

File: 7094II.doc Version dated 11 July 2010

7094-II SYSTEM SUPPORT FOR NUMERICAL ANALYSIS

W. Kahan
Department of Computer Science

University of Toronto

Draft of first half: August 1966

With corrections to June, 1968

Retyped in 2010 for this file by S.K. Kahan from

IBM SHARE Secretarial Distribution SSD #159 Item C-4537 (1966)

plus an extract from

“Error in Numerical Computation”,

Univ. of Mich. Eng'g Summer Conf'ce #6818,

Numerical Analysis (1968)

- 1 -

7094-II System Support For Numerical Analysis

W. Kahan, University of Toronto

Abstract

 This is the first half of a progress report on the author's

efforts to improve the performance of IBSYS in the following areas

of FORTRAN programming:

 1. Error-traces and diagnostic messages to locate and explain

 flaws found while executing FORTRAN programs.

 2. Post-mortem facilities via the FORTRAN IV statement

 IF (KICKED (OFF)) ...

 3. A consistent, sane and flexible treatment of over/underflow

 and related phenomena.

 4. Digit manipulation (like rounding) via FORTRAN built-in functions.

 5. The eradication of anomalies in the compiler (IBFTC) and

 the FORTRAN library (IBLIB).

 6. The expansion of the FORTRAN library to include reliable

 and convenient subprograms for the solution of standard

 numerical problems like systems of linear equations,

 polynomial equations,

 eigenproblems,

 minimax approximation,

 fitting data by least squares,

 systems of ordinary differential equations,

 etc.

 Items 1 to 5 are herein regarded as essential prerequisites to the

accomplishment of item 6 in such a way that users of these subprograms

need not supplement their own competency in mathematics, science,

engineering or the humanities by a hyperfine proficiency at both numerical

analysis and the debugging of systems programs. Each of the six

- 2 -

areas will be discussed in a correspondingly numbered section of

this report, which begins by introducing the motivations for and

the constraints upon the author's efforts. Sections 1 to 3 follow;

section 4 to 6 will be issued separately later.

 Sections 1 to 3 are intended to demonstrate in detail the

validity of the author's rationale for treating unscheduled

events during a computation. The reader who is unfamiliar with

IBSYS and IBM's 7094 is asked to persevere; that rationale would

work on his machine too if it were designed right.

- 3 -

Introduction

 For as long as electronic computers have been in use (since 1949

at the University of Toronto), there has existed a steadfast policy

to widen the range of intellectual disciplines that might benefit

from the machine. That policy is partly responsible for a decline

in the numerical sophistication of users, a decline which has yet to be

compensated by an increased sophistication in the programs they can use.

Despite intensive attempts to educate them in the arts of computation,

too many new users attribute to the numerical library subprograms the

infallibility of a mathematical proof. They shall be disillusioned.

To what extent can their disillusionment be written off as part of

their education? To what extent can their dissatisfaction be traced

to shoddy computing systems? There is room for improvement in both

the quality of education and the quality of computer performance. But

you cannot teach an old dog new tricks, and you cannot teach a new

dog very much. Therefore the bulk of the improvement must and can

come in the performance of computer systems.

 The performance of IBM's IBSYS on the 7094-II has left a lot of

room for improvement. The improvements listed here were motivated

almost entirely by the inadequacies uncovered during the author's

researches into numerical methods. The object of the researches was

to produce working programs about which might be proved something

simple and useful to a numerically unsophisticated but otherwise

intelligent and educated user. As a by-product of these researches,

the following vague generalities have emerged:

- 4 -

 -Computation costs most when its result is not known to be

 right nor wrong, because it costs so much to find out what is

 wrong and why. Costs can be cut by a small amount of self-

 doubt applied early.

 -Whether or not the purpose of computing be “insight”, its

 most dependable benefit is hindsight. Programmers dislike

 forgoing this benefit through lack of foresight.

 -Errors, anomalies and arbitrary restrictions hurt most when

 they are too rare to remember but not rare enough to ignore.

 These generalities have influenced the many decisions on questions

of detail which arose during the work on the system. A more decisive

influence was exerted by three constraints.

 First, it was deemed essential that programs be capable of

conversion to whatever machine might replace the 7094-II, and so it

was decided that all numerical subprograms be written in a language

like FORTRAN or ALGOL, except where efficient coding was so obviously

machine dependent that the assembly language MAP was used. I chose

FORTRAN IV in preference to ALGOL. I would rather fight than

switch. I am still fighting with the latest version (13) of the

IBFTC compiler to incorporate all the modifications which I had

introduced into the previous version, and further modifications to correct

newly discovered deficiencies.

 Second, since no one had anticipated a need to rewrite IBSYS

or IBFTC in its entirety, no resources were allocated for such a

task. Therefore, IBSYS and IBFTC have been modified as little as

possible, instead of being replaced. The modifications have cost about

three man-years of work all told, much of which has been

dissipated in the transfer of the modifications from version 12 to

version 13 of IBSYS.

- 5 -

 Third, but most important, is our decision that the Toronto

version of IBSYS remain compatible with the standard IBM IBSYS.

Consequently, any FORTRAN IV program, even if it be in the form of

a binary object-program deck, which has been designed for and runs

correctly on a 7094 under standard IBM IBSYS with a hundred or so storage

locations to spare, runs at least as well under our modified system.

If the program be recompiled with no other modification, then the

user may benefit from our improved diagnostics, especially where

division by zero is concerned. Most of the users of our 7094-II

are unaware of any departure from standard. But programs which run

well on our system sometimes fail mysteriously at other 7094

installations.

 In this report an attempt will be made to discriminate between

IBM's standard IBSYS and our modified IBSYS by referring to theirs

in the past tense whenever it differs from ours. Further details

about IBM's IBSYS can be obtained from their manuals:

 C28-6248 (IBSYS monitor)

 C28-6389 (IBJOB; loader and library)

 C28-6390 (IBFTC FORTRAN compiler)

Further details about our modified system can be found in

 “The Programmers' Reference Manual” 3rd ed.

obtainable from

 The Secretary, Institute of Computer Science,

 University of Toronto,

 Toronto 5, Ontario,

 Canada.

and henceforth referred to as the PRM. Program listings are obtainable

too if requested by name.

- 6 -

Acknowledgement

 The author is deeply grateful for the patient assistance

rendered by several IBM personnel, both in Toronto and elsewhere,

who went out of their way, and sometimes out on a limb, to help with

this work. Particular thanks go to J. Leppik, G. Howard and J. Bell

for their help with the monitor, the compiler and the revised SAVE

pseudo-op. Thanks go as well to colleagues in the Department and

in the Institute of Computer Science for their encouragement over

several years, and for their help with policy decisions about

kick-off and diagnostic procedures.

 Some of the work reported here was supported by the National

Research Council of Canada.

- 7 -

1. Error-traces and Diagnostic Messages

 It may seem peculiar that a Numerical Analyst be preoccupied

with the System Programmer's traditional responsibility for error-

traces, diagnostics and post-mortem information. But let us watch

the Numerical Analyst at work. Much of his computer time is

dissipated by the diagnostics and post-mortems which he receives

while trying to discover why his algorithms do not work as well

as he had hoped. From time to time he hands one of his subprograms

on to some other user numerically less sophisticated than himself,

and in so doing he tacitly shares with the Systems Programmers some

responsibility for issuing diagnostics. His program may produce

diagnostic messages for different reasons than merely to signal

its own collapse. Diagnostics may be the only “correct” answers

that the program can deliver in response to problems outside the

intended domain of its applicability, especially when the program's

domain cannot easily be defined other than by attempting to execute

the program. For example, a hopelessly ill conditioned linear system

 Ax = b

is most easily identified when a sound linear-equation-solver fails

to solve the system for x but exhibits instead a near linear

dependence d in the left hand side A ; i.e.,

 ║ A d ║ / (║ A ║ ║ d ║) ≈ 0 .
The Numerical Analyst's subprogram ought to pass on this kind of

diagnostic information in a form easily interpreted either by the

user's calling program or by the user personally.

 The latter form of diagnostic is usually a message printed

amidst the user's output and is often the consequence of an error

or oversight. The crucial question is

 “Where was this error committed?”

- 8 -

but no computer program can answer this question. The best that can

be done automatically is to answer the question

 “Where did the program first encounter some anomalous consequence

 of the error?”

 The answer takes the form of an Error-Trace. Under IBM's IBJOB

this would be provided by library subprogram .FXEM., the FORTRAN

execution Error Monitor. Let us examine an error-trace typical of

those produced by IBM's .FXEM. . For example, suppose line 2 of

the user's main program MAIN called a subprogram SUB1 in whose

line 25 was a call to SUB2 in whose line 17 was a reference to

SQRT(-4.0). When this reference was executed, the SQRT program

would detect the inappropriately negative argument and call .FXEM.

(say in line 31) to produce an error-trace and diagnostic message.

IBM's error-trace would look like this:

 ERR☼R-TRACE CALLS IN REVERSE ☼RDER

 CALLING IFN ☼R ABS☼LUTE
 R☼UTINE LINE N☼ L☼CATI☼N

 SQRT 31 17621

 SUB2 17 14513

 SUB1 25 07762

 MAIN 2 05413

The names in the first column are the deck-names assigned by the user

to his subprograms (or else, in our modified system, assigned by

default by the system). The line numbers or “Internal Formula

Numbers” in the second column refer to numbers printed in the programs'

source listings, and can be exploited by the FORTRAN IV programmer

without recourse to storage maps. For this reason, the third column

of absolute octal core locations is of secondary value to the FORTRAN

programmer. It is a great convenience that he can ignore this column

and dispense with storage maps most of the time.

- 9 -

 The completeness of the error-trace shown above is one of its

most valuable features. Complicated programs can contain several

references to the SQRT subroutine, and it is vital that the path of

control to the invalid reference by laid out explicitly. The complete

error-trace is even more valuable when languages which permit recursive

procedures are used. If a user were instead provided with only the

reference to SQRT (or only to SQRT and SUB2) in the error-trace

above, he might waste a lot of time checking through all of his calls

to SUB2 in an attempt to uncover the faulty one.

 IBM's .FXEM. would print out a two-line diagnostic message

and provide a means to exercise options regarding kick-off or continued

execution following the diagnostic error-trace. But .FXEM.

suffered from two defects.

 One, the easiest to remedy, was that .FXEM. could be called only

from a MAP assembly language program. We fixed this by providing

a program called UNCLE; any programmer can kick himself off

(and produce an error-trace plus post-mortem debugging output)

by executing

 CALL UNCLE .

He can offer users of his program a limited range of kick-off-or-

continue options by writing

 CALL UNCLE (N)

with a suitably chosen integer expression N. He can supply one or

two diagnostic messages too by writing

 CALL UNCLE (N,Message) or

 CALL UNCLE (N,Message l, Message 2) .

- 10 -

The messages can be inserted literally as Hollerith strings or they

can be referenced as arrays of alphanumerical data. In the latter

case, rudimentary binary-to-BCD conversion facilities are available

to permit integer valued variables like indices or error-codes

to be inserted into the diagnostic without first reserving core

storage for the panoply of FORTRAN input/output subprograms.

This last is an important considerations when program overlay

is required during execution. (For more details about UNCLE,

consult the PRM.)

 .FXEM.'s second defect was that it could cope only with what

I call “scheduled errors” ; these are errors each of which is discovered

in a subprogram which, when it calls .FXEM. to produce an error-

trace, can supply whatever linking information is needed by .FXEM.

to start the error-trace. For example, SQRT(-4.0) is a scheduled

error because SQRT is called in a standard way. But when unscheduled

errors like over/underflow, division by zero, running overtime, ... ,

were detected they would “trap”, i.e. cause interrupts which transferred

control to appropriate subprograms without carrying the standard

linking information that made an error-trace possible. Consequently,

the diagnostics for unscheduled errors answered the question “where?”

with an absolute octal core location, but could not answer the question

 “How did I get there?”

 That IBSYS's standard linking sequence contained a partial

answer to the last question was widely recognized. The first

effort to extract a full answer was made by G. Wiederhold and G.D.

Johnson at Berkeley (Univ. of California) in 1963. Their work

has appeared in SHARE SSD 121 of May 21/64 and SDA's 3066-7. A

similar scheme was devised by J. Leppik, G. Howard and the author

at Toronto in 1964. Our scheme differs from theirs mainly in that

ours is simpler to use, slightly less flexible, and fully compatible

with the standard IBM system.

- 11 -

 The first step in both schemes is to revise the standard

SAVE pseudo-operation by which subprograms are expected to save and

restore index registers, control linkages, etc. When IBM's SAVE

was executed upon entry to a subprogram SUB, it used to save

in a cell called SYSL☼C the pointer to the statement

 CALL SUB .

but no subsequent use was made of SYSL☼C . We have added two

instructions to SAVE whose effect is to store the same pointer,

during the RETURN from SUB to the instructions following

 CALL SUB ,

in such a way that the contents of SYSL☼C show whether SUB

has just been entered or has just returned. This modification

has no effect upon the way IBM's .FXEM. behaves for scheduled

errors.

 Next, I rewrote .FXEM. so that it can be called from a trap-

handling program. Such a CALL is distinguished from other standard

CALLS by the absence of certain otherwise expected linking information,

the lack of which forces .FXEM. into a new mode of action which

examines SYSL☼C to produce the first line of the error-trace.

 The behaviour of the new .FXEM. is best illustrated by an

example. Suppose that SUB2 in the example above contains, besides

SQRT(-4.0), a division which, when executed, turns out to be a division

of zero by zero. The result is the following diagnostic (in which

the contents of the second line depend upon an option selected by

the user):

- 12 -

 0.0/0.0 ERR☼R AT 14506

 RESULTS IN 0.0 or EXECUTI☼N TERMINATED

 ERR☼R-TRACE WITH CALLS IN REVERSE ☼RDER C☼DE 25

 CALL IS IN AT IFN ☼R ABS☼LUTE
 DECK NAMED LINE N☼. L☼CATI☼N

 SUB 2 17+ 14513

 SUB1 25 07762

 MAIN 2 05413

 The important change shows up in the + sign after the line

no. 17. This means that the announced anomaly was detected during

or after (in time) the execution of line no. 17 of SUB2, but

before any subsequent CALL was executed. Since SUB2 has a call to

SQRT in line 17 at location 14513 (cf. the previous error-trace),

and the 0.0/0.0 occurred five words ahead of this location in the

program, it seems likely that the program was executing a loop,

perhaps a D☼-loop, which contains the offending division just a line

or two in the listing ahead of the square root; and this loop was

executed at least once before the divisor vanished.

 The detective work in the last sentence is not typical; usually

the error can be located by the most superficial inspection. But

the need for any detective work at all is an unfortunate consequence

of the way IBM's FORTRAN IV compiler works. Instead of identifying

every line in the symbolic listing with a line number that .FXEM.

could deduce at execution time (for example, by locating a dummy

instruction

 TIX ID, 0, LKDR

at the beginning of the coding emitted by the compiler for line

no. ID of the FORTRAN subprogram whose linkage information can be

found at LKDR), the compiler assigns a useable line number only

when a CALL is generated. Since an implicit CALL is generated for

all references to FUNCTION subroutines, as well as for most

- 13 -

exponentiations of the form X**J and X**Y, for input/output,

for complex multiplication and division, and for a computed

G☼ T☼ (n1 ,n2,...,nm), I , there are few programs whose listed

line numbers are too sparse for a successful interpretation of the

error-trace. And, at worst, the unscheduled error is located to

within one subprogram.

 The C☼DE 25 at the head of the error-trace tells the programmer

how to exercise his option to define 0.0/0.0 in one of two ways;

either

 0.0/0.0 = 0.0 and continue execution, or

 0.0/0.0 = EXECUTI☼N TERMINATED.

For example, the first option is the result of executing

 CALL KIK☼PT (25, 1)

while the second results from

 CALL KIK☼PT (25, 0) .

The reader is referred to the PRM for precise details about available

options and how to exercise them conveniently. What follows is a

condensation.

 The PRM contains a table of error codes and messages (cf.

Fig. 25 and the section “Subroutine Library Error Messages” in

IBM's IBJOB manual, Form C28-6389-1) which describes for each code

its error condition, the options available, and which option is

assumed by the system in default of a request to the contrary.

The default option is usually to provide a message and then continue

execution in some reasonable way.

 I believe that, taken together with the other diagnostic

facilities in our system, our surprisingly simple set of options

covers almost all circumstances satisfactorily. For serious errors

we assign positive codes, like +25 for 0.0/0.0, to signify that

the allowed options are

- 14 -

 +1) Give a message and error-trace, and then continue reasonably,

 or

 +0) Give a message and error-trace, and then terminate execution.

(Some errors, like

 G☼ T☼ (1, 2, 3), 4

are so serious that option +1 is denied.) For milder errors we

assign negative codes, like -13 for SQRT (-4.0), which signify

that the allowed options are

 -1) Give a message and error=trace, and then continue reasonably,

 or

 -0) Give no message nor error-trace; just continue reasonably.

 The meaning of “continue reasonably” is discussed later in

this report. For now it suffices to give a few examples:

-15 -

 Error Condition and “Reasonable” Response Code

 SQRT(-X) = - SQRT(X) -13

 L☼G(-A) = L☼G(ABS(A)) -10 *

 0.0**0 = 1.0 - 3

 0**0 = 1 - 1

 0.0**0.0 = 1.0 + 6

 0.0/0.0 = 0.0 +25

 *Footnote: We allow programmers to write L☼G(X) or

 AL☼G (X) interchangeably as they please

 rather than penalize them for the venial

 sin of omitting the A .

 Programmers, particularly writers of library subprograms, can

easily provide other kinds of optional responses to error conditions

detected by their own subprograms because the status of the option-

indicator (a binary digit) associated with any error-code number

can be sensed and stored as well as changed via KIK☼PT. A complicated

program may have several error-codes assigned to it, but this causes

no problems because 280 codes are available. Programmers are free

to use error-codes as flags or flip-flops in a way comparable to the

use of sense-switches and sense-lights on the older slower machines.

 A comment is required to explain that last .FXEM. option

-0 which, in effect, allows .FXEM.'s activity to be suppressed

entirely when the error is a mild one with a negative code. Some

of these errors are better described as differences of opinion

about the most apt definition of a function or an expression, as in

the cases of 0**0 = 1 and 0.0**0 = 1.0 (cf. the Taylor series

∑o∞ arxr at x = 0.0). In these cases the warning messages serve only
to remind the user that my definitions are not universally accepted in

the computing world. If he is satisfied to do things my way, he can

turn the message off. If he prefers another way, he can easily change

the relevant program to his own specifications with the aid of the

documentation which we supply.

- 16 -

 Other errors with negative codes sometimes represent minor

oversights; an example is

 L☼G(-X) = L☼G(ABS(X)) , code – 10.

For reasons discussed later, our policy is to try not to terminate

execution because of such an oversight. Rather, it seems better

to continue and find out what else the programmer overlooked. We

do not encourage programmers to exploit system side-effects to save

the bother of a sign-test or some such simple instruction. We do

not regard the -0 option as one which should be employed in production

or library programs to correct oversights, except possibly temporarily,

because this type of hidden coding is so difficult to remember

when late-hatching bugs are being sought.

 To implement the new .FXEM. and error-trace required several

man-months of work, most of which was spent tracking down anomalies.

For example, several input/output programs supplied as part of earlier

versions of FORTRAN IV were found to use non-standard subprogram

linkages, and these had to be repaired to allow even the old .FXEM.

to produce meaningful error-traces before they were further modified

to work with the new .FXEM. . Every library program had to be examined;

here we reaped an unexpected reward when we discovered that the new

.FXEM. makes possible a shorter and faster subprogram linkage to

certain library programs like SQRT, C☼S, L☼G, EXP, complex

multiply, complex divide, A**J, and others.

 But one large job remains. The FORTRAN compiler must be modified

to generate standard CALLS to Arithmetic Statement Functions which

at the present, as compiled by IBM's FORTRAN IV v. 13, use non-

standard CALLS in order to save about 7 microseconds per CALL. (One

division costs 8.4 microseconds.) Consequently both IBM's .FXEM. and

ours produce error-traces which skip, sometimes confusingly, over

references to Arithmetic Statement Functions.

- 17 -

2. Post-mortem Facilities

 We prefer to think of kick-off as an act of desperation on the

part of a subprogram, and therefore try not to terminate execution

unless it is overwhelmingly probable that continued execution will

be an utter waste. There is little risk that errors like SQRT(-4.0)

will be repeated millions of times to no good purpose, because the

monitor imposes the user's own limit upon the total number of lines

of printed output, thereby protecting him from a million lines of

SQRT's diagnostic and error-trace. Furthermore, programmers who are

especially sensitive to a waste of their computer time allotment can

use statements like

 IF (CL☼CK (TSTART) .GT. TMAX) CALL UNCLE

to kick themselves off when the elapsed time since

 TSTART = CL☼CK (0.0)

exceeds TMAX, at a cost of 70 microseconds per execution. (One

square root costs 64 microseconds.)

 But sometimes kick-off is the only reasonable response to an

error. This response gives rise to a breed of programmer who has

only one diagnostic and error-trace to show for his several seconds

(or minutes) of computer time. It is uncharitable to advise him

that he should have exercised enough foresight to provide intermediate

output as insurance against such an event. Besides, he may reply

 “I thought I had debugged that program.”

 We doubt the wisdom of the widespread tendency to inundate

every user who is kicked off with a complete dump of storage willy-

nilly. This could drown him in octal data which he is unlikely to

be able to read. It is a costly way to educate students.

- 18 -

 The ideal solution would be to display conveniently just those

variables which have figured in the events leading up to the debacle.

Our solution is not ideal, but it is simple and flexible. It is an

improved version of our PM☼RT described in Comm. A.C.M. 7 (1964)

p. 15. We allow the programmer to write into his FORTRAN IV

program a statement of the form

 IF (KICKED(☼FF)) ‹ any executable statement ›

 ‹ the next executable statement ›

with the expectation that, because the value of the logical function

KICKED is always .FALSE. , his program will merely execute ‹the

next executable statement› . But if and when his program is kicked

off, the monitor will give him the diagnostic and error-trace that

he deserves and then, after over-writing ‹the next executable

statement› with CALL EXIT, will execute ‹any executable statement› .

e.g. 1: IF(KICKED(☼FF)) WRITE(...)

causes the desired information to be written out if and only after

the program has been kicked off. The programmer can choose a F☼RMAT

to suit himself or, if more convenient, he can use the simple un-

formatted output provided by the NAMELIST feature of FORTRAN IV; or

he can CALL DUMP and be drowned.

e.g. 2: IF(KICKED(☼FF)) CALL ... or

 G☼ T☼ ...

causes the desired transfer of control to take place after kick-off,

and thus permits a user to store valuable data on magnetic tapes

and ask the operator to save them. Or he can call a complicated

diagnostic program of his own, or he can try again to solve his

problem by some method other than the one which failed. The monitor

will allow, say 20 seconds and 300 printed lines of computer activity

after the first kick-off. Of course, any second kick-off is final

- 19 -

despite further IF (KICKED(☼FF))... requests. Because the user has

recourse to KICKED, writers of library and systems programs are under

less pressure when they have to decide whether an anomalous condition

should terminate execution or just produce a warning.

 Programmers are encouraged to use KICKED as often as they

like in both FORTRAN and MAP assembly language programs; and

they can leave these KICKED statements in production programs as

insurance against the remote possibility that an undiscovered bug

may terminate execution in a cloud of mystery. Each executed

reference to KICKED consumes less than 14 microseconds (less than

two division times) so KICKED can be used in fairly tight loops

without seriously wasting time. The monitor will respond at kick-

off only to the last executed reference to KICKED.

 An important limitation upon KICKED was imposed by the absence

of any block structure in FORTRAN comparable to that in ALGOL,

and by the way that indexing is optimized in FORTRAN. This limitation

exists because, whenever kick-off occurs in some subprogram remote

from the one containing the KICKED statement and then control

is passed to ‹any executable statement› after the IF(KICKED(OFF)),

no attempt is made to restore index registers to the state they were

in when KICKED was called nor to re-set tapes to their former

positions. More important, there is no way to reduce the

effect of those instructions which may have been placed in “optimum”

positions ahead of the call to KICKED in order to initialize index

registers and addresses as efficiently as possible from the point of

view of the normal sequence of control. For example, if kick-off

occurs during the computation of FCN in the sequence

- 20 -

 D☼ 3 J = 1, 10

 A(1,J) = J – 1

 D☼ 3 I = 1, J

 IF (KICKED(☼FF)) WRITE(...) I, J, B(I), B(J), (A(K,J), K=1,J)

 3 A(I+1, J) = FCN(B(I), B(J), A(I+1, J)) + A (I, J)

there is no way at kick-off time to move the numbers I and J from

storage into the appropriate cells and index registers for the refer-

ences to B(I), B(J), A(K, J) and “K = 1, J” following the call to

KICKED.

 A second limitation shows up when program overlay takes place;

there is no simple way to detect whether ‹any executable statement›

in the IF (KICKED(☼FF)) statement has been partially overlaid, or

whether it refers to data which has been overlaid. Consequently

we inserted an instruction in .L☼VRY, the overlay handling

subprogram, which causes the monitor to forget the last reference

to KICKED whenever overlay occurs. We take no pride in this

expedient.

 Any programmer who is aware of these two limitations can

easily code around them. Simple suggestions are contained in the

PRM. Indeed, the limitations are so easy to circumvent that programmers

sometimes forget to do so, and for this reason we have included a

warning message like the one in the following example:

 0.0/0.0 ERR☼R AT 14506
 EXECUTI☼N TERMINATED.

 ERR☼R-TRACE WITH CALLS IN REVERSE ☼RDER C☼DE 25

 CALL IS IN AT IFN ☼R ABS☼LUTE
 DECK NAMED LINE N☼ L☼CATION

 SUB2 17+ 14513

 SUB1 25 07762

 MAIN 2 05413

 EXECUTING IFN/LINE N☼. 2 OF 'SUB1' AFTER PR☼GRAM WAS
 KICKED ☼FF. FR☼M N☼W ☼N IN 'SUB1, THE VALUE OF A SUB-
 SCRIPTED VARIABLE WITH VARIABLE SUBSCRIPT, OR THE EXE-
 CUTI☼N OF A C☼MPUTED 'G☼ T☼' OR 'D☼' STATEMENT WITH
 VARIABLE PARAMETER, MAY BE INC☼RRECT UNLESS THE RELEVANT
 INDEX IS RESET. SEE THE PR☼GRAMMERS' REFERENCE MANUAL.

- 21 -

 This message is more formidable than necessary. It would be

unnecessary altogether if the IF(KICKED(☼FF)) statement were imple-

mented in a language, like ALGOL, with a block structure. Then kick-off

within a block would cause control to be transferred to the last

KICKED reference, if any, executed in the same block but not in a

deeper sub-block.

 One other complication would arise were the IF(KICKED(☼FF))

statement to be implemented within a compiler which contained a

M☼NIT☼R statement. Such a statement is exemplified by

 M☼NIT☼R X, Y(*), Z(*,3), PR☼G, n

which would cause output of the following kind to be generated:

 Whenever the variable X is changed, write out its new value;

 X = 14.271434 .

 Whenever the variable Y is changed, indicate which element too;

 Y (2) = .74131042 E –18 .

Whenever the third column of array Z is changed, say so;

 Z(13,3) = 0.0 .

Whenever the subprogram PR☼G is called, write out its arguments;

 CALL PR☼G (13, 27.421493, Y) WITH

 Y(1) = 1.4012362

 Y(2) = .74131042 E -18

 Y(3) = 0.0 .

If PR☼G is a function, write out its value too;

 PR☼G (13, 27.421493, Y) = 1.7014 E38 WITH

 Y(1) = etc.

Whenever statement n is executed, say so. If this is a logical

IF statement, tell what happened.

- 22 -

 The M☼NIT☼R facility as described above has been implemented

at least partially in several compilers
*
; unfortunately, ours is not

one of them. The problem is to deal with the statement

 IF (KICKED(☼FF)) M☼NIT☼R,

for which the nicest solution would be a retroactive display of,

say, the last 300 lines of output which would have been produced if

that M☼NIT☼R statement had not been bypassed. Some compilers

already have a feature of this kind; the author envies their users.

 Now is a good time to compare the error-options needed by the

programmer with those available to him. He may want to assign to a

specified anomaly, like 0.0**0 , one of the following four

consequences:

 -0) Re-interpret the request in a way judged to be appropriate

 for the majority of users (say 0.0**0 = 1.0) and continue

 with no message nor error-trace.

 1) Re-interpret the request as above, and put out a message

 and error-trace to tell the programmer what happened and

 where, and then continue execution.

 +0) Put out a message and error-trace to explain where and

 why execution was terminated, and then grant any post-mortem

 request that may have been made via

 IF (KICKED(☼FF)... .

 2) Transfer control to a location designated in advance by the

 programmer where he may cope with the anomaly as he pleases,

 provided the necessary information is easily accessible to

 him.

*
 R. Bayer, D.Gries, M. Paul, H.R. Wiehle [1967] “The ALCOR

 Illinois 7090/7094 Post Mortem Dump” Comm. ACM 10 #12 pp. 804-8

- 23 -

 Our system offers at least two of the first three options for

most error conditions. The last option is dangerous in FORTRAN for

the reasons cited while discussing the limitations of KICKED, unless

it is handled carefully. The following discussion explains how some

of our library programs offer option 2).

 Consider for example our least squares library subroutine LSTSQ

which, given a rectangular M x N matrix X and a column vector y,

attempts to find that coefficient vector c which minimizes the sum

of squares

 S = (y – Xc)T (y – Xc) = Σi(yi – Σj xijcj)2 .
A solution c always exists and satisfies the normal equations

 XTX c = XTy .

LSTSQ tries to solve these equations (in double precision, because

that is the fastest adequate method on a 7094) for c and the

corresponding minimum value of S and, if requested, the inverse

matrix

 V = (XTX)-1 .

But if the columns of X are nearly linearly dependent, in the sense

that there exists a perturbation ∆X of the order of a few units in
the last place of X such that the columns of (X+∆X) are linearly
dependent, then the solution c is not well defined and LSTSQ

produces one of two things instead of c :

 0) If the user wrote

 CALL LSTSQ (X, M, N, Y, C, S) or

 CALL LSTSQ (X, M, N, Y, C, S, V)

 then he has made no provision for the possibility that X

 be nearly singular, so he receives a suitable diagnostic

 and error-trace and is kicked off.

- 24 -

 1) If the user wrote

 CALL LSTSQ (X, M, N, Y, C, S, $n) or

 CALL LSTSQ (X, M, N, Y, C, S, V, $n)

 where n is an integer standing for a statement number,

 LSTSQ returns control to statement number n in the user's

 calling program, and diagnostic information is made

 available in V (or elsewhere if V was not requested)

 which permits the calling program to identify the linear

 dependence relatively easily and change X appropriately.

 (Usually the calling program just decreases N.) LSTSQ

 does not put out any messages in this case.

 The foregoing description is somewhat simplified; details can

be found in the PRM. The interesting feature is not so much the use

of a FORTRAN IV error return $n as the fact that this error return

is optional. The option is available because one of the first

statements executed within LSTSQ is

 CALL ARGCNT (I,J)

which counts the arguments supplied in the CALL to LSTSQ. I is the

number of arguments exclusive of error returns, and J is the number

of error returns. The error options described above are numbered

0 and 1 according to the value of J. Similarly, LSTSQ determines

whether the user wants V = (XTX)-1 or not according as I = 7 or

6 respectively. Any other values of I or J indicate an error, like

a period between the integers M and N instead of a comma, which is

serious enough to terminate execution with an appropriate diagnostic.

 The use of variable-length argument lists lends a certain elegant

simplicity to several of our library programs, and we hope that this

feature will be incorporated in the programming languages of the future.

- 25 -

The simplicity with which the error return scheme can be implemented

makes it efficient and satisfactory for a wide range of applications,

but there are two important areas where the scheme is unsatisfactory.

One consists of those difficulties caused by a small lack of foresight

and recognized immediately with the slight assistance to hindsight

provided by a diagnostic. Many of the error conditions mentioned above,

like L☼G(X) when L☼G(ABS(X)) was intended, fall into this category.

So do many input/output problems. It suffices here to say that a lot

more could be said for the desirability and convenience of subprograms

like KIK☼PT which allow the programmer to revise temporarily

the execution of his program at each of several spots without having

to insert a small explicit change at each spot.

 The second area where error returns have proved unsatisfactory

covers Over/Underflow, a ubiquitous phenomenon to which the next

section of this report is devoted.

- 26 -

3. Over-Underflow

 Overflow and Underflow are what take place in the arithmetic

registers of a computer whenever an attempt is made to calculate

numbers outside the normal range. On the 7094, overflow occurs

whenever the magnitude of the result of a floating point arithmetic

operation equals or exceeds

 2127 ≈ l.70141183 x 1038 ;

underflow occurs whenever the magnitude is not exactly zero and

is smaller than

 2-129 ≈ .146936794 x 10-38 .

Special provision must be made to cope with over/underflow in a

way which does not produce misleading results.

 It is sometimes argued that overflow is an error for which

the penalty should be

 EXECUTI☼N TERMINATED

but this penalty would place an intolerable burden upon even the

most expert numerical analyst. He is often unable to predict in

advance what the range of numbers will be in complicated calcula-

tions, especially where exponentials, polynomials, and rational

functions of high degree, or spaces of high dimensionality are

concerned. For example, if P(x,y) is a polynomial in x of

degree 10 whose coefficients are wild functions of y , then

the desired solution x = X(y) of the equation P(x,y) = 0 may

be well-defined and reasonable even though it is inaccessible

unless the polynomial-zero-finding subprogram is allowed to pursue

a flexible scaling strategy in response to over/underflows, if any,

which occur during the computation of P(x,y) . Overflows should

not force kick-off; if worse comes to worst, a program can kick

itself off by executing, say,

 IF(☼VFL☼W) CALL UNCLE(0,22H INESCAPABLE ☼VERFL☼W.) .

- 27 -

 An opposite attitude of laissez-faire is reflected in the

designs of those machines whose hardware automatically replace

an overflowed magnitude by a special digit pattern representing

∞ and then plunge on. Such a scheme might well include, say,
Θ to replace an underflowed magnitude and % to indicate an

indeterminate value. These symbols might obey rules like the

following:

i) Whenever an arithmetic operation generates ± ∞ , Θ or % ,
 a corresponding flag is raised to indicate to the

 program that overflow, underflow or lost significance respec-

 tively has occurred. If requested by the programmer in

 advance, a message can be printed out for his information.

ii) Any arithmetic operation with % as an operand generates %

 as a result. % is also generated by the following expressions

 ∞-∞, ∞/∞, 0/0, 0/Θ, Θ/0, ∞*0, ∞*Θ and x/Θ .
iii) If x ≥ (1 unit in the last place of the overflow threshold)

 then ∞-x = % ; otherwise ∞ ± x = ∞ .
 If (1 unit in the last place of x) ≤ (the underflow threshold)

 then x ± Θ = % ; otherwise x ± Θ = x ± 0 = x .

 If x ≥ 1 then x * ∞ = ∞ * sign(x) ; otherwise x * ∞ = % .
 Similar rules hold for x/∞ , ∞/x , x*Θ and Θ/x .
 x/0 = ∞*sign(x) unless x = 0 or Θ .
iv) The number 0 can be generated only by direct assignment or

 as the result of x-x with x ≠ Θ nor ∞ . The symbol Θ ,
 which stands for the set of all numbers smaller in magnitude

 than the underflow threshold, can be generated only by direct

 assignment or by an underflow as indicated above.

- 28 -

 During comparisons the symbol Θ simultaneously falsifies
 Θ > 0 , Θ = 0 , Θ < 0 ;
 and x > Θ if and only if x > 0 too.

Rules like the foregoing are formidable, and have not been

implemented in any hardware known to the author (who would not

expect to find them in any machine except possibly one with

interval-arithmetic built into the hardware). But no other less

elaborate rules are known to be foolproof.
*
 For example, the CDC

6600's hardware follows similar rules whose most obvious difference

is the lack of any distinction whatever between underflow to Θ
and the number 0 . A comparable deficiency is to be found at

those IBM installations where, to escape a plethora of insigni-

ficant underflow messages, all underflow messages are suppressed

by many users most of the time. The following segment of FORTRAN

coding shows what can happen when this is done. Here A, B, C,

D and X are all positive normalized floating point numbers (not

special symbols nor zero).

 Y = (A*X+B)/(C*X+D)

 Z = (A+B/X)/(C+D/X)

 W = Y/Z

 WRITE (...) W

 Output: W = 1.98

In the absence of any indications of over/underflow, how is this

phenomenon to be explained? The only thing unnatural about this

example is the WRITE statement; W is more likely to have

remained “out of sight, out of mind” .

 The replacement of underflowed numbers by zero with no

indication to program nor programmer is a clearly unsatisfactory

practice. And even when an indication of over/underflow is given,

*
 Experience since this was first written has found Θ to be useless.

- 29 -

there is ample reason to protest against the destruction by

hardware (as on the IBM 360 and CDC 6600) rather than software of

information which could otherwise be of significance to the

programmer; this is discussed in more detail below in connection

with the Unnormalized Mode and the Counting Mode of treating over/

underflow. But, to be fair, it must be acknowledged that most

programmers would be satisfied most of the time by the provision

of representations for +∞ , -∞ , Θ and % obeying rules like
i) to iv) above.

*

 What more might a numerical analyst demand? From time to time

time he will want to generate and use numbers which lie beyond

the over/underflow thresholds. And certainly no programmer wants

to be forced to check for over/underflow after (much less before)

the execution of each arithmetic instruction in his program, and

to decide each time upon an appropriate course of action. He

will prefer to choose one of the several modes of execution

provided for him by the system, with the understanding that while

the program is being executed in his chosen mode each over/underflow

will be treated according to the rules tabulated for that mode.

Rules i) to iv) above could define one such mode. The programmer

should be allowed to change modes between one line of his program

and the next. Ideally, he should be allowed, if he wants, to define

his own mode by specifying in detail just what rules are to be

obeyed for each type of arithmetic operation. Finally, although

the programmer who is ignorant of the problems of over/underflow

must be warned when they occur, care must be taken not to drown

him in a cascade of over/underflow messages, especially when they

are obviously irrelevant. (An example of an obviously irrelevant

underflow is remainder underflow after a floating point division

in a FORTRAN program, which always discards the remainder.)

*
 Except for Θ .

- 30 -

 An attempt has been made to serve as many of these needs as

can be served in a FORTRAN context by means of a substantial

extension of the service supplied by IBM via their subprogram

.FPTRP in IBJOB . This program exploits the fact that whenever

a floating point over/underflow occurs the 7094 “traps”; it

interrupts itself and transfers control to a designated core

location after setting up an indicator word (cell 0) to describe

what caused the trap and where. This floating point trap, FPT,

takes precedence over all others in the machine, and when it

occurs the registers in the machine contain the over/underflowed

result unaltered, so that no significant information is lost. A

hardware option can be purchased (RPQ 880291) which includes

improper divisions like 1/0 in the scope of the FPT .

 I rewrote .FPTRP in a way which, while maintaining com-

patibility, increased its speed and augmented its capabilities

so that programs can easily choose and change to any one of five

modes of execution. The Standard Modes treat over/underflow very

much as IBM did, the main difference being that now underflow

sets up an indicator the same way as does overflow. The Unnormalized

Modes exploit unnormalized arithmetic to permit underflow to

occur “gently” without setting up distracting indicators or

messages. The Silent Modes set indicators to indicate over/

underflow to the program but put out almost no messages for the

programmer; cascades of over/underflows in the Silent Modes do

not slow programs down appreciably. The Printing Modes set

indicators for the program and also report each indicated over/

underflow, as it occurs, in a printed message for the programmer,

thus helping him to debug his program. The Counting Mode allows

- 31 -

certain kinds of computations to be carried out with no risk of

over/underflow because the allowed range of magnitudes is extended

to include numbers like

 ±242
 2 .

These five modes are discussed below in appropriately titled

subsections of this report. The last two subsections discuss

improper divisions and simulated over/underflows.

- 32 -

The Standard Silent Mode

 This is the mode in which the system operates by default

in the absence of requests for some other mode. Whenever a

floating point arithmetic operation overflows, its result is replaced

by the largest possible magnitude (1.7014 x 1038) with the same

sign , and this event is recorded by setting ☼VFL☼W = .TRUE. .

Whenever a result underflows it is replaced by zero with the same

sign, and this event is recorded by setting UNFL☼W = .TRUE. .

The indicators ☼VFL☼W and UNFL☼W are logical variables which

can easily be sensed, stored and/or reset to .FALSE. in several

ways described in the PRM. In particular, the declarations

 L☼GICAL ☼VFL☼W

 C☼MM☼N/☼VFL☼W/☼VFL☼W

permit statements like

 IF (☼VFL☼W).... and

 ☼VFL☼W = .FALSE.

to be executed without wasting time on subprogram linkages in

short loops.

 This mode is called Silent because each over/underflow sets

its indicator without disturbing the programmer's output with any

diagnostic message. However, just after his program's execution

is terminated (either normally or by kick-off) a message is produced

to draw the programmer's attention to any over/underflows that

escaped the attention of his program; more about this later.

In the Standard Silent Mode, each over/underflow costs 15 to 30

microseconds; i.e. two to four division times.

- 33 -

The Standard Printing Mode

This mode differs from the previous mode only in that each

over/underflow, as it occurs, inserts a message into the programmer's

output to answer the following questions:

 What happened, overflow or underflow?

 Which machine registers are involved; AC, MQ or both?

 What arithmetic operation was attempted: + , - , * , / ,

 double-precision, ...,? (An octal operation-

 code is given here.)

 What change was made in the affected register(s)?

 Where is the instruction whose execution caused this

 over-underflow? (An octal core address is

 given here.)

 Where in the source-program did all this happen?

 (An error-trace is given here by

 our version of .FXEM. .)

 We also considered writing out the operands whose sum, product

or quotient had over/underflowed, but the cost of doing so seemed

more than the information was worth. This point deserves recon-

sideration. Anyway, the error-trace usually points to within a

few lines of the site of the over-underflow in a FORTRAN program.

 The over/underflow handling subprogram .FPTRP can be switched

in 40 microseconds from a Silent Mode to the corresponding Printing

Mode via the statement

 CALL NFPTST(M)

with a positive integer expression M . When this statement is

executed, an internal counter N is set to M and .FPTRP is

caused to operate in a Printing Mode until M over-underflow

- 34 -

messages have been put out. N is decreased by 1 each time a

message is put out, and when N becomes 0 an extra message

 N☼W ☼VER/UNDERFL☼W MESSAGES ARE IN ABEYANCE

is produced and the Mode is switched back to Silent.

 CALL NFPTST(0)

switches the Mode back to Silent without any extra message.

 In accordance with current good practice, the FORTRAN

programmer is allowed easily to sense, save, set and/or reset the

message-counter N as well as the indicators ☼VFL☼W and UNFL☼W .

Details may be found in the PRM. But programmers are advised not

to set the latter two logical variables to .TRUE. directly in a

FORTRAN program; instead they are advised to force an over/underflow

like

 DUMMY = (1.7E38)**2 .

This is done because, whenever over/underflow occurs, .FPTRP

stores the current contents of SYSL☼C into the appropriate

indicator to make it .TRUE. . Later, when the program's execution

is finished, the monitor looks at each indicator to see whether it

is .TRUE. , and if so then that indicator is interpreted as a

pointer in roughly the same fashion as .FXEM. interprets SYSL☼C

when providing the first line of the error-trace immediately after

an over/underflow in the Printing Mode. Consequently, the

programmer's output finishes, whenever appropriate and possible,

with a message like

 LAST UNREQUITED ☼VERFL☼W WAS IN ☼R AFTER
 LINE 17 ☼F DECK SUB2 .

 LAST UNREQUITED UNDERFL☼W WAS IN A SUBPR☼GRAM CALLED IN
 LINE 24 ☼F DECK SUB1 .

Often the programmer can deduce from the information given here

that the over/underflow did no harm; then, since the messages have

- 35 -

not tainted his formatted output, he is free to cut them off and

publish the rest.

 If program overlay has intervened between the last unnoticed

over/underflow and program termination, or if the indicators

☼VFL☼W and UNFL☼W were set to .TRUE. in a naïve way, then the

post-execution message may describe the desired deck-name and line

number as UNKN☼WN .

 It is especially important to understand that the word “UNREQUITED”

signifies that the program has not reset the indicators to .FALSE. ,

presumably because it has not responded to the over/underflows. The

system may already have printed several messages for the programmer,

notifying him each time his program ignored an over/underflow while

the system was in the Printing Mode.

 I see now that we could have supplied, at little extra cost,

post-execution warnings more like this:

 3943 ☼VERFL☼WS WENT UNREQUITED BY THE PR☼GRAM BETWEEN
 LINE 17 ☼F DECK SUB2

 AND A SUBPR☼GRAM CALLED IN LINE 64 ☼F DECK SUB1 .

 Such a message can be more useful in deciding whether or not

to ignore the over-underflows. Also, the counts of overflows

and underflows could be used by any programmer who, for reasons

unclear to me, wished to terminate his program's execution after

a specified number of overflows had occurred. Another improvement

would be to allow a negative value for M in

 CALL NFPTST(M)

to signify that -M overflow messages are to be allowed while all

underflow messages are to be suppressed. Most of these improve-

ments have been incorporated into the adaptation of our scheme for

the Burroughs B5500 written by Mr. Michael D. Green at Stanford

University in 1966, and I expect to put them into our system soon.

-36 -

The Treatment of Underflow

 Some programmers have good reasons to want to be informed

about underflow. They may want to avoid consequent loss of precision

or subsequent division by zero. But most programmers whom I asked

said they preferred that underflowed numbers be replaced by zero

without their attention being distracted by the event. This

attitude was justified at a time when most over/underflow messages

reported “MQ UNDERFL☼W” during an addition, subtraction, multi-

plication or double precision division. This message signified

that the double-length result of those operations in the AC-MQ

register was small enough to cause the characteristic of the less

significant word in the MQ to underflow even though the more

significant word was correct. Since the less significant word is

entirely ignored in single-precision FORTRAN expressions, and since

the double-precision hardware of the 7094 ignores the characteristic

of the less significant word in double-precision expressions, I

decided that .FPTRP. should simply ignore MQ underflow after

those operations where it was obviously irrelevant.
*
 This decision's

first consequence was a welcome reduction in the number of messages

and complaints, especially where iterative calculations with residuals

tending to zero were concerned. The second consequence was that

certain old 7090 programs which had performed double-precision

arithmetic by simulating the 7094's double-precision hardware,

ran into spurious overflow troubles and required revision so that

they would use instead of simulate our machine's hardware. For-

tunately, any user who insists upon running a 7090 program

unchanged upon our 7094 can do so in safety by merely changing two

well-marked instructions in .FPTRP . The second instruction

*
The 27 significant bits in the MQ are not ignored nor cleared when

 the characteristic of the MQ underflows, so no accuracy is lost.

- 37 -

is needed to force appropriate actions when remainders underflow

after division; otherwise they would be ignored too.

 It is not good enough that the system ignores obviously

irrelevant underflows. Many irrelevant underflows are not obviously

irrelevant. Consider, for example, a segment of a typical matrix

handling program which computes

 r = b - ∑i ai xi .

The usual rule, which replaces each underflowed sum or product

by zero, is satisfactory except when b and all the products

aixi are so close to the underflow threshold that the usual rule

produces a significantly wrong value for r . If all underflows

are reported, how can the rare significant reports be distinguished

from the common ignorable ones? If no underflows are reported,

how can the rare incorrect values of r be distinguished from the

common correct ones? The easiest way I know to cope with these

questions is to use our Unnormalized Modes.

- 38 -

The Unnormalized Silent Mode and the Unnormalized Printing Mode

 These two modes differ from one another in just one respect;

the Printing Mode reports overflows in the way described under the

Standard Printing Mode above. The two Unnormalized Modes differ

from their corresponding Standard Modes only in the way they treat

underflow. A number, which in a Standard Mode would have under-

flowed to zero and set UNFL☼W = .TRUE. , is in an Unnormalized

Mode replaced by its closest unnormalized approximation and UNFL☼W

is unchanged. For example, consider a decimal machine whose

underflow threshold is .10000000 x 10-38 . In a Standard Mode,

.15743219 x 10-40 would underflow to zero, but in an Unnormalized

Mode it is replaced by .00157432 x 10-38 . A number must now

drop below .00000001 x 10-38 before it is silently replaced by

zero.

 In the Unnormalized Modes the range of non zero floating point

numbers representable in the 7094 is extended downward from 2-129

to 2-155 in single-precision and 2-182 in double-precision.

This allows underflow to take place more gently, and improves the

accuracy of certain results. But these benefits are secondary;

the primary justification for the Unnormalized Modes is that they

ease the task of deciding, in certain cases, whether a result is

right or wrong.

 For example, consider the following FORTRAN program to compute

 r = b - ∑1N aixi .
(In accordance with good computing practice, and because it costs

almost nothing extra to do so on our 7094-11, the products of the

single-precision numbers ai and xi are accumulated to double

precision before r is rounded (not truncated) to single-precision.)

- 39 -

 D☼UBLE PRECISI☼N D
 DIMENSI☼N A(...), X(...)
 D = -B
 C ENTER THE UNN☼RMALIZED M☼DE. (14 MICR☼SEC.)
 CALL FPTUN
 D☼ 1 I=1,N
 1 D = A(I)*X(I) + D
 C REST☼RE THE STANDARD M☼DE, (13 MICR☼SEC.)
 CALL FPTST
 R = 0.0 – RND(D)

 The last statement rounds D to single precision, changes

sign, and adds zero before storing the result in R . If the

rounded value of D is a nonzero unnormalized number, then the

normalization that always follows addition will cause an underflow

which, in the Standard Mode, will set R = 0.0 and UNFL☼W = .TRUE. .

But if RND(D) is a normalized number then adding zero will not

change anything. Consequently, R is correct as it stands,

despite the possible underflows of intermediate results, with the

following exceptions:

 - If ☼VFLOW or UNFL☼W is .TRUE. , R is wrong.

 - If severe cancellation has taken place in statement 1,

 R may be badly contaminated by double-precision truncation

 errors. This possibility is independent of over/underflow,

 and is irrelevant if B, A and X are each uncertain by a

 unit in their respective last places.

 - If R = 0.0 then it may be further contaminated by an

 error of 2-156 , although this is irrelevant if B is

 non zero and uncertain by a unit in its last place. But

- 40 -

 if B = 0.0 then all the products A(I)*X(I) might have

 underflowed to zero silently.

There are very few applications where any but the first exception

is relevant, and that one is caught by the system. The absence

of over/underflow tests in the inner loop permits calculations in

the normal range to proceed with no noticeable loss of speed.

 The Unnormalized Modes may be used in single precision,

double precision and complex arithmetic at the cost of 42 micro-

seconds per underflow. These modes would be much more useful on

a 7094 but for a quirk in the hardware which forces the “normalized”

product of two nonzero unnormalized numbers to be zero on certain

occasions. The Unnormalized Modes are best suited to those

machines, like the Burroughs B5500, which handle unnormalized

operands without serious anomalies. But, because of the peculiar

behaviour of our machine, the Unnormalized Modes are so beset by

restrictions (for which see the PRM) that the author and a few of

his students are perhaps the only programmers who use them. We

find them valuable for computations with matrices, power series,

and numerical quadrature.

- 41 -

The Counting Mode

 This mode deals with over/underflow in a way which permits

programmers to save all the significant digits which are lost by

the other modes, and is specially useful for evaluating expressions

like

 q = ∏1
N (ai+bi)/(ci+di)

when q is likely to be a reasonable number even though its partial

products and quotients are afflicted with over/underflow. The

execution of

 CALL FPTCT(J) ,

where J is the name of an integer variable, switches .FPTRP in

14 microseconds to the Counting Mode and designates cell J to act

as a leftward extension for the 8-bit characteristics of the AC

and MQ registers. Henceforth, over/underflows are counted in J .

Whenever an arithmetic operation overflows, its result is divided by

2256 and J is increased by 1 . Whenever an arithmetic operation

underflows, its result is multiplied by 2256 and J is decreased

by 1 .

 For example, the FORTRAN statements

 CALL FPTCT(J)

 J = 0

 X = (A+B)*(C+D)*(E/F)/G

produce a pair (J,X) whose values really satisfy

 (A+B)(C+D)(E/F)/G = 2256J X .

In effect, the missing binary digits in X's characteristic have

been added to J while X's other significant binary digits have

remained unchanged.

- 42 -

 FORTRAN programmers who use the Counting Mode must be reasonably

familiar with the workings of the compiler so that they will not try

to evaluate expressions like

 A/(B+C) nor A*B+C nor A**B

in one FORTRAN statement.

 The following example shows how the Counting Mode is used to

evaluate

 q = ∏1
N (ai+bi)/(ci+di)

for large N with no over/underflow tests inside the D☼ loops,

although each over/underflow does cost 35 microseconds.

 J = 0 Initialize Over/Underflow Counter
 PAB = 1. Numerator, and
 PCD = 1. Denominator.
 CALL FPTCT(J) Switch to Counting Mode.
 D☼ 1 I = 1,N Compute Denominator using
1 PCD=RND(PCD*RND(C(I)+D(I))) Rounded Arithmetic
 IF(PCD .EQ. 0.0) G☼ T☼ 3 ...because Numerator vanished.
 J = -J Reverse meaning of Counter .
 D☼ 2 I=1,N
2 PAB=RND(PAB*RND(A(I)+B(I))) Compute Numerator
 Q = PAB/PCD
 CALL FPTST Switch back to Standard Mode .
 IF (Q .EQ. 0.0) J=0 ...because Numerator vanished.
 IF (J) 4, 5, 3
3 ...Q has Overflowed, because J > 0 or Denominator = 0 .
 ...
4 ...Q has Underflowed, because J < 0 .
 ...
5 ...Q is correct as it stands, because J = 0 .
 ...

 Whatever value J may have, and provided the denominator PCD

is non zero, the stored value Q is related to the desired value

q by

 q = 2256J Q .

- 43 -

 The Counting Mode works for both single and double precision

arithmetic, and is indispensable for computing determinants and

certain ratios of factorials, but I have not yet figured out how to

make a Complex Counting Mode work with comparable elegance on our

machine. However, the next example is one where our Counting

Mode is useful in a complex arithmetic calculation.

 Suppose the complex array Z(I) is given and we seek K such

that

 CABS(Z(K)) = max1≤I≤N CABS(Z(I)) .

(Here CABS(Z) = |Z| in FORTRAN IV.) To avoid the square roots,

we may prefer to calculate only squared magnitudes, thereby

exploiting the equivalence between the statements

 |a + ib| > |u + iv| (i)

and

 a2 + b2 > u2+ v2 (ii)

But the squared magnitudes may over/underflow despite that the

magnitudes |a + ib| and |u + iv| are well within the machine's

range. The following program exploits the equivalence between (ii)

above and

 (a-u)(a+u) > (v-b)(v+b) (iii)

and then copes with over/underflows via the Counting Mode. N

is assumed to exceed 1 .

- 44 -

 C☼MPLEX Z(...), C, W
 DIMENSI☼N ABC(2), UVW(2)
 EQUIVALENCE (C,ABC,A), (B,ABC(2)), (W,UVW,U), (V,UVW(2))
C This EQUIVALENCE makes c=a+ib and w=u+iv .
 CALL FPTCT(J)
 K=1 Initialize current maximum.
 C=Z(1)
 D☼ 5 I=2,N
 J=0
 W=Z(1)
 XL = (A-U)*(A+U)
 J= -J
 XR = (V-B)*(V+B)
 IF(XR .EQ. 0. .☼R. XL .EQ. 0.) G☼ T☼ 3
 IF(J) 2, 3, 1
C J>0 means |XR| should exceed |XL|, so ignore XL .
 1 IF(XR) 5, 5, 4
C J<0 means |XL| should exceed |XR|, so ignore XR .
 2 IF(XL) 4, 5, 5
C J=0 means XL and XR are directly comparable.
 3 IF(XL .GE. XR) G☼ T☼ 5
 4 K=I Update current maximum whenever
 C=W W > C .
 5 C☼NTINUE
 CALL FPTST

 Now C = Z(K) is the largest in magnitude of the values Z(I) .

Some minor refinements can be introduced to reduce the influence

of roundoff in critical cases of near equality, but they do not

change the relative speed and simplicity exhibited by this program

when compared with alternatives. (For more details, see our library

program CMAXA in the PRM.)

 An attempt was made to extend the idea of FPTCT to cope with

integer overflows; i.e. we wanted to allow the FORTRAN programmer

to designate a cell which would act as a leftward extension of the

- 45 -

integer accumulator in the same way as J in FPTCT(J) acts as a

leftward extension of the floating point accumulator's characteristic.

However, this scheme would first have required certain modifications

to the 7094 to permit trapping on fixed point overflow, and then the

FORTRAN IV compiler would have had to be extensively rewritten. A

frustrating feature of the present compiler is that it renders

certain integer overflows undetectable! Consequently, FORTRAN

programs which manipulate large integers are very much complicated

by the need for frequent overflow tests in advance of arithmetic

operations.
*
 The same complication afflicts ALGOL and any other

programming language I know; it is the price we must pay for a lapse

in communication among the architects, implementers and users of a

programming language.

 A similar lapse has frustrated attempts so far to implement the

Unnormalized and Counting Modes upon some other machines. The B5500

discards one of the digits in the characteristic of an over/under-

flowed result, thereby preventing any analysis from determining

whether the result over/underflowed by a little or by a lot. The

IBM 360 series wantonly destroys everything, including the sign of an

overflowed result.
‡
 The CDC 6600 has its own fixed ideas about over/

underflow. The tendency of other high-performance machines, like

the IBM 360/91, to suffer from imprecise interrupts implies that

those machines will have to deal with over/underflow entirely in

their hardware. This in turn implies that their treatment of over/

underflow will be intolerable unless numerical analysts act soon to

lay down reasonable guidelines for machine designers to follow.

*
These overflows can cause embarrassment if they are ignored; see R. Korfhage,

 Bulletin Amer. Math. Soc. 70 (1964), pp.341-2, and the retraction on p.747.

‡
In Feb.1967, IBM undertook to remedy these and other of the less attractive

 aspects of the 360's floating point hardware. There have been significant
 improvements. See IBM's Form A22-6821-7, and an article by A. Padegs in
 IBM's System Journal 7 (1968) pp. 22-29.

- 46 -

Improper Divisions

 On a 7094 with divide-check-trap hardware, improper divisions

do not turn on the divide-check indicator. Instead they trap to

.FPTRP which, in our system, responds as illustrated below.

1.0/0.0 = 1.7014 x 1038 and Overflow occurs.

 Any floating point division (single precision, double precision,

 or complex) of a non zero number by zero is treated as a

 quotient overflow and sets ☼VFL☼W = .TRUE. . No provision

 has been made to distinguish such divisions by zero from other

 quotient overflows (except in the Counting Mode, where a message

 can be produced) because both events almost always have the

 same causes and consequences. Besides, the programmer can easily

 (and should) test directly whether a divisor is zero or not.

 Each division by zero consumes more than thrice as much time

 as any other overflow.

1/0 = Kickoff unless otherwise has been requested.

 Fixed point integer division by zero is almost certainly a

 drastic error in a FORTRAN program. In ALGOL the issue might

 not be so clear.

0.0/0.0 = Kickoff unless otherwise has been requested.

 Floating point division of zero by zero is a symptom of a

 serious flaw in the analysis behind a program.

Unnormalized Division may kick off unless otherwise has been requested.

 Floating point division by an unnormalized number causes a

 trap (unless the quotient produced by the hardware happens to

 be correct). This is a symptom of certain programming errors

 like

- 47 -

 reference to a variable whose value has not previously been set,

 AL☼G(3) instead of AL☼G(3.0) ,

 a forgotten EQUIVALENCE (A,I) ,

 reference to A(13) when DIMENSI☼N A(6) , or

 a significant underflow in an Unnormalized Mode.

 After the new .FPTRP was installed, failures began to show

up in programs which had previously been allowed to proceed silently

with a zero quotient for each improper division. A few programmers

protested that they liked the old ways better, but they seem to

represent a lunatic fringe among programmers as a whole. The author

is under the impression that the new .FPTRP's treatment of improper

divisions is more widely appreciated than all his other works put

together; actually the credit should be shared with R. Jones and

J. Bell, who found a way to simulate the divide-check-trap hardware

on a 7094 without that equipment. (The equipment is soon to be

installed, and with it will come some system simplification.)

 However, the most important contribution made by the new

.FPTRP is that a programmer who has to cope with a complicated

numerical problem can still write whatever program first comes into

his mind, just as he did before. And now he will rest assured that,

should his algorithm be frustrated by over/underflow, he will find

out what happened and, perhaps, be able to cope with his difficulty

by simply re-coding a small part of his program instead of

laboriously devising a deeper mathematical analysis of his problem.

The new .FPTRP strengthens the programmer's most valuable tool,

hindsight.

- 48 -

Simulated Over/Underflow in Library Programs

 The concept of over/underflow is normally associated with the

elementary arithmetic operations, but it takes no imagination to

extend the concept from simple functions of X like

 A+X , A*X , A/X , X**2

to more complicated functions like

 L☼G(X) , EXP(X) , C☼T(X) ,

In general, it seems reasonable to associate overflow with the

following behaviour:

 as x → xo (xo may be ± ∞), f(x)→ ± ∞ .
 e.g. as x → 0+ , log(x)→ -∞ ;
 as x → +∞ , exp(x)→ +∞ .
And underflow might just as reasonably be associated with this

behaviour:

 as x → ± ∞ , f(x) → 0 .
 e.g. as x → - ∞ , exp(x) → 0 .
But we should not like to associate underflow with the value

log(1) = 0 . In other words, underflow occurs only when the value of

the function f(x) is not zero though closer to zero than the

underflow threshold.

 Here are some examples to illustrate how our functions behave

in FORTRAN:

 L☼G(0.0) ≈ -1.7014 E38 and ☼VFL☼W is set

 C☼T(±0.0) ≈ ±1.7014 ☼VFL☼W

 EXP(3000.) ≈ 1.7014 E38 ☼VFL☼W

 EXP(-3000.) = 0.0 UNFL☼W

 (±0.0)**(-3.0) ≈ ±1.7014 E38 ☼VFL☼W

 0.0**(-3.0) ≈ 1.7014 E38 ☼VFL☼W

 (-100.)**(-25) = -0.0 UNFL☼W

– 49 -

 The last example is interesting because the IBM program signals

overflow during the computation; we avoid overflow by computing

(1./100)**25 instead of 1./(100.**25) . The previous two examples

should not be confused with (integer)

 0**(-3) = Kickoff , code 25 ;

the distinction is consistent with the rules for improper divisions.

Finally, no underflows occur when L☼G(1.0) = 0.0 or when

SINPI(X) = sin πX vanishes for integer values of X .
 I have rewritten several of the elementary function subprograms

in the IBLIB library to ensure that their over/underflow behaviour

is consonant with the foregoing. When necessary, over/underflow is

simulated; this merely means that a transfer to .FPTRP is forced

in such a way that the FPT indicator word (cell 0) contains just

the information needed for the desired message from .FPTRP . The

simplest way to do this in a FORTRAN program is to square a very

large or very small number. Of course, .FPTRP must be operating

in one of its Standard Modes to allow such simulated over/underflows

to produce their intended effects. If the Printing Mode is in use,

as it should be while a program is being debugged, then the error-

trace points to the function which caused the apparent over/underflow;

otherwise the post-execution message may sometimes identify that

function. As far as I can see, no vital information is lost by

thus failing to discriminate between the simulated over/underflows

and the others. The user's view of the library programs becomes less

cluttered by their various demands for valid arguments. And the

system gains several storage locations vacated by superfluous

messages.

 However, some programmers claim that one desirable capability

has been lost. For example, they would prefer to be able to write

- 50 -

 CALL KIK☼PT (9,0)

in their main program whenever they want references to L☼G(X) in

all their subprograms to cause kickoff when X = 0.0 . My scheme

requires that each appearance of L☼G(X) be preceded by something

like

 IF (X .EQ. 0.0) CALL UNCLE(9,18H L☼G(X=0.0) ERR☼R) .

I think that programs written the second way are easier to read and

to debug; but anyone who wants to live dangerously can easily change

the library programs to suit himself because their listings are

usually amply supplied with comments.

 A more penetrating criticism of my scheme is that it denies too

many users the valuable education obtained by reading certain IBM

diagnostics. For example, increasingly many of our users have too

little familiarity with the rate of growth of exp(x) to appreciate

that exp(88.0297) exceeds the overflow threshold. Our university

used to include a professor whose first assignment to freshman

physics students was to plot a graph of exp(x) for 0 < x < 10 .

His attitude might well serve as an example for the socially acceptable

computer systems of the near future.

 The extension of a comprehensive treatment of over/underflow

over the entire library of numerical subprograms is an enormous task

prodigiously demanding of attention to detail. Here is a simple

example of a typical detail. The CABS function computes the

absolute value of a complex variable using the formulae

 |a + ib| = |a|√(1 + (b/a)2) if |a| > |b|
 = |b|√(1 + (a/b)2) if |b| ≥ |a| .

- 51 -

For simplicity assume the former case. Then underflow will occur

during the computation of 1 + (b/a)2 whenever (b/a)2 is nonzero

but smaller than the underflow threshold. This underflow is

irrelevant, so our CABS program suppresses it. Had the program

been written in FORTRAN the suppression would have been accomplished

by computing 1 + (b/a)2 in the Unnormalized Mode. Similar but

more complicated considerations affect the division of one complex

number by another.

 The task of taming over/underflow in the library is not yet

completed; there are several relatively rarely used programs that

remain to be revised. Is this project worth its price? Who should

say? Our users can no longer offer a qualified opinion because

so few of them are now aware of the issues, and even those few hardly

ever have trouble dealing with over/underflow nowadays.

- 52 -

Addendum (June 1968)

 Currently machines are being produced which exploit

parallelism and pipeline principles to achieve extremely high

processing speeds, but at the cost of what are called

“imprecise interrupts”. The problem is illustrated by the

following sequence of FORTRAN code.

 ...

 7 A = ...

 8 B = C*D/E

 9 IF (☼VFL☼W) G☼ T☼ 999

10 I = I + 1

11 F = (A+G)/B

 ...

A typical sequence of events in the computer's central processing

units will be described on the assumption that none of the

variables A, B, C, D, E, F, G, I or ☼VFL☼W share storage by virtue

of an EQUIVALENCE statement.

 After instructions for statement 8 have been fetched, and

 while the value intended for A is being computed,

 C is fetched (from storage),

 D is fetched,

 the value of A is delivered ready for storing,

 instructions for statement 9 are fetched,

 multiplication of C*D is initiated,

 A is stored,

 E is fetched,

 ☼VFL☼W is fetched,

 ☼VFL☼W is tested and found to be .FALSE. ,

 instructions for statement 10 are fetched,

 I is fetched,

 the product C*D is delivered ready for use.

- 53 -

If C*D has overflowed, a flag is set now to recoed the event;

if the overflow is going to be allowed to interrupt the system,

another flag is set to inhibit any further fetches of instructions.

The value of C*D is replaced by something else and processing

contimues.

 The division (C*D)/E is initiated,

 1 is fetched,

 the sum I+1 is formed in a fast integer adder,

 instructions for statement 11 are fetched (unless a flag is set),

 I = I+1 is stored,

 A is fetched (unless ...),

 G is fetched (unless ...),

 the floating addition of (A+G) is initiated (unless ...)

 fetching B is inhibited by instructions held over from statement 8 ,

 the quotient (C*D)/E becomes ready for storage into B
 and use in statement 11 .

This is the earliest point at which overflow in C*D can

suspend the normal sequence of execution without leaving fragments

of partially executed instructions circulating in the central

processor; but the time is too late because instruction 9 has been

passed.

- 54 -

 The foregoing sequence gives only a rough illustration

of the problem because details of machine design vary

considerably from model to model. Among the machines which

suffer from some form of imprecise interrupt (at this date) are

the CDC 6600 and 7600, the IBM 360/91, and the Burroughs B 8500.

Over/underflows on these machines are dealt with by their

hardware in a manner similar to our Standard Silent Mode. A

program's every attempt to deal with over/underflow more

flexibly is frustrated by the hardware. For example, there is

no easy way to tell whether a computation has overflowed only

slightly or by a lot; there is no easy way to distinguish

between important and unimportant underflows as we do in the

Unnormalized Modes; division by zero is always treated as a

disaster.

 There seems to be no way to improve these machines'

treatment of arithmetic exceptions that does not involve

substantial changes to the hardware. We shall offer here two

suggestions which confine the changes to the floating point

part of the central processor.

 One possibility is to micro-program facilities comparable

to our five Modes into the hardware. Such a micro-program does

not have to run at the same high speed as the rest of the

hardware because a modest loss of speed on rare occasions is

inconsequential.

- 55 -

 A second possibility is to lengthen the central

processor's registers so that they may hold numbers lying

beyond the range normally held in storage, thereby permitting

expressions of modest complexity to be evaluated correctly

despite what might otherwise be over/underflow in sub-

expressions. Consequently, over/underflow need occur only when

information is lost by an attempt either to store a number

that cannot be fitted into storage, or to push the contents

of a register beyond its extended range.

 Both possibilities are complicated, but not as

complicated as the lengths to which programmers will occasionally

be forced to go to deal with arithmetic exceptions on those

machines.

Samples of Library Program Write-Ups from

The PROGRAMMERS' REFERENCE MANUAL,

3rd edition, Aug. 1967,

Univ. of Toronto, Institute of Computer Science.

(Extracted for a Summer Course at the Univ. of Michigan,
June 17-21, l968.}

 The following FORTRAN functions are described herein:

 A**B , DP**DQ , CABS , COS/SIN , COSPI/SINPI ,

 Complex arithmetic , CSQRT , DQBRT , DSQRT , EXP ,

 TWOXP , (Variable)**(Integer) , LOG , LOG 10 ,

 LOG 2 , Max/min over arrays, QBRT , SQRT .

 These have been coded to run under an ICS-modified version

of IBM's IBSYS v.13 on the 7094-II. They differ from programs

supplied by IBM mainly in two respects:

i) All programs conform to the ICS conventions concerning

over/underflow, contentious values like 0**0 , and

diagnostic options and messages.

ii) All claims to accuracy have been proved mathematically by

the programmer; this provides no guarantee of accuracy

since proofs are as vulnerable to error as are programs.

Also every program has been tested for accuracy and speed

on tens of thousands of sample arguments, including

critical values appropriate to the function and to the

program under test. No claim has been refuted by any

test. For five years, every user of IBM's Fortran IV on

the ICS's machine has used these functions instead of IBM's;

 nobody has complained yet (June 1968).

 2.

 The programs described herein are some of the latest
versions of programs written in 1962-3 for a 7090 at the
Univ. of Toronto to replace the appalling FORTRAN functions
supplied by IBM at that time. Meanwhile IBM's elementary
FORTRAN functions have improved considerably, and now two
excellent collections of programs are distributed with
IBSYS v.13 for the 7090/7094 and with FORTRAN IV (E.G.H.)
for System/360. These programs were produced at the
University of Chicago chiefly by Mr. Hirondo Kuki, whose
work is described in

- “MATHEMATICAL FUNCTIONS”, a description of the Univ.
of Chicago Computation Center's 7094 Math. Function
Library, by H. Kuki, with a foreward by C.C.J.
Roothan, Feb. 1966.

IBM 7090/7094 IBSYS v.13 IBJOB Processor manual,
appendix H; Form C28-6389 (Mar. 1966).

IBM System/360 FORTRAN IV Library Subprogram; Form
C28-6596-2 (1966).

“Performance Statistics of the FORTRAN IV (H) Library
for the IBM System/360” by N.A. Clark, W.J. Cody,
K.E. Hillstrom and E.A. Thieleker, Argonne Nat'l Lab.
Report ANL-7321, May 1967.

The last report, plus additional work by W.J. Cody at Argonne
and by L.R. Turner at NASA's Lewis Res. Center, showed that
Kuki's programs for /360 were not as accurate as the best
comparable programs on some other machines. Most of the
trouble was attributable to oversights in the design of /360's
floating point hardware which Kuki had recognized in 1964. He
worked self-effacingly on a SHARE committee which, in 1966-67,
persuaded IBM to remedy most of these oversights; the fruits
of that effort appear among the differences between releases
-6 and -7 of “IBM System/360 Principles of Operation” Form
A22-6821 (1967-68). He has now improved his /360 programs,
taking advantage of better hardware and better algorithms
described in forthcoming releases of C28-6596, to the point
where the rest of the computing industry will do well if it
can match his example.

 The ICS programs described herein perform better (though

seldom by much) than comparable programs for the 7094

distributed by IBM; this is as it should be because the ICS

versions were produced for a purpose that cannot be justified

commercially – to approach perfection. The design priorities

were these:

 3.

i) Performance will be judged solely by what has been proved

 mathematically taking roundoff, over/underflow and all

 other aspects of the 7094-II into account. The tests

 are intended to check the proof, not the program; the

 proof is wrong except perhaps when the program's tests

 turn out just slightly better than predicted

ii) Freedom from exceptions is valued most highly, Accuracy

 second, Speed third, Storage economy fourth.

 A mathematical model exists which is worth keeping in

mind when appraising any program. Let F(X) be the numerical

value stored by a program intended to compute f(x) . In

general, the best that can be proved is a relation

 F(X) = (1+ε) f((1+δ)X)

in which ε and δ represent errors for which we seek the
smallest possible bounds. Some trade-off is possible between

ε and δ insofar as the bound upon one may be reduced at
the expense of increasing the other's. The simplest and most

desirable case is that when δ ≡ 0 , so that ε can be
regarded as “the” error in F(X) = (1+ε) f(X) . However,
there are occasions when δ cannot be suppressed; see the
write-ups for COS/SIN. Occasionally δ can be suppressed
only at an intolerable cost; see DP**DQ .

 4.

 We have attempted to keep δ = 0 and to keep ε well
below 1 ulp (unit in the last place stored). We have also

attempted to preserve familiar properties of f(x) like

monotonicity, symmetry, simple identities and well-known

special values as far as possible in the computed approximation

F(X) . Examples are

 SQRT(X**2) = ABS(X) ,

 SIN(X)**2 + COS(X)**2 = 1.0 within 3 ulp ,

 LOG(X)/(X-1.) → 1.0 within 3 ulp as X → 1.0 ,
 SIN(X)/X ≤ 1.0 ,
Our motives for these attempts have been echoed recently by

H. Kuki in a memorandum “Comments on the ANL evaluation

[ANL-7321 by Clark, Cody et al.] of OS/360 FORTRAN Math Library”

wherein he says on p.4

 “a. It is the strictest accuracy requirement for
 subroutines one can conceive.

 b. Therefore it gives the simplest goal for
 programmers to aim at so far as accuracy is
 concerned.

 c. In some computations (e.g. integral arguments,
 assuming all prior computations went
 meticulously well) where there is no error in
 the argument, the benefit is real.

 d. It is simpler to explain to the users.

Of these reasons, it seems to me the last is most important.
After all, coding a subroutine is only half the work, and the
remaining half consists of informing the users what exactly
the subroutine accomplishes.
 ...
... but it may cost diamond where mere glass may do...”

 To help appraise the costs, here are some characteristics

of the IBM 7094-II:

Storage: 32678 words, 36 bits each, 1.4 µsec cycle, 2-way
 interleave.

Speed: Most instructions take one word and 2.8 µsec. Single
 precision floating point operations take about 4.2 µsec.
 to add, 5.6 to multiply, 8.4 to divide;
 double precision takes about twice as long.

Single precision: 27 significant bits; 1 ulp is a
 relative error between .7510

-8 and 1.510
-8 .

Double precision: 54 bits, of which the last two or three are
 smeared by double precision multiplication and division.

 5.

 To prove mathematically that our programs perform at

least as well as is claimed may at first appear to be a

formidable task, especially when the error is claimed to be

so small; e.g.

 < .50000163 ulp for SQRT and complex arithmetic

 .52 LOG and QBRT

 .77 EXP

 .854 CABS

 1.0 COSPI, SINPI, DSQRT, DQBRT.

The proofs were carried out in 1962-5 via lengthy computations

with both decimal and octal desk calculations. Nowadays most

of the proofs would be regarded as routine applications of

high-precision Interval Arithmetic. Here is an example.

 Nominally, if 2-14 ≤ |f| ≤ ½ ,

 SINPI(f/2) ≡ (((s3f2 + s2)f2 + s1)f2 + π/2)f
for certain constants si ; actually the machine generates

 f2 ≡ f2(1+ε1) ,

SINPI(f/2) ≡ (((s3f2(1+ε2) + s2)(1+ε3)f2(1+ε4) + s1)(1+ε5)f2(1+ε6) +

 + (1-δ)π/2)(1+ε7)f(1+ε8)
where each εi represents a rounding error committed after an
addition or multiplication, and δ is the error committed by
truncating π/2 to 27 bits. We wish to compare SINPI(f/2)
with sin(πf/2) = f(π/2 + Σ16 σif2i + ε9σ7 f14) ,
where σi = (suitable constant) and ε9 = ε9(f) ∈]0, 1[,

taking into account the fact that each εi and δ is bounded
in a way that can be inferred rigorously from the published

characteristics of the 7094.

 6.

The comparison is effected first by rearranging the symbolic expression

for

 (SINPI(f/2) – sin(πf/2))/sin(πf/2)
in a way which achieves as much symbolic cancellation as possible,

second by computing appropriately precise interval approximations

for the constants σi and π/2 (the si are taken precisely
out of the program SINPI), and third by using interval

arithmetic to overestimate the range of values taken by the

expression as all εi and δ vary independently over their
ranges.

 In general, given any function f(x) , ingenuity may be

needed to choose a good formula for approximating f(x) ,

find best values for constants, write an efficient program

F(X) , and to rearrange F(X) – f(X) symbolically in a way

suitable for Interval Analysis, but the rest is routine.

 W. Kahan
 Univ. of Toronto
 June 1968

