly.

Don’t think “very rare” will probably protect you. If your data lies in data-space on a
surface that intersects the spurious singularity’s surface tangentially, then “rare” will
become “often” for you.

William Kahan
See p.34 of MktgMath.pdf

William Kahan
See p. 37 of MktgMath.pdf

Filename: ISSAC_07 Version dated July 28, 2007 8:15 am

Prof. W. Kahan Page 12/15

How can we defend ourselves and our loved ones from numerical computations
programmed by clever and knowledgeable but numerically naïve programmers?

I propose three steps:

Step 1: Programming languages that support floating-point hardware must by default
(unless the program text demands otherwise) declare all local variables and perform all
floating-point arithmetic with the widest precision available at hardware’s speed, even if
this precision exceeds extravagantly the precision of the input data and the accuracy
desired for the result put out.

Usually every extra decimal digit carried by these extra-precise intermediate variables and
arithmetic reduces the incidence of unanticipated embarrassment due to roundoff by a
factor near 1/10 . Carrying somewhat more precision than twice the data’s and the
result’s almost always eliminates that embarrassment, as experience has shown.

This step was taken serendipitously in the mid 1970s by Kernighan and Ritchie when
they designed the language C for their DEC PDP 11s. This serendipity was undone by
ANSI X3J11 in the mid 1980s at the behest of CDC and CRAY. Where are they now?

William Kahan
At a time when most computers' floats carried about 24 sig. bits, CDC's and CRAY's carried 48, and their doubles were software-simulated slowly, so X3J11 licensed Fortrannish expression-evaluation for them.

William Kahan
I think we must (re)design the computing environment to accommodate people as they are now
("... very much as God made them or somewhat the worse" -- Mark Twain)
rather than try futilely to (re)educate people to accommodate the whimsical historical accidents in the evolution of computing. Really, whimsical? Yes; see sect. 15 in my web page's .../MathH110/Cross.pdf.

Filename: ISSAC_07 Version dated July 28, 2007 8:15 am

Prof. W. Kahan Page 13/15

How can we defend ourselves and our loved ones from numerical computations
programmed by clever and knowledgeable but numerically naïve programmers?

Step 2: Program development environments (compilers and their debuggers) that
support floating-point computation, regardless of the precision(s) supported, must permit
users to rerun subprograms in all three directed rounding modes (to –∞, to 0, to +∞) in
lieu of the default (to nearest), allowing the user to specify the modes’ scope, so that the
math. library of elementary functions and decimal-binary conversions will not be spoiled
by altered rounding modes. For more details see “How Futile are Mindless Assessments
of Roundoff in Floating-Point Computation ?” <.../Mindless.pdf> on my web page.

No matter which formula is chosen to compute the incenter c , its four values computed
in all four rounding modes differed among themselves by at least roughly as much as the
computed c was in error. The same happens to every geometrical computation described
in <.../Cross.pdf> , and to all the examples cited in <.../Mindless.pdf> except a
few examples constructed to show why there is no foolproof way to locate modules that
deserve scrutiny for possible numerical instability. Rerunning with redirected roundoff
almost always works. (But randomized rounding has been proved unreliable.)

Steps 2 and 3 are needed when step 1 fails or is unavaliable.

William Kahan
In the late 1950s IBM's STRETCH computer included hardware to support randomized rounding. Then they discovered why this could appallingly underestimate roundoff's effect just when it was catastrophic: Among the millions of rounding errors committed, as few as one or two may be responsible for almost all of the damage. This happens often in Gaussian elimination, for example. And then there is an unacceptably big probability that reruns with random roundings will round those few the same way, producing "random" results that agree far more closely with each other than with the correct result. See my .../Mindless.pdf.

Filename: ISSAC_07 Version dated July 28, 2007 8:15 am

Prof. W. Kahan Page 14/15

How can we defend ourselves and our loved ones from numerical computations
programmed by clever and knowledgeable but numerically naïve programmers?

Step 3: Program development environments (compilers and their debuggers) that
support floating-point computation with very high precision(s) must permit programs to
be debugged by running two versions, one with higher precision from a designated point
to its end. This is a subtle technique described in more detail near the end of “How
Futile are Mindless Assessments of Roundoff in Floating-Point Computation ?” posted at
<.../Mindless.pdf> . The subtlety is necessary because two programs, identical but
for one’s precision rather higher than the other’s, often diverge in the middle but come
together at the end. Think of iterative equation-solvers, or Gaussian elimination when
two candidates for pivot differ inly by roundoff.

Step 3 is needed mostly when step 2 fails to locate a small suspicious module inside a
large program suspected or convicted of hypersensitivity to roundoff for some otherwise
innocuous data.

Filename: ISSAC_07 Version dated July 28, 2007 8:15 am

Prof. W. Kahan Page 15/15

What can you do now?

Are you a consumer of compilers and program development environments?

Now you know what to demand from your software vendors.

Are you a designer or vendor of compilers or program development environments?

Now you know what the world of scientific and engineering computation needs to debug
software that affects buildings, bridges, tunnels, vehicles, medical imaging, etc., upon
which you or your loved ones may depend some day.

Think not of your Duty to Truth in Computation.
Think about Self-Defence.

