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7094-II  System Support  For Numerical Analysis 

W.  Kahan, University of Toronto 

Abstract 

     This is the first half of a progress report on the author's 

efforts to improve the performance of IBSYS in the following areas  

of FORTRAN programming: 

    1. Error-traces and diagnostic messages to locate and explain  

       flaws found while executing FORTRAN programs. 

    2. Post-mortem facilities via the FORTRAN IV statement  

                        IF  (KICKED (OFF)) ... 

    3. A consistent, sane and flexible treatment of over/underflow  

       and related phenomena.  

    4. Digit manipulation (like rounding) via FORTRAN built-in functions. 

    5. The eradication of anomalies in the compiler (IBFTC) and  

       the FORTRAN library (IBLIB).  

    6. The expansion of the FORTRAN library to include reliable 

       and convenient subprograms for the solution of standard 

       numerical problems like systems of linear equations, 

                               polynomial equations, 

                               eigenproblems, 

                               minimax approximation, 

                               fitting data by least squares,  

                               systems of ordinary differential equations, 

                               etc. 

     Items 1 to 5 are herein regarded as essential prerequisites to the 

accomplishment of item 6 in such a way that users of these subprograms 

need not supplement their own competency in mathematics, science, 

engineering or the humanities by a hyperfine proficiency at both numerical  

analysis and the debugging of systems programs.  Each of the six 
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areas will be discussed in a correspondingly numbered section of  

this report, which begins by introducing the motivations for and 

the constraints upon the author's efforts.  Sections 1 to 3 follow; 

section 4 to 6 will be issued separately later. 

 

       Sections 1 to 3 are intended to demonstrate in detail the 

validity of the author's rationale for treating unscheduled 

events during a computation.  The reader who is unfamiliar with  

IBSYS and IBM's 7094 is asked to persevere; that rationale would  

work on his machine too if it were designed right. 
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Introduction 

      For as long as electronic computers have been in use (since 1949  

at the University of Toronto), there has existed a steadfast policy 

to widen the range of intellectual disciplines that might benefit 

from the machine.  That policy is partly responsible for a decline 

in the numerical sophistication of users, a decline which has yet to be  

compensated by an increased sophistication in the programs they can use. 

Despite intensive attempts to educate them in the arts of computation, 

too many new users attribute to the numerical library subprograms the 

infallibility of a mathematical proof.  They shall be disillusioned. 

To what extent can their disillusionment be written off as part of  

their education?  To what extent can their dissatisfaction be traced 

to shoddy computing systems?  There is room for improvement in both 

the quality of education and the quality of computer performance.  But 

you cannot teach an old dog new tricks, and you cannot teach a new 

dog very much.  Therefore the bulk of the improvement must and can 

come in the performance of computer systems. 

 

       The performance of IBM's IBSYS on the 7094-II has left a lot of 

room for improvement.  The improvements listed here were motivated 

almost entirely by the inadequacies uncovered during the author's  

researches into numerical methods.  The object of the researches was 

to produce working programs about which might be proved something 

simple and useful to a numerically unsophisticated but otherwise 

intelligent and educated user.  As a by-product of these researches, 

the following vague generalities have emerged: 
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       -Computation costs most when its result is not known to be 

        right nor wrong, because it costs so much to find out what is  

        wrong and why.  Costs can be cut by a small amount of self- 

        doubt applied early. 

       -Whether or not the purpose of computing be “insight”, its 

        most dependable benefit is hindsight.  Programmers dislike 

        forgoing this benefit through lack of foresight. 

       -Errors, anomalies and arbitrary restrictions hurt most when 

        they are too rare to remember but not rare enough to ignore. 

 

       These generalities have influenced the many decisions on questions 

of detail which arose during the work on the system.  A more decisive 

influence was exerted by three constraints. 

        First, it was deemed essential that programs be capable of 

conversion to whatever machine might replace the 7094-II, and so it 

was decided that all numerical subprograms be written in a language 

like FORTRAN or ALGOL, except where efficient coding was so obviously 

machine dependent that the assembly language MAP was used.  I chose 

FORTRAN IV in preference to ALGOL.  I would rather fight than 

switch.  I am still fighting with the latest version (13) of the 

IBFTC compiler to incorporate all the modifications which I had 

introduced into the previous version, and further modifications to correct  

newly discovered deficiencies. 

        Second, since no one had anticipated a need to rewrite IBSYS 

or IBFTC in its entirety, no resources were allocated for such a 

task.  Therefore, IBSYS and IBFTC have been modified as little as 

possible, instead of being replaced.  The modifications have cost about 

three man-years of work all told, much of which has been  

dissipated in the transfer of the modifications from version 12 to 

version 13 of IBSYS.        
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       Third, but most important, is our decision that the Toronto 

version of IBSYS remain compatible with the standard IBM IBSYS. 

Consequently, any FORTRAN IV program, even if it be in the form of 

a binary object-program deck, which has been designed for and runs 

correctly on a 7094 under standard IBM IBSYS with a hundred or so storage 

locations to spare, runs at least as well under our modified system. 

If the program be recompiled with no other modification, then the  

user may benefit from our improved diagnostics, especially where 

division by zero is concerned.  Most of the users of our 7094-II 

are unaware of any departure from standard.  But programs which run 

well on our system sometimes fail mysteriously at other 7094 

installations. 

       In this report an attempt will be made to discriminate between 

IBM's standard IBSYS and our modified IBSYS by referring to theirs 

in the past tense whenever it differs from ours.  Further details 

about IBM's IBSYS can be obtained from their manuals: 

      C28-6248              (IBSYS monitor) 

      C28-6389              (IBJOB; loader and library) 

      C28-6390              (IBFTC FORTRAN compiler) 

Further details about our modified system can be found in 

               “The Programmers' Reference Manual” 3rd ed. 

obtainable from 

               The Secretary, Institute of Computer Science, 

               University of Toronto, 

               Toronto 5, Ontario, 

               Canada. 

and henceforth referred to as the PRM.  Program listings are obtainable 

too if requested by name. 
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1. Error-traces and Diagnostic Messages 

      It may seem peculiar that a Numerical Analyst be preoccupied 

with the System Programmer's traditional responsibility for error- 

traces, diagnostics and post-mortem information.  But let us watch 

the Numerical Analyst at work.  Much of his computer time is 

dissipated by the diagnostics and post-mortems which he receives 

while trying to discover why his algorithms do not work as well 

as he had hoped.  From time to time he hands one of his subprograms 

on to some other user numerically less sophisticated than himself, 

and in so doing he tacitly shares with the Systems Programmers some 

responsibility for issuing diagnostics.  His program may produce 

diagnostic messages for different reasons than merely to signal  

its own collapse.  Diagnostics may be the only “correct” answers 

that the program can deliver in response to problems outside the 

intended domain of its applicability, especially when the program's 

domain cannot easily be defined other than by attempting to execute 

the program.  For example, a hopelessly ill conditioned linear system 

                          Ax = b 

is most easily identified when a sound linear-equation-solver fails 

to solve the system for  x  but exhibits instead a near linear 

dependence  d  in the left hand side  A ;  i.e., 

                    ║ A d ║ / (║ A ║ ║ d ║)  ≈  0     . 
The Numerical Analyst's subprogram ought to pass on this kind of 

diagnostic information in a form easily interpreted either by the 

user's calling program or by the user personally. 

      The latter form of diagnostic is usually a message printed 

amidst the user's output and is often the consequence of an error  

or oversight.  The crucial question is 

                   “Where was this error committed?” 
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but no computer program can answer this question.  The best that can  

be done automatically is to answer the question 

       “Where did the program first encounter some anomalous consequence 

        of the error?” 

      The answer takes the form of an Error-Trace.  Under IBM's IBJOB 

this would be provided by library subprogram  .FXEM.,  the FORTRAN 

execution Error Monitor.  Let us examine an error-trace typical of 

those produced by IBM's  .FXEM.  .  For example, suppose line 2 of 

the user's main program  MAIN  called a subprogram  SUB1  in whose 

line 25 was a call to  SUB2  in whose line 17 was a reference to 

SQRT(-4.0).  When this reference was executed, the  SQRT  program  

would detect the inappropriately negative argument and call  .FXEM. 

(say in line 31) to produce an error-trace and diagnostic message. 

IBM's error-trace would look like this: 

                ERR☼R-TRACE CALLS IN REVERSE ☼RDER 

                CALLING     IFN ☼R      ABS☼LUTE 
                R☼UTINE     LINE N☼     L☼CATI☼N 

                 SQRT         31          17621 

                 SUB2         17          14513 

                 SUB1         25          07762 

                 MAIN          2          05413 

The names in the first column are the deck-names assigned by the user 

to his subprograms (or else, in our modified system, assigned by  

default by the system).  The line numbers or “Internal Formula  

Numbers” in the second column refer to numbers printed in the programs' 

source listings, and can be exploited by the FORTRAN IV programmer  

without recourse to storage maps.  For this reason, the third column 

of absolute octal core locations is of secondary value to the FORTRAN 

programmer.  It is a great convenience that he can ignore this column 

and dispense with storage maps most of the time.        
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      The completeness of the error-trace shown above is one of its 

most valuable features.  Complicated programs can contain several 

references to the SQRT subroutine, and it is vital that the path of 

control to the invalid reference by laid out explicitly.  The complete 

error-trace is even more valuable when languages which permit recursive 

procedures are used.  If a user were instead provided with only the 

reference to SQRT (or only to SQRT and SUB2) in the error-trace 

above, he might waste a lot of time checking through all of his calls 

to SUB2 in an attempt to uncover the faulty one. 

      IBM's  .FXEM.  would print out a two-line diagnostic message 

and provide a means to exercise options regarding kick-off or continued 

execution following the diagnostic error-trace.  But  .FXEM. 

suffered from two defects. 

      One, the easiest to remedy, was that  .FXEM.  could be called only 

from a  MAP  assembly language program.  We fixed this by providing 

a program called  UNCLE;  any programmer can kick himself off 

(and produce an error-trace plus post-mortem debugging output) 

by executing 

                            CALL UNCLE      . 

He can offer users of his program a limited range of kick-off-or- 

continue options by writing 

                            CALL UNCLE (N) 

with a suitably chosen integer expression N.  He can supply one or 

two diagnostic messages too by writing 

                        CALL UNCLE (N,Message)     or 

                        CALL UNCLE (N,Message l, Message 2)   .   
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The messages can be inserted literally as Hollerith strings or they 

can be referenced as arrays of alphanumerical data.  In the latter 

case, rudimentary binary-to-BCD conversion facilities are available  

to permit integer valued variables like indices or error-codes 

to be inserted into the diagnostic without first reserving core 

storage for the panoply of FORTRAN input/output subprograms. 

This last is an important considerations when program overlay 

is required during execution.  (For more details about UNCLE, 

consult the PRM.) 

      .FXEM.'s second defect was that it could cope only with what 

I call “scheduled errors” ; these are errors each of which is discovered 

in a subprogram which, when it calls  .FXEM.  to produce an error- 

trace, can supply whatever linking information is needed by  .FXEM. 

to start the error-trace.  For example,  SQRT(-4.0)  is a scheduled 

error because  SQRT  is called in a standard way.  But when unscheduled 

errors like over/underflow, division by zero, running overtime, ... , 

were detected they would “trap”, i.e. cause interrupts which transferred 

control to appropriate subprograms without carrying the standard 

linking information that made an error-trace possible.  Consequently, 

the diagnostics for unscheduled errors answered the question “where?” 

with an absolute octal core location, but could not answer the question 

                          “How did I get there?” 

      That IBSYS's standard linking sequence contained a partial 

answer to the last question was widely recognized.  The first 

effort to extract a full answer was made by G. Wiederhold and G.D. 

Johnson at Berkeley (Univ. of California) in 1963.  Their work 

has appeared in SHARE SSD 121 of May 21/64 and SDA's 3066-7.  A  

similar scheme was devised by J. Leppik, G. Howard and the author  

at Toronto in 1964.  Our scheme differs from theirs mainly in that 

ours is simpler to use, slightly less flexible, and fully compatible 

with the standard IBM system. 
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     The first step in both schemes is to revise the standard 

SAVE  pseudo-operation by which subprograms are expected to save and 

restore index registers, control linkages, etc.  When IBM's  SAVE 

was executed upon entry to a subprogram  SUB, it used to save 

in a cell called  SYSL☼C  the pointer to the statement   

                            CALL SUB     . 

but no subsequent use was made of SYSL☼C .  We have added two 

instructions to  SAVE  whose effect is to store the same pointer, 

during the  RETURN  from SUB  to the instructions following 

                            CALL SUB    , 

in such a way that the contents of  SYSL☼C  show whether  SUB 

has just been entered or has just returned.  This modification  

has no effect upon the way IBM's  .FXEM.  behaves for scheduled 

errors. 

       Next, I rewrote  .FXEM.  so that it can be called from a trap-  

handling program.  Such a  CALL  is distinguished from other standard 

CALLS  by the absence of certain otherwise expected linking information, 

the lack of which forces  .FXEM.  into a new mode of action which 

examines  SYSL☼C  to produce the first line of the error-trace.  

      The behaviour of the new  .FXEM.  is best illustrated by an 

example.  Suppose that  SUB2  in the example above contains, besides 

SQRT(-4.0), a division which, when executed, turns out to be a division 

of zero by zero.  The result is the following diagnostic (in which 

the contents of the second line depend upon an option selected by 

the user): 
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                         0.0/0.0 ERR☼R AT     14506  

               RESULTS IN 0.0      or      EXECUTI☼N TERMINATED 

            ERR☼R-TRACE WITH CALLS IN REVERSE ☼RDER           C☼DE 25 

            CALL IS IN      AT IFN ☼R       ABS☼LUTE 
            DECK NAMED      LINE N☼.        L☼CATI☼N 

              SUB 2           17+            14513 

              SUB1            25             07762 

              MAIN             2             05413 

      The important change shows up in the + sign after the line 

no. 17.  This means that the announced anomaly was detected during 

or after (in time) the execution of line no. 17 of SUB2, but 

before any subsequent CALL was executed.  Since  SUB2  has a call to 

SQRT  in line 17 at location 14513  (cf. the previous error-trace), 

and the 0.0/0.0 occurred five words ahead of this location in the 

program, it seems likely that the program was executing a loop, 

perhaps a D☼-loop, which contains the offending division just a line  

or two in the listing ahead of the square root; and this loop was 

executed at least once before the divisor vanished. 

      The detective work in the last sentence is not typical; usually 

the error can be located by the most superficial inspection.  But 

the need for any detective work at all is an unfortunate consequence 

of the way IBM's FORTRAN IV compiler works.  Instead of identifying 

every line in the symbolic listing with a line number that  .FXEM. 

could deduce at execution time (for example, by locating a dummy 

instruction  

                           TIX     ID, 0, LKDR 

at the beginning of the coding emitted by the compiler for line 

no. ID of the FORTRAN subprogram whose linkage information can be 

found at LKDR), the compiler assigns a useable line number only 

when a CALL is generated.  Since an implicit CALL is generated for 

all references to FUNCTION subroutines, as well as for most 
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exponentiations of the form  X**J and X**Y,  for input/output, 

for complex multiplication and division, and for a computed 

G☼ T☼ (n1 ,n2,...,nm), I  ,  there are few programs whose listed  

line numbers are too sparse for a successful interpretation of the 

error-trace.  And, at worst, the unscheduled error is located to 

within one subprogram.  

      The C☼DE 25 at the head of the error-trace tells the programmer  

how to exercise his option to define 0.0/0.0 in one of two ways; 

either 

                         0.0/0.0 = 0.0 and continue execution, or 

                         0.0/0.0 = EXECUTI☼N TERMINATED. 

For example, the first option is the result of executing 

                         CALL KIK☼PT (25, 1) 

while the second results from 

                         CALL KIK☼PT (25, 0 )      . 

The reader is referred to the PRM for precise details about available 

options and how to exercise them conveniently.  What follows is a  

condensation. 

      The PRM contains a table of error codes and messages (cf. 

Fig. 25 and the section “Subroutine Library Error Messages” in 

IBM's IBJOB manual, Form C28-6389-1) which describes for each code 

its error condition, the options available, and which option is 

assumed by the system in default of a request to the contrary. 

The default option is usually to provide a message and then continue 

execution in some reasonable way. 

       I believe that, taken together with the other diagnostic 

facilities in our system, our surprisingly simple set of options 

covers almost all circumstances satisfactorily.  For serious errors 

we assign positive codes, like  +25 for 0.0/0.0, to signify that  

the allowed options are 
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     +1) Give a message and error-trace, and then continue reasonably, 

         or 

     +0) Give a message and error-trace, and then terminate execution. 

(Some errors, like 

         G☼ T☼ (1, 2, 3), 4 

are so serious that option +1 is denied.)  For milder errors we 

assign negative codes, like -13 for  SQRT (-4.0),  which signify 

that the allowed options are 

      -1) Give a message and error=trace, and then continue reasonably, 

          or 

      -0) Give no message nor error-trace; just continue reasonably. 

      The meaning of “continue reasonably” is discussed later in 

this report.  For now it suffices to give a few examples: 
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        Error Condition and “Reasonable” Response     Code 

                 SQRT(-X) = - SQRT(X)                  -13 

                 L☼G(-A)  = L☼G(ABS(A))                -10    * 

                 0.0**0   = 1.0                        - 3 

                 0**0     = 1                          - 1 

                 0.0**0.0 = 1.0                        + 6 

                 0.0/0.0  = 0.0                        +25 

 

      *Footnote:  We allow programmers to write L☼G(X) or 

                  AL☼G (X) interchangeably as they please 

                  rather than penalize them for the venial 

                  sin of omitting the  A . 

 

     Programmers, particularly writers of library subprograms, can 

easily provide other kinds of optional responses to error conditions 

detected by their own subprograms because the status of the option- 

indicator (a binary digit) associated with any error-code number 

can be sensed and stored as well as changed via  KIK☼PT.  A complicated 

program may have several error-codes assigned to it, but this causes 

no problems because 280 codes are available.  Programmers are free 

to use error-codes as flags or flip-flops in a way comparable to the 

use of sense-switches and sense-lights on the older slower machines. 

      A comment is required to explain that last  .FXEM.  option 

-0 which, in effect, allows .FXEM.'s activity to be suppressed 

entirely when the error is a mild one with a negative code.  Some 

of these errors are better described as differences of opinion 

about the most apt definition of a function or an expression, as in 

the cases of  0**0 = 1  and  0.0**0 = 1.0  (cf. the Taylor series 

∑o∞ arxr  at x = 0.0).  In these cases the warning messages serve only 
to remind the user that my definitions are not universally accepted in 

the computing world.  If he is satisfied to do things my way, he can 

turn the message off.  If he prefers another way, he can easily change 

the relevant program to his own specifications with the aid of the 

documentation which we supply. 
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      Other errors with negative codes sometimes represent minor 

oversights;  an example is 

                  L☼G(-X) = L☼G(ABS(X))      , code – 10. 

For reasons discussed later, our policy is to try not to terminate  

execution because of such an oversight.  Rather, it seems better 

to continue and find out what else the programmer overlooked.  We 

do not encourage programmers to exploit system side-effects to save 

the bother of a sign-test or some such simple instruction.  We do 

not regard the -0 option as one which should be employed in production 

or library programs to correct oversights, except possibly temporarily, 

because this type of hidden coding is so difficult to remember 

when late-hatching bugs are being sought. 

      To implement the new  .FXEM.  and error-trace required several 

man-months of work, most of which was spent tracking down anomalies. 

For example, several input/output programs supplied as part of earlier 

versions of FORTRAN IV were found to use non-standard subprogram  

linkages, and these had to be repaired to allow even the old  .FXEM. 

to produce meaningful error-traces before they were further modified 

to work with the new  .FXEM. .  Every library program had to be examined; 

here we reaped an unexpected reward when we discovered that the new 

.FXEM.  makes possible a shorter and faster subprogram linkage to 

certain library programs like  SQRT, C☼S, L☼G, EXP, complex  

multiply, complex divide,  A**J,  and others. 

      But one large job remains.  The FORTRAN compiler must be modified 

to generate standard CALLS to Arithmetic Statement Functions which 

at the present, as compiled by IBM's FORTRAN IV v. 13, use non- 

standard CALLS in order to save about 7 microseconds per CALL.  (One 

division costs 8.4 microseconds.)  Consequently both IBM's  .FXEM.  and 

ours produce error-traces which skip, sometimes confusingly, over 

references to Arithmetic Statement Functions. 
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2.  Post-mortem Facilities 

      We prefer to think of kick-off as an act of desperation on the 

part of a subprogram, and therefore try not to terminate execution 

unless it is overwhelmingly probable that continued execution will 

be an utter waste.  There is little risk that errors like SQRT(-4.0) 

will be repeated millions of times to no good purpose, because the 

monitor imposes the user's own limit upon the total number of lines 

of printed output, thereby protecting him from a million lines of 

SQRT's diagnostic and error-trace.  Furthermore, programmers who are 

especially sensitive to a waste of their computer time allotment can 

use statements like 

        IF (CL☼CK (TSTART)    .GT.   TMAX)     CALL UNCLE 

to kick themselves off when the elapsed time since 

                   TSTART = CL☼CK (0.0) 

exceeds   TMAX,  at a cost of 70 microseconds per execution.  (One 

square root costs 64 microseconds.) 

       But sometimes kick-off is the only reasonable response to an 

error.  This response gives rise to a breed of programmer who has 

only one diagnostic and error-trace to show for his several seconds 

(or minutes) of computer time.  It is uncharitable to advise him 

that he should have exercised enough foresight to provide intermediate 

output as insurance against such an event.  Besides, he may reply 

                  “I thought I had debugged that program.” 

      We doubt the wisdom of the widespread tendency to inundate 

every user who is kicked off with a complete dump of storage willy- 

nilly.  This could drown him in octal data which he is unlikely to 

be able to read.  It is a costly way to educate students. 
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      The ideal solution would be to display conveniently just those 

variables which have figured in the events leading up to the debacle. 

Our solution is not ideal, but it is simple and flexible.  It is an 

improved version of our  PM☼RT  described in Comm. A.C.M. 7 (1964) 

p. 15.  We allow the programmer to write into his FORTRAN IV  

program a statement of the form   

                 IF (KICKED(☼FF))    ‹ any executable statement ›  

                   ‹ the next executable statement ›  

with the expectation that, because the value of the logical function 

KICKED is always .FALSE. ,  his program will merely execute  ‹the 

next executable statement› .  But if and when his program is kicked 

off, the monitor will give him the diagnostic and error-trace that 

he deserves and then, after over-writing  ‹the next executable 

statement›  with CALL EXIT, will execute  ‹any executable statement› . 

  
e.g.  1:          IF(KICKED(☼FF))  WRITE(...) 

causes the desired information to be written out if and only after 

the program has been kicked off.  The programmer can choose a F☼RMAT 

to suit himself or, if more convenient, he can use the simple un- 

formatted output provided by the NAMELIST feature of FORTRAN IV; or 

he can  CALL DUMP  and be drowned. 

  
e.g. 2:           IF(KICKED(☼FF))  CALL ...      or 

                                   G☼ T☼ ... 

causes the desired transfer of control to take place after kick-off, 

and thus permits a user to store valuable data on magnetic tapes 

and ask the operator to save them.  Or he can call a complicated  

diagnostic program of his own, or he can try again to solve his 

problem by some method other than the one which failed.  The monitor 

will allow, say 20 seconds and 300 printed lines of computer activity 

after the first kick-off.  Of course, any second kick-off is final 
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despite further IF (KICKED(☼FF))... requests.  Because the user has 

recourse to KICKED, writers of library and systems programs are under 

less pressure when they have to decide whether an anomalous condition  

should terminate execution or just produce a warning. 

      Programmers are encouraged to use  KICKED  as often as they 

like in both FORTRAN and MAP assembly language programs; and 

they can leave these KICKED statements in production programs as 

insurance against the remote possibility that an undiscovered bug 

may terminate execution in a cloud of mystery. Each executed 

reference to  KICKED  consumes less than 14 microseconds (less than 

two division times) so  KICKED  can be used in fairly tight loops 

without seriously wasting time.  The monitor will respond at kick- 

off only to the last executed reference to  KICKED. 

      An important limitation upon  KICKED  was imposed by the absence 

of any block structure in  FORTRAN  comparable to that in  ALGOL, 

and by the way that indexing is optimized in  FORTRAN.  This limitation 

exists because, whenever kick-off occurs in some subprogram remote 

from the one containing the  KICKED  statement and then control 

is passed to  ‹any executable statement›  after the  IF(KICKED(OFF)), 

no attempt is made to restore index registers to the state they were 

in when  KICKED was called nor to re-set tapes to their former 

positions.  More important, there is no way to reduce the 

effect of those instructions which may have been placed in “optimum” 

positions ahead of the call to  KICKED  in order to initialize index 

registers and addresses as efficiently as possible from the point of 

view of the normal sequence of control.  For example, if kick-off 

occurs during the computation of  FCN  in the sequence 
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       D☼  3      J = 1, 10 

         A(1,J) = J – 1 

         D☼  3      I = 1, J 

           IF (KICKED(☼FF)) WRITE(...) I, J, B(I), B(J), (A(K,J), K=1,J) 

   3       A(I+1, J) = FCN(B(I), B(J), A(I+1, J)) + A (I, J) 

 

there is no way at kick-off time to move the numbers I and J from  

storage into the appropriate cells and index registers for the refer- 

ences to B(I), B(J), A(K, J) and  “K = 1, J”  following the call to 

KICKED. 

      A second limitation shows up when program overlay takes place; 

there is no simple way to detect whether  ‹any executable statement›  

in the IF (KICKED(☼FF)) statement has been partially overlaid, or 

whether it refers to data which has been overlaid.  Consequently 

we inserted an instruction in  .L☼VRY,  the overlay handling 

subprogram, which causes the monitor to forget the last reference  

to  KICKED whenever overlay occurs.  We take no pride in this 

expedient. 

      Any programmer who is aware of these two limitations can 

easily code around them.  Simple suggestions are contained in the 

PRM.  Indeed, the limitations are so easy to circumvent that programmers 

sometimes forget to do so, and for this reason we have included a 

warning message like the one in the following example: 

 

          0.0/0.0 ERR☼R AT 14506 
          EXECUTI☼N TERMINATED. 

          ERR☼R-TRACE WITH CALLS IN REVERSE ☼RDER     C☼DE 25 

          CALL IS IN       AT IFN ☼R    ABS☼LUTE 
          DECK NAMED       LINE N☼      L☼CATION  

             SUB2            17+        14513   

             SUB1            25         07762 

             MAIN             2         05413 

           EXECUTING IFN/LINE N☼. 2 OF 'SUB1' AFTER PR☼GRAM WAS 
           KICKED ☼FF.  FR☼M N☼W ☼N IN 'SUB1, THE VALUE OF A SUB- 
           SCRIPTED VARIABLE WITH VARIABLE SUBSCRIPT, OR THE EXE- 
           CUTI☼N OF A C☼MPUTED 'G☼ T☼' OR 'D☼' STATEMENT WITH 
           VARIABLE PARAMETER, MAY BE INC☼RRECT UNLESS THE RELEVANT 
           INDEX IS RESET.  SEE THE PR☼GRAMMERS' REFERENCE MANUAL. 
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        This message is more formidable than necessary.  It would be 

unnecessary altogether if the IF(KICKED(☼FF))  statement were imple- 

mented in a language, like ALGOL, with a block structure.  Then kick-off 

within a block would cause control to be transferred to the last 

KICKED reference, if any, executed in the same block but not in a 

deeper sub-block. 

      One other complication would arise were the  IF(KICKED(☼FF)) 

statement to be implemented within a compiler which contained a 

M☼NIT☼R statement.  Such a statement is exemplified by 

                  M☼NIT☼R  X, Y(*), Z(*,3), PR☼G, n 

which would cause output of the following kind to be generated: 

 

      Whenever the variable X is changed, write out its new value; 

                           X = 14.271434    . 

 

      Whenever the variable Y is changed, indicate which element too; 

                           Y (2) = .74131042 E –18    . 

 

Whenever the third column of array Z is changed, say so; 

                           Z(13,3) = 0.0    . 

 

Whenever the subprogram  PR☼G  is called, write out its arguments; 

      CALL      PR☼G  (13, 27.421493,   Y )     WITH 

            Y(1) = 1.4012362 

            Y(2) = .74131042 E -18 

            Y(3) = 0.0    . 

If PR☼G is a function, write out its value too; 

              PR☼G  (13, 27.421493, Y) = 1.7014 E38   WITH 

                Y(1) = etc.          

 

Whenever statement  n  is executed, say so.  If this is a logical 

IF statement, tell what happened. 
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      The M☼NIT☼R facility as described above has been implemented 

at least partially in several compilers
*
;  unfortunately, ours is not 

one of them.  The problem is to deal with the statement 

              IF (KICKED(☼FF))    M☼NIT☼R ......, 

for which the nicest solution would be a retroactive display of, 

say, the last 300 lines of output which would have been produced if 

that M☼NIT☼R  statement had not been bypassed.  Some compilers 

already have a feature of this kind; the author envies their users. 

 

      Now is a good time to compare the error-options needed by the 

programmer with those available to him.  He may want to assign to a 

specified anomaly, like 0.0**0     , one of the following four 

consequences: 

     -0) Re-interpret the request in a way judged to be appropriate 

         for the majority of users (say 0.0**0 = 1.0) and continue 

         with no message nor error-trace. 

      1) Re-interpret the request as above, and put out a message 

         and error-trace to tell the programmer what happened and 

         where, and then continue execution. 

     +0) Put out a message and error-trace to explain where and 

         why execution was terminated, and then grant any post-mortem 

         request that may have been made via 

                            IF (KICKED(☼FF)...   . 

      2) Transfer control to a location designated in advance by the     

         programmer where he may cope with the anomaly as he pleases, 

         provided the necessary information is easily accessible to  

         him. 

 

 

*
 R. Bayer, D.Gries, M. Paul, H.R. Wiehle [1967] “The ALCOR  

  Illinois 7090/7094 Post Mortem Dump”  Comm. ACM 10 #12 pp. 804-8 
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      Our system offers at least two of the first three options for 

most error conditions.  The last option is dangerous in FORTRAN for 

the reasons cited while discussing the limitations of  KICKED, unless 

it is handled carefully.  The following discussion explains how some 

of our library programs offer option  2). 

      Consider for example our least squares library subroutine LSTSQ 

which, given a rectangular  M x N  matrix  X  and a column vector y, 

attempts to find that coefficient vector  c  which minimizes the sum 

of squares 

          S = (y – Xc)T (y – Xc) = Σi(yi – Σj xijcj)2 . 
A solution  c  always exists and satisfies the normal equations 

                      XTX c = XTy          . 

LSTSQ tries to solve these equations (in double precision, because 

that is the fastest adequate method on a 7094) for c  and the 

corresponding minimum value of S and, if requested, the inverse 

matrix 

                         V = (XTX)-1    .                                                                    

But if the columns of  X  are nearly linearly dependent, in the sense 

that there exists a perturbation  ∆X  of the order of a few units in 
the last place of X such that the columns of  (X+∆X) are linearly 
dependent, then the solution  c  is not well defined and LSTSQ 

produces one of two things instead of  c : 

     0)    If the user wrote 

                 CALL LSTSQ (X, M, N, Y, C, S)       or 

                 CALL LSTSQ (X, M, N, Y, C, S, V) 

           then he has made no provision for the possibility that X 

           be nearly singular, so he receives a suitable diagnostic 

           and error-trace and is kicked off.  
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      1)  If the user wrote 

                CALL LSTSQ (X, M, N, Y, C, S, $n)  or 

                CALL LSTSQ (X, M, N, Y, C, S, V, $n) 

          where  n  is an integer standing for a statement number, 

          LSTSQ  returns control to statement number  n  in the user's 

          calling program, and diagnostic information is made 

          available in V (or elsewhere if  V  was not requested) 

          which permits the calling program to identify the linear 

          dependence relatively easily and change  X  appropriately. 

          (Usually the calling program just decreases  N.)  LSTSQ 

          does not put out any messages in this case. 

 

     The foregoing description is somewhat simplified; details can 

be found in the PRM.  The interesting feature is not so much the use 

of a FORTRAN IV error return  $n  as the fact that this error return 

is optional.  The option is available because one of the first 

statements executed within LSTSQ is  

                     CALL ARGCNT (I,J) 

which counts the arguments supplied in the CALL to LSTSQ.  I is the 

number of arguments exclusive of error returns, and J is the number 

of error returns.  The error options described above are numbered 

0 and 1 according to the value of  J.  Similarly, LSTSQ determines 

whether the user wants V = (XTX)-1 or not according as  I = 7 or 

6 respectively.  Any other values of I or J indicate an error, like 

a period between the integers M and N instead of a comma, which is  

serious enough to terminate execution with an appropriate diagnostic. 

      The use of variable-length argument lists lends a certain elegant 

simplicity to several of our library programs, and we hope that this 

feature will be incorporated in the programming languages of the future. 
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The simplicity with which the error return scheme can be implemented 

makes it efficient and satisfactory for a wide range of applications, 

but there are two important areas where the scheme is unsatisfactory. 

One consists of those difficulties caused by a small lack of foresight 

and recognized immediately with the slight assistance to hindsight 

provided by a diagnostic.  Many of the error conditions mentioned above, 

like L☼G(X) when  L☼G(ABS(X))  was intended, fall into this category. 

So do many input/output problems.  It suffices here to say that a lot 

more could be said for the desirability and convenience of subprograms 

like KIK☼PT which allow the programmer to revise temporarily 

the execution of his program at each of several spots without having 

to insert a small explicit change at each spot. 

      The second area where error returns have proved unsatisfactory  

covers Over/Underflow, a ubiquitous phenomenon to which the next 

section of this report is devoted.        
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3.  Over-Underflow 

     Overflow and Underflow are what take place in the arithmetic 

registers of a computer whenever an attempt is made to calculate 

numbers outside the normal range. On the 7094, overflow occurs  

whenever the magnitude of the result of a floating point arithmetic 

operation equals or exceeds  

                   2127  ≈  l.70141183 x 1038   ; 

underflow occurs whenever the magnitude is not exactly zero and  

is smaller than  

                   2-129  ≈  .146936794 x 10-38       . 

Special provision must be made to cope with over/underflow in a  

way which does not produce misleading results. 

     It is sometimes argued that overflow is an error for which  

the penalty should be 

                   EXECUTI☼N TERMINATED 

but this penalty would place an intolerable burden upon even the 

most expert numerical analyst.  He is often unable to predict in 

advance what the range of numbers will be in complicated calcula- 

tions, especially where exponentials, polynomials, and rational 

functions of high degree, or spaces of high dimensionality are 

concerned.  For example, if  P(x,y)  is a polynomial in  x  of 

degree  10  whose coefficients are wild functions of  y , then 

the desired solution x = X(y)  of the equation  P(x,y) = 0  may 

be well-defined and reasonable even though it is inaccessible 

unless the polynomial-zero-finding subprogram is allowed to pursue 

a flexible scaling strategy in response to over/underflows, if any, 

which occur during the computation of  P(x,y) .   Overflows should 

not force kick-off;  if worse comes to worst, a program can kick 

itself off by executing, say,  

          IF(☼VFL☼W)  CALL UNCLE(0,22H INESCAPABLE ☼VERFL☼W.)    . 
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     An opposite attitude of  laissez-faire  is reflected in the  

designs of those machines whose hardware automatically replace 

an overflowed magnitude by a special digit pattern representing 

∞  and then plunge on.  Such a scheme might well include, say, 
Θ  to replace an underflowed magnitude and  %  to indicate an 

indeterminate value.  These symbols might obey rules like the 

following: 

 

i)   Whenever an arithmetic operation generates  ± ∞ , Θ  or  % ,  
     a corresponding flag is raised to indicate to the 

     program that overflow, underflow or lost significance respec- 

     tively has occurred.  If requested by the programmer in 

     advance, a message can be printed out for his information. 

ii)  Any arithmetic operation with  %  as an operand generates  %  

     as a result.  %  is also generated by the following expressions 

     ∞-∞,  ∞/∞,  0/0,  0/Θ,  Θ/0,  ∞*0,  ∞*Θ  and  x/Θ  . 
iii) If  x ≥ (1 unit in the last place of the overflow threshold) 

       then  ∞-x = % ;  otherwise  ∞ ± x = ∞   .  
     If  (1 unit in the last place of  x ) ≤ (the underflow threshold)  

       then x ± Θ =  % ; otherwise x ± Θ = x ± 0 = x . 

     If  x  ≥ 1 then  x * ∞ = ∞ * sign(x) ; otherwise x * ∞ = % . 
     Similar rules hold for  x/∞ , ∞/x , x*Θ and Θ/x  . 
     x/0 = ∞*sign(x)  unless  x = 0  or  Θ   . 
iv)  The number  0  can be generated only by direct assignment or 

     as the result of  x-x  with x ≠ Θ nor  ∞ .  The symbol  Θ , 
     which stands for the set of all numbers smaller in magnitude 

     than the underflow threshold, can be generated only by direct 

     assignment or by an underflow as indicated above.  
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       During comparisons the symbol  Θ  simultaneously falsifies 
                 Θ > 0  ,   Θ = 0  ,   Θ < 0  ; 
       and  x > Θ  if and only if  x > 0  too. 

Rules like the foregoing are formidable, and have not been 

implemented in any hardware known to the author (who would not 

expect to find them in any machine except possibly one with 

interval-arithmetic built into the hardware).  But no other less 

elaborate rules are known to be foolproof.
*
  For example, the CDC 

6600's hardware follows similar rules whose most obvious difference 

is the lack of any distinction whatever between underflow to  Θ 
and the number  0 .  A comparable deficiency is to be found at 

those IBM installations where, to escape a plethora of insigni- 

ficant underflow messages, all underflow messages are suppressed 

by many users most of the time.  The following segment of FORTRAN 

coding shows what can happen when this is done.  Here  A, B, C, 

D and X  are all positive normalized floating point numbers (not 

special symbols nor zero). 

               Y = (A*X+B)/(C*X+D) 

               Z = (A+B/X)/(C+D/X) 

               W = Y/Z 

               WRITE (...) W 

               ........... 

         Output:  W = 1.98 

 

In the absence of any indications of over/underflow, how is this 

phenomenon to be explained?  The only thing unnatural about this 

example is the  WRITE  statement;  W  is more likely to have 

remained            “out of sight, out of mind”   . 

     The replacement of underflowed numbers by zero with no 

indication to program nor programmer is a clearly unsatisfactory 

practice.  And even when an indication of over/underflow is given, 

 

 

----------------------------------------------------------------------- 

*
 Experience since this was first written has found  Θ  to be useless. 
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there is ample reason to protest against the destruction by 

hardware (as on the IBM 360 and CDC 6600) rather than software of 

information which could otherwise be of significance to the 

programmer; this is discussed in more detail below in connection 

with the Unnormalized Mode and the Counting Mode of treating over/ 

underflow.  But, to be fair, it must be acknowledged that most 

programmers would be satisfied most of the time by the provision 

of representations for  +∞ ,  -∞ ,  Θ  and  %  obeying rules like 
i) to iv) above.

*
 

 

     What more might a numerical analyst demand?  From time to time 

time he will want to generate and use numbers which lie beyond 

the over/underflow thresholds.  And certainly no programmer wants 

to be forced to check for over/underflow after (much less before) 

the execution of each arithmetic instruction in his program, and 

to decide each time upon an appropriate course of action.  He 

will prefer to choose one of the several modes of execution 

provided for him by the system, with the understanding that while 

the program is being executed in his chosen mode each over/underflow 

will be treated according to the rules tabulated for that mode. 

Rules i) to iv) above could define one such mode.  The programmer 

should be allowed to change modes between one line of his program 

and the next.  Ideally, he should be allowed, if he wants, to define 

his own mode by specifying in detail just what rules are to be 

obeyed for each type of arithmetic operation.  Finally, although 

the programmer who is ignorant of the problems of over/underflow 

must be warned when they occur, care must be taken not to drown 

him in a cascade of over/underflow messages, especially when they 

are obviously irrelevant.  (An example of an obviously irrelevant 

underflow is remainder underflow after a floating point division 

in a FORTRAN program, which always discards the remainder.)  

 

----------------------------------------------------------------------- 

*
 Except for  Θ  .  
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     An attempt has been made to serve as many of these needs as 

can be served in a FORTRAN context by means of a substantial 

extension of the service supplied by IBM via their subprogram 

.FPTRP  in IBJOB .  This program exploits the fact that whenever 

a floating point over/underflow occurs the 7094 “traps”; it 

interrupts itself and transfers control to a designated core 

location after setting up an indicator word (cell 0) to describe 

what caused the trap and where.  This floating point trap, FPT, 

takes precedence over all others in the machine, and when it 

occurs the registers in the machine contain the over/underflowed 

result unaltered, so that no significant information is lost.  A 

hardware option can be purchased (RPQ 880291) which includes 

improper divisions like 1/0 in the scope of the  FPT . 

     I rewrote  .FPTRP   in a way which, while maintaining com- 

patibility, increased its speed and augmented its capabilities 

so that programs can easily choose and change to any one of five 

modes of execution. The Standard Modes treat over/underflow very 

much as IBM did, the main difference being that now underflow  

sets up an indicator the same way as does overflow.  The Unnormalized 

Modes exploit unnormalized arithmetic to permit underflow to 

occur “gently” without setting up distracting indicators or 

messages.  The Silent Modes set indicators to indicate over/ 

underflow to the program but put out almost no messages for the 

programmer; cascades of over/underflows in the Silent Modes do 

not slow programs down appreciably.  The Printing Modes set 

indicators for the program and also report each indicated over/ 

underflow, as it occurs, in a printed message for the programmer, 

thus helping him to debug his program.  The Counting Mode allows 
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certain kinds of computations to be carried out with no risk of 

over/underflow because the allowed range of magnitudes is extended 

to include numbers like 

                              ±242    
                             2           . 

These five modes are discussed below in appropriately titled 

subsections of this report.  The last two subsections discuss 

improper divisions and simulated over/underflows. 
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The Standard Silent Mode 

    This is the mode in which the system operates by default 

in the absence of requests for some other mode.  Whenever a 

floating point arithmetic operation overflows, its result is replaced 

by the largest possible magnitude (1.7014 x 1038) with the same 

sign , and this event is recorded by setting  ☼VFL☼W = .TRUE.   . 

Whenever a result underflows it is replaced by zero with the same 

sign, and this event is recorded by setting  UNFL☼W = .TRUE.   . 

The indicators  ☼VFL☼W  and  UNFL☼W  are logical variables which 

can easily be sensed, stored and/or reset to  .FALSE.  in several 

ways described in the PRM.  In particular, the declarations 

                    L☼GICAL ☼VFL☼W 

                    C☼MM☼N/☼VFL☼W/☼VFL☼W 

permit statements like 

                    IF (☼VFL☼W)....          and 

                    ☼VFL☼W = .FALSE. 

to be executed without wasting time on subprogram linkages in 

short loops. 

     This mode is called Silent because each over/underflow sets 

its indicator without disturbing the programmer's output with any 

diagnostic message.  However, just after his program's execution 

is terminated (either normally or by kick-off) a message is produced 

to draw the programmer's attention to any over/underflows that 

escaped the attention of his program; more about this later. 

In the Standard Silent Mode, each over/underflow costs 15 to 30 

microseconds; i.e. two to four division times. 
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The Standard Printing Mode 

This mode differs from the previous mode only in that each 

over/underflow, as it occurs, inserts a message into the programmer's 

output to answer the following questions: 

          What happened, overflow or underflow? 

          Which machine registers are involved; AC, MQ or both? 

          What arithmetic operation was attempted: + , - , * , / , 

                   double-precision, ...,?  (An octal operation- 

                                             code is given here.) 

          What change was made in the affected register(s)? 

          Where is the instruction whose execution caused this 

                   over-underflow?  (An octal core address is  

                                          given here.) 

          Where in the source-program did all this happen? 

                          (An error-trace is given here by  

                              our version of  .FXEM. .) 

     We also considered writing out the operands whose sum, product  

or quotient had over/underflowed, but the cost of doing so seemed 

more than the information was worth.  This point deserves recon- 

sideration.  Anyway, the error-trace usually points to within a 

few lines of the site of the over-underflow in a FORTRAN program. 

     The over/underflow handling subprogram  .FPTRP  can be switched 

in 40 microseconds from a Silent Mode to the corresponding Printing 

Mode via the statement  

                           CALL NFPTST(M) 

with a positive integer expression  M .  When this statement is 

executed, an internal counter  N  is set to  M  and .FPTRP  is 

caused to operate in a Printing Mode until  M  over-underflow 
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messages have been put out.   N  is decreased by  1  each time a 

message is put out, and when  N  becomes  0  an extra message 

                   N☼W  ☼VER/UNDERFL☼W MESSAGES ARE IN ABEYANCE 

is produced and the Mode is switched back to Silent. 

                        CALL  NFPTST(0) 

switches the Mode back to Silent without any extra message. 

     In accordance with current good practice, the FORTRAN 

programmer is allowed easily to sense, save, set and/or reset the 

message-counter  N  as well as the indicators  ☼VFL☼W  and  UNFL☼W . 

Details may be found in the PRM.  But programmers are advised not 

to set the latter two logical variables to  .TRUE.  directly in a  

FORTRAN program; instead they are advised to force an over/underflow 

like 

                      DUMMY = (1.7E38)**2    . 

This is done because, whenever over/underflow occurs,  .FPTRP 

stores the current contents of  SYSL☼C  into the appropriate 

indicator to make it  .TRUE.  .  Later, when the program's execution 

is finished, the monitor looks at each indicator to see whether it 

is  .TRUE. , and if so then that indicator is interpreted as a 

pointer in roughly the same fashion as  .FXEM.  interprets SYSL☼C 

when providing the first line of the error-trace immediately after 

an over/underflow in the Printing Mode.  Consequently, the 

programmer's output finishes, whenever appropriate and possible, 

with a message like 

            LAST UNREQUITED ☼VERFL☼W WAS IN ☼R AFTER 
            LINE 17 ☼F DECK SUB2  . 
 
            LAST UNREQUITED UNDERFL☼W WAS IN A SUBPR☼GRAM CALLED IN 
            LINE 24 ☼F DECK SUB1  . 

Often the programmer can deduce from the information given here 

that the over/underflow did no harm; then, since the messages have 
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not tainted his formatted output, he is free to cut them off and 

publish the rest. 

     If program overlay has intervened between the last unnoticed 

over/underflow and program termination, or if the indicators  

☼VFL☼W  and  UNFL☼W  were set to  .TRUE.  in a naïve way, then the 

post-execution message may describe the desired deck-name and line 

number as  UNKN☼WN  . 
 
     It is especially important to understand that the word “UNREQUITED” 

signifies that the program has not reset the indicators to .FALSE. , 

presumably because it has not responded to the over/underflows.  The  

system may already have printed several messages for the programmer, 

notifying him each time his program ignored an over/underflow while 

the system was in the Printing Mode. 

     I see now that we could have supplied, at little extra cost, 

post-execution warnings more like this: 

            3943 ☼VERFL☼WS WENT UNREQUITED BY THE PR☼GRAM BETWEEN 
            LINE 17 ☼F DECK SUB2 

            AND A SUBPR☼GRAM CALLED IN LINE 64 ☼F DECK SUB1   . 
 
   Such a message can be more useful in deciding whether or not   

to ignore the over-underflows. Also, the counts of overflows 

and underflows could be used by any programmer who, for reasons 

unclear to me, wished to terminate his program's execution after 

a specified number of overflows had occurred.  Another improvement 

would be to allow a negative value for  M  in  

                       CALL NFPTST(M) 

to signify that  -M  overflow messages are to be allowed while all 

underflow messages are to be suppressed.  Most of these improve- 

ments have been incorporated into the adaptation of our scheme for 

the Burroughs B5500 written by Mr. Michael D. Green at Stanford 

University in 1966, and I expect to put them into our system soon.  
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The Treatment of Underflow  

     Some programmers have good reasons to want to be informed 

about underflow.  They may want to avoid consequent loss of precision 

or subsequent division by zero.  But most programmers whom I asked 

said they preferred that underflowed numbers be replaced by zero 

without their attention being distracted by the event.  This 

attitude was justified at a time when most over/underflow messages 

reported “MQ UNDERFL☼W” during an addition, subtraction, multi- 

plication or double precision division.  This message signified 

that the double-length result of those operations in the AC-MQ 

register was small enough to cause the characteristic of the less 

significant word in the  MQ  to underflow even though the more 

significant word was correct.  Since the less significant word is 

entirely ignored in single-precision FORTRAN expressions, and since 

the double-precision hardware of the 7094 ignores the characteristic 

of the less significant word in double-precision expressions, I 

decided that  .FPTRP.  should simply ignore MQ  underflow after 

those operations where it was obviously irrelevant.
*
  This decision's 

first consequence was a welcome reduction in the number of messages  

and complaints, especially where iterative calculations with residuals 

tending to zero were concerned. The second consequence was that 

certain old 7090 programs which had performed double-precision 

arithmetic by simulating the 7094's double-precision hardware, 

ran into spurious overflow troubles and required revision so that 

they would use instead of simulate our machine's hardware.  For- 

tunately, any user who insists upon running a 7090 program  

unchanged upon our 7094 can do so in safety by merely changing two 

well-marked instructions in  .FPTRP  . The second instruction 

 

 

                                                                    

*
The 27 significant bits in the MQ are not ignored nor cleared when 

 the characteristic of the MQ underflows, so no accuracy is lost.  
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is needed to force appropriate actions when remainders underflow 

after division; otherwise they would be ignored too. 

     It is not good enough that the system ignores obviously 

irrelevant underflows.  Many irrelevant underflows are not obviously 

irrelevant.  Consider, for example, a segment of a typical matrix 

handling program which computes         

                     r = b - ∑i ai xi            . 
 
The usual rule, which replaces each underflowed sum or product           

by zero, is satisfactory except when  b  and all the products 

aixi  are so close to the underflow threshold that the usual rule 

produces a significantly wrong value for  r . If all underflows 

are reported, how can the rare significant reports be distinguished 

from the common ignorable ones?  If no underflows are reported, 

how can the rare incorrect values of  r  be distinguished from the  

common correct ones?  The easiest way I know to cope with these  

questions is to use our Unnormalized Modes. 
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The Unnormalized Silent Mode and the Unnormalized Printing Mode 

     These two modes differ from one another in just one respect; 

the Printing Mode reports overflows in the way described under the 

Standard Printing Mode above. The two Unnormalized Modes differ 

from their corresponding Standard Modes only in the way they treat 

underflow. A number, which in a Standard Mode would have under- 

flowed to zero and set  UNFL☼W = .TRUE. , is in an Unnormalized 

Mode replaced by its closest unnormalized approximation and  UNFL☼W 

is unchanged.  For example, consider a decimal machine whose 

underflow threshold is  .10000000 x 10-38 .  In a Standard Mode, 

.15743219 x 10-40    would  underflow to zero, but in an Unnormalized 

Mode it is replaced by  .00157432 x 10-38 .  A number must now  

drop below  .00000001 x 10-38    before it is silently replaced by 

zero. 

     In the Unnormalized Modes the range of non zero floating point 

numbers representable in the 7094 is extended downward from  2-129     

to  2-155  in single-precision and   2-182  in double-precision. 

This allows underflow to take place more gently, and improves the 

accuracy of certain results.  But these benefits are secondary; 

the primary justification for the Unnormalized Modes is that they 

ease the task of deciding, in certain cases, whether a result is 

right or wrong. 

     For example, consider the following FORTRAN program to compute 

                    r = b - ∑1N aixi           . 
(In accordance with good computing practice, and because it costs 

almost nothing extra to do so on our 7094-11, the products of the 

single-precision numbers  ai  and  xi  are accumulated to double  

precision before  r  is rounded (not truncated) to single-precision.) 
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      D☼UBLE PRECISI☼N  D 
      DIMENSI☼N  A(...), X(...) 
      D = -B 
 C    ENTER THE UNN☼RMALIZED M☼DE.    (14 MICR☼SEC.) 
                CALL  FPTUN 
      D☼ 1  I=1,N 
   1   D = A(I)*X(I) + D 
 C    REST☼RE THE STANDARD M☼DE,      (13 MICR☼SEC.) 
                CALL  FPTST 
      R = 0.0 – RND(D) 

 

     The last statement rounds  D  to single precision, changes  

sign, and adds zero before storing the result in  R .  If the 

rounded value of  D  is a nonzero unnormalized number, then the 

normalization that always follows addition will cause an underflow 

which, in the Standard Mode, will set  R = 0.0  and UNFL☼W = .TRUE. . 

But if  RND(D)  is a normalized number then adding zero will not 

change anything.  Consequently,  R  is correct as it stands, 

despite the possible underflows of intermediate results, with the  

following exceptions: 

    - If ☼VFLOW or UNFL☼W  is  .TRUE. ,  R  is wrong. 

    - If severe cancellation has taken place in statement 1, 

      R  may be badly contaminated by double-precision truncation 

      errors.  This possibility is independent of over/underflow, 

      and is irrelevant if  B, A and X  are each uncertain by a 

      unit in their respective last places. 

    - If  R = 0.0  then it may be further contaminated by an 

      error of 2-156  , although this is irrelevant if  B  is 

      non zero and uncertain by a unit in its last place.  But 
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       if  B = 0.0  then all the products   A(I)*X(I)  might have 

       underflowed to zero silently. 

There are very few applications where any but the first exception  

is relevant, and that one is caught by the system.  The absence 

of over/underflow tests in the inner loop permits calculations in 

the normal range to proceed with no noticeable loss of speed. 

     The Unnormalized Modes may be used in single precision, 

double precision and complex arithmetic at the cost of 42 micro- 

seconds per underflow.  These modes would be much more useful on 

a 7094 but for a quirk in the hardware which forces the “normalized” 

product of two nonzero unnormalized numbers to be zero on certain 

occasions.  The Unnormalized Modes are best suited to those 

machines, like the Burroughs B5500, which handle unnormalized  

operands without serious anomalies.  But, because of the peculiar 

behaviour of our machine, the Unnormalized Modes are so beset by 

restrictions (for which see the PRM) that the author and a few of 

his students are perhaps the only programmers who use them.  We 

find them valuable for computations with matrices, power series, 

and numerical quadrature. 
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The Counting Mode 

     This mode deals with over/underflow in a way which permits 

programmers to save all the significant digits which are lost by 

the other modes, and is specially useful for evaluating expressions 

like 

                       q =  ∏1
N (ai+bi)/(ci+di) 

when  q  is likely to be a reasonable number even though its partial 

products and quotients are afflicted with over/underflow.  The 

execution of 

                       CALL  FPTCT(J)       , 

where  J  is the name of an integer variable, switches  .FPTRP  in 

14 microseconds to the Counting Mode and designates cell  J  to act 

as a leftward extension for the 8-bit characteristics of the AC 

and MQ registers.  Henceforth, over/underflows are counted in  J . 

Whenever an arithmetic operation overflows, its result is divided by 

2256  and  J  is increased by  1 . Whenever an arithmetic operation 

underflows, its result is multiplied by  2256  and  J  is decreased 

by  1 . 

     For example, the FORTRAN  statements 

                      CALL  FPTCT(J) 

                      J = 0 

                      X = (A+B)*(C+D)*(E/F)/G 

produce a pair  (J,X) whose values really satisfy 

                      (A+B)(C+D)(E/F)/G = 2256J X     . 

In effect, the missing binary digits in  X's  characteristic have 

been added to  J  while  X's  other significant binary digits have 

remained unchanged. 
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     FORTRAN programmers who use the Counting Mode must be reasonably 

familiar with the workings of the compiler so that they will not try 

to evaluate expressions like 

             A/(B+C)    nor    A*B+C    nor A**B 

in one FORTRAN statement. 

    The following example shows how the Counting Mode is used to 

evaluate 

                       q =  ∏1
N (ai+bi)/(ci+di) 

for large  N  with no over/underflow tests inside the  D☼  loops, 

although each over/underflow does cost 35 microseconds. 

 

   J = 0               Initialize Over/Underflow Counter 
   PAB = 1.                       Numerator, and 
   PCD = 1.                       Denominator. 
   CALL  FPTCT(J)      Switch to Counting Mode. 
    D☼ 1  I = 1,N                        Compute Denominator using 
1    PCD=RND(PCD*RND(C(I)+D(I)))         Rounded Arithmetic 
    IF(PCD .EQ. 0.0) G☼ T☼ 3          ...because Numerator vanished. 
    J = -J                               Reverse meaning of Counter  . 
    D☼ 2  I=1,N 
2    PAB=RND(PAB*RND(A(I)+B(I)))         Compute Numerator 
    Q = PAB/PCD 
    CALL  FPTST       Switch back to Standard Mode  . 
  IF (Q .EQ. 0.0)     J=0              ...because Numerator vanished. 
  IF (J)  4, 5, 3 
3  ...Q has Overflowed, because  J > 0 or Denominator = 0   . 
        ... 
4  ...Q has Underflowed, because J < 0  . 
        ... 
5  ...Q is correct as it stands, because  J = 0  .  
        ... 
 
    Whatever value  J  may have, and provided the denominator  PCD 

is non zero, the stored value  Q  is related to the desired value 

q  by                                     

                       q =  2256J Q         . 
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    The Counting Mode works for both single and double precision 

arithmetic, and is indispensable for computing determinants and 

certain ratios of factorials, but I have not yet figured out how to 

make a Complex Counting Mode work with comparable elegance on our 

machine.  However, the next example is one where our Counting  

Mode is useful in a complex arithmetic calculation. 

     Suppose the complex array  Z(I)  is given and we seek  K  such 

that 

                CABS(Z(K))  =   max1≤I≤N  CABS(Z(I))          . 

(Here  CABS(Z) = |Z|  in FORTRAN IV.)  To avoid the square roots, 

we may prefer to calculate only squared magnitudes, thereby 

exploiting the equivalence between the statements  

                  |a + ib| > |u + iv|                    (i) 

and 

                   a2 + b2 > u2+ v2                       (ii) 

 

But the squared magnitudes may over/underflow despite that the 

magnitudes  |a + ib|  and  |u + iv|  are well within the machine's 

range.  The following program exploits the equivalence between  (ii) 

above and 

                  (a-u)(a+u) > (v-b)(v+b)                (iii) 

and then copes with over/underflows via the Counting Mode.  N   

is assumed to exceed  1 . 
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     C☼MPLEX  Z(...), C, W 
      DIMENSI☼N  ABC(2), UVW(2) 
      EQUIVALENCE (C,ABC,A), (B,ABC(2)), (W,UVW,U), (V,UVW(2)) 
C     This EQUIVALENCE makes  c=a+ib  and  w=u+iv   . 
     CALL FPTCT(J) 
     K=1                          Initialize current maximum. 
     C=Z(1) 
     D☼ 5  I=2,N 
      J=0 
      W=Z(1) 
      XL = (A-U)*(A+U) 
      J= -J 
      XR = (V-B)*(V+B) 
      IF(XR .EQ. 0. .☼R. XL .EQ. 0.)  G☼ T☼ 3 
      IF(J) 2, 3, 1 
C       J>0 means |XR|  should exceed |XL|, so ignore  XL . 
  1     IF(XR) 5, 5, 4 
C       J<0 means |XL| should exceed  |XR|, so ignore  XR . 
  2     IF(XL) 4, 5, 5  
C     J=0 means  XL  and XR  are directly comparable. 
  3   IF(XL .GE. XR) G☼ T☼ 5 
  4    K=I                  Update current maximum whenever 
       C=W                         W > C  . 
  5   C☼NTINUE 
     CALL FPTST 

 

     Now  C = Z(K)  is the largest in magnitude of the values  Z(I) . 

Some minor refinements can be introduced to reduce the influence  

of roundoff in critical cases of near equality, but they do not 

change the relative speed and simplicity exhibited by this program 

when compared with alternatives. (For more details, see our library 

program  CMAXA  in the PRM.) 

     An attempt was made to extend the idea of FPTCT to cope with 

integer overflows;  i.e.  we wanted to allow the FORTRAN programmer  

to designate a cell which would act as a leftward extension of the  
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integer accumulator in the same way as  J  in FPTCT(J)  acts as a  

leftward extension of the floating point accumulator's characteristic. 

However, this scheme would first have required certain modifications 

to the 7094 to permit trapping on fixed point overflow, and then the 

FORTRAN IV compiler would have had to be extensively rewritten.  A 

frustrating feature of the present compiler is that it renders 

certain integer overflows undetectable!  Consequently,  FORTRAN 

programs which manipulate large integers are very much complicated 

by the need for frequent overflow tests in advance of arithmetic 

operations.
*
  The same complication afflicts  ALGOL  and any other 

programming language I know; it is the price we must pay for a lapse  

in communication among the architects, implementers and users of a     

programming language. 

     A similar lapse has frustrated attempts so far to implement the  

Unnormalized and Counting Modes upon some other machines. The B5500 

discards one of the digits in the characteristic of an over/under- 

flowed result, thereby preventing any analysis from determining 

whether the result over/underflowed by a little or by a lot. The  

IBM 360 series wantonly destroys everything, including the sign of an 

overflowed result.
‡
  The CDC 6600 has its own fixed ideas about over/ 

underflow.  The tendency of other high-performance machines, like 

the IBM 360/91, to suffer from imprecise interrupts implies that 

those machines will have to deal with over/underflow entirely in 

their hardware.  This in turn implies that their treatment of over/ 

underflow will be intolerable unless numerical analysts act soon to 

lay down reasonable guidelines for machine designers to follow.  

 

_____________________________________________________________________________ 

*
These overflows can cause embarrassment if they are ignored; see R. Korfhage, 

 Bulletin Amer. Math. Soc. 70 (1964), pp.341-2, and the retraction on p.747. 
 
‡
In Feb.1967, IBM undertook to remedy these and other of the less attractive 

 aspects of the 360's floating point hardware. There have been significant   
 improvements. See IBM's Form A22-6821-7, and an article by A. Padegs in  
 IBM's System Journal 7 (1968) pp. 22-29.  
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Improper Divisions 
 
     On a 7094 with divide-check-trap hardware, improper divisions 

do not turn on the divide-check indicator.  Instead they trap to                             

.FPTRP  which, in our system, responds as illustrated below. 

1.0/0.0 = 1.7014 x 1038  and Overflow occurs. 

     Any floating point division (single precision, double precision, 

     or complex) of a non zero number by zero is treated as a 

     quotient overflow and sets  ☼VFL☼W = .TRUE.  .  No provision 

     has been made to distinguish such divisions by zero from other 

     quotient overflows (except in the Counting Mode, where a message  

     can be produced) because both events almost always have the 

     same causes and consequences.  Besides, the programmer can easily 

     (and should) test directly whether a divisor is zero or not. 

     Each division by zero consumes more than thrice as much time 

     as any other overflow. 

1/0 = Kickoff unless otherwise has been requested. 

     Fixed point integer division by zero is almost certainly a 

     drastic error in a FORTRAN program.  In ALGOL the issue might 

     not be so clear. 

0.0/0.0 = Kickoff unless otherwise has been requested. 

     Floating point division of zero by zero is a symptom of a 

     serious flaw in the analysis behind a program. 

Unnormalized Division may kick off unless otherwise has been requested. 

     Floating point division by an unnormalized number causes a 

     trap (unless the quotient produced by the hardware happens to 

     be correct).  This is a symptom of certain programming errors  

     like  
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           reference to a variable whose value has not previously been set, 

           AL☼G(3)  instead of  AL☼G(3.0)  , 

           a forgotten  EQUIVALENCE  (A,I) , 

           reference to  A(13)  when DIMENSI☼N A(6) ,  or 

           a significant underflow in an Unnormalized Mode. 

     After the new .FPTRP  was installed, failures began to show 

up in programs which had previously been allowed to proceed silently 

with a zero quotient for each improper division.  A few programmers 

protested that they liked the old ways better, but they seem to 

represent a lunatic fringe among programmers as a whole.  The author 

is under the impression that the new  .FPTRP's  treatment of improper 

divisions is more widely appreciated than all his other works put 

together; actually the credit should be shared with  R. Jones  and 

J. Bell, who found a way to simulate the divide-check-trap hardware 

on a 7094 without that equipment. (The equipment is soon to be 

installed, and with it will come some system simplification.) 

    However, the most important contribution made by the new 

.FPTRP  is that a programmer who has to cope with a complicated 

numerical problem can still write whatever program first comes into 

his mind, just as he did before.  And now he will rest assured that, 

should his algorithm be frustrated by over/underflow, he will find 

out what happened and, perhaps, be able to cope with his difficulty 

by simply re-coding a small part of his program instead of 

laboriously devising a deeper mathematical analysis of his problem. 

The new  .FPTRP  strengthens the programmer's most valuable tool, 

hindsight. 
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Simulated Over/Underflow in Library Programs 

     The concept of over/underflow is normally associated with the 

elementary arithmetic operations, but it takes no imagination to 

extend the concept from simple functions of  X  like 

                  A+X , A*X , A/X , X**2 

to more complicated functions like 

                  L☼G(X) ,  EXP(X) ,  C☼T(X) ,  ...   . 

In general, it seems reasonable to associate overflow with the  

following behaviour: 

            as  x → xo (xo may be  ± ∞), f(x)→ ± ∞  . 
  e.g.      as  x → 0+  ,   log(x)→ -∞ ; 
            as  x → +∞ ,    exp(x)→ +∞ . 
And underflow might just as reasonably be associated with this 

behaviour: 

            as  x → ± ∞ , f(x) → 0 . 
  e.g.      as  x → - ∞ , exp(x) → 0 . 
But we should not like to associate underflow with the value 

log(1) = 0 .  In other words, underflow occurs only when the value of 

the function  f(x)  is not zero though closer to zero than the 

underflow threshold. 

     Here are some examples to illustrate how our functions behave 

in FORTRAN: 

     L☼G(0.0)        ≈  -1.7014 E38  and  ☼VFL☼W  is set 

     C☼T(±0.0)       ≈  ±1.7014           ☼VFL☼W                 

     EXP(3000.)      ≈   1.7014 E38       ☼VFL☼W 

     EXP(-3000.)     =   0.0              UNFL☼W 

     (±0.0)**(-3.0)  ≈  ±1.7014 E38       ☼VFL☼W 

     0.0**(-3.0)     ≈   1.7014 E38       ☼VFL☼W 

     (-100.)**(-25)  =  -0.0              UNFL☼W 
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    The last example is interesting because the IBM program signals 

overflow during the computation; we avoid overflow by computing 

(1./100)**25  instead of  1./(100.**25) .  The previous two examples 

should not be confused with  (integer) 

                   0**(-3) = Kickoff ,  code 25  ; 

the distinction is consistent with the rules for improper divisions. 

Finally, no underflows occur when  L☼G(1.0) = 0.0  or when 

SINPI(X) = sin πX  vanishes for integer values of  X . 
     I have rewritten several of the elementary function subprograms 

in the  IBLIB  library to ensure that their over/underflow behaviour 

is consonant with the foregoing.  When necessary, over/underflow is 

simulated; this merely means that a transfer to  .FPTRP  is forced 

in such a way that the  FPT  indicator word (cell 0) contains just 

the information needed for the desired message from  .FPTRP .  The  

simplest way to do this in a FORTRAN program is to square a very 

large or very small number.  Of course,  .FPTRP  must be operating 

in one of its Standard Modes to allow such simulated over/underflows 

to produce their intended effects.  If the Printing Mode is in use, 

as it should be while a program is being debugged, then the error- 

trace points to the function which caused the apparent over/underflow; 

otherwise the post-execution message may sometimes identify that 

function.  As far as I can see, no vital information is lost by 

thus failing to discriminate between the simulated over/underflows 

and the others.  The user's view of the library programs becomes less 

cluttered by their various demands for valid arguments.  And the 

system gains several storage locations vacated by superfluous 

messages. 

     However, some programmers claim that one desirable capability 

has been lost.  For example, they would prefer to be able to write 
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                      CALL KIK☼PT (9,0) 

in their main program whenever they want references to  L☼G(X)  in 

all their subprograms to cause kickoff when  X = 0.0  . My scheme 

requires that each appearance of  L☼G(X)  be preceded by something  

like 

        IF (X .EQ. 0.0)  CALL UNCLE(9,18H L☼G(X=0.0) ERR☼R )    . 

I think that programs written the second way are easier to read and 

to debug; but anyone who wants to live dangerously can easily change 

the library programs to suit himself because their listings are 

usually amply supplied with comments. 

     A more penetrating criticism of my scheme is that it denies too 

many users the valuable education obtained by reading certain IBM 

diagnostics.  For example, increasingly many of our users have too 

little familiarity with the rate of growth of  exp(x)  to appreciate 

that  exp(88.0297)  exceeds the overflow threshold.  Our university 

used to include a professor whose first assignment to freshman 

physics students was to plot a graph of  exp(x)  for 0 < x < 10 . 

His attitude might well serve as an example for the socially acceptable 

computer systems of the near future. 

     The extension of a comprehensive treatment of over/underflow 

over the entire library of numerical subprograms is an enormous task 

prodigiously demanding of attention to detail.  Here is a simple  

example of a typical detail.  The  CABS  function computes the 

absolute value of a  complex variable using the formulae 

     |a + ib| = |a|√(1 + (b/a)2)   if  |a| > |b|   
              = |b|√(1 + (a/b)2)   if  |b| ≥ |a|   . 
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For simplicity assume the former case.  Then underflow will occur 

during the computation of  1 + (b/a)2  whenever  (b/a)2  is nonzero   

but smaller than the underflow threshold.  This underflow is 

irrelevant, so our  CABS  program suppresses it.  Had the program 

been written in FORTRAN the suppression would have been accomplished 

by computing  1 + (b/a)2  in the Unnormalized Mode.  Similar but 

more complicated considerations affect the division of one complex 

number by another. 

     The task of taming over/underflow in the library is not yet 

completed; there are several relatively rarely used programs that 

remain to be revised.  Is this project worth its price?  Who should 

say?  Our users can no longer offer a qualified opinion because 

so few of them are now aware of the issues, and even those few hardly 

ever have trouble dealing with over/underflow nowadays. 
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Addendum  (June 1968) 

 

      Currently machines are being produced which exploit 

parallelism and pipeline principles to achieve extremely high  

processing speeds,  but at the cost of what are called 

“imprecise interrupts”.  The problem is illustrated by the  

following sequence of FORTRAN code. 

 

        ... 

 7    A = ... 

 8    B = C*D/E 

 9    IF (☼VFL☼W) G☼ T☼  999  

10    I = I + 1 

11    F = (A+G)/B 

        ... 

 

A typical sequence of events in the computer's central processing 

units will be described on the assumption that none of the 

variables  A, B, C, D, E, F, G, I  or  ☼VFL☼W  share storage by virtue 

of an EQUIVALENCE statement.  

      After instructions for statement 8 have been fetched, and     

      while the value intended for  A  is being computed, 

      C  is fetched (from storage), 

      D  is fetched, 

      the value of  A  is delivered ready for storing, 

      instructions for statement  9  are fetched, 

      multiplication of  C*D  is initiated, 

      A  is stored, 

      E  is fetched, 

      ☼VFL☼W  is fetched, 

      ☼VFL☼W  is tested and found to be  .FALSE. , 

      instructions for statement  10  are fetched, 

      I  is fetched, 

      the product  C*D  is delivered ready for use. 
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If  C*D  has overflowed,  a flag is set now to recoed the event; 

if the overflow is going to be allowed to interrupt the system, 

another flag is set to inhibit any further fetches of instructions. 

The value of  C*D  is replaced by something else and processing 

contimues. 

      The division  (C*D)/E  is initiated, 

      1  is fetched, 

      the sum  I+1  is formed in a fast integer adder, 

      instructions for statement  11  are fetched  (unless a flag is set), 

      I = I+1  is stored, 

      A  is fetched  (unless ...), 

      G  is fetched  (unless ...), 

      the floating addition of  (A+G)  is initiated  (unless ...) 

      fetching  B  is inhibited by instructions held over from statement  8 , 

      the quotient  (C*D)/E  becomes ready for storage into  B   
                    and use in statement  11 . 

This is the earliest point at which overflow in  C*D  can 

suspend the normal sequence of execution without leaving fragments  

of partially executed instructions circulating in the central 

processor;  but the time is too late because instruction  9  has been 

passed. 
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       The foregoing sequence gives only a rough illustration 

of the problem because details of machine design vary 

considerably from model to model.  Among the machines which 

suffer from some form of imprecise interrupt (at this date) are 

the CDC 6600 and 7600, the IBM 360/91, and the Burroughs B 8500. 

Over/underflows on these machines are dealt with by their 

hardware in a manner similar to our Standard Silent Mode.  A 

program's every attempt to deal with over/underflow more 

flexibly is frustrated by the hardware.  For example, there is 

no easy way to tell whether a computation has overflowed only 

slightly or by a lot;  there is no easy way to distinguish  

between important and unimportant underflows as we do in the  

Unnormalized Modes;  division by zero is always treated as a 

disaster. 

      There seems to be no way to improve these machines' 

treatment of arithmetic exceptions that does not involve 

substantial changes to the hardware.  We shall offer here two 

suggestions which confine the changes to the floating point 

part of the central processor. 

      One possibility is to micro-program facilities comparable 

to our five Modes into the hardware.  Such a micro-program does 

not have to run at the same high speed as the rest of the  

hardware because a modest loss of speed on rare occasions is 

inconsequential. 
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       A second possibility is to lengthen the central 

processor's registers so that they may hold numbers lying 

beyond the range normally held in storage, thereby permitting 

expressions of modest complexity to be evaluated correctly 

despite what might otherwise be over/underflow in sub- 

expressions.  Consequently, over/underflow need occur only when 

information is lost by an attempt either to store a number 

that cannot be fitted into storage, or to push the contents 

of a register beyond its extended range. 

          Both possibilities are complicated, but not as 

complicated as the lengths to which programmers will occasionally 

be forced to go to deal with arithmetic exceptions on those 

machines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Samples of Library Program Write-Ups from 

The PROGRAMMERS' REFERENCE MANUAL, 

3rd edition,  Aug. 1967, 

Univ. of Toronto, Institute of Computer Science. 

(Extracted for a Summer Course at the Univ. of Michigan,  
June 17-21, l968.} 

 

 

       The following FORTRAN functions are described herein: 

       A**B  ,   DP**DQ  ,   CABS  ,   COS/SIN  ,   COSPI/SINPI  , 

       Complex arithmetic  ,   CSQRT  ,   DQBRT  ,   DSQRT  ,   EXP  , 

       TWOXP  ,   (Variable)**(Integer)  ,   LOG  ,   LOG 10  , 

       LOG 2  ,   Max/min over arrays,   QBRT  ,   SQRT  . 

       These have been coded to run under an ICS-modified version 

of IBM's IBSYS v.13 on the 7094-II.  They differ from programs 

supplied by IBM mainly in two respects:  

i)    All programs conform to the ICS conventions concerning 

over/underflow,  contentious values like 0**0 ,  and 

diagnostic options and messages. 

ii)   All claims to accuracy have been proved mathematically by 

the programmer;  this provides no guarantee of accuracy 

since proofs are as vulnerable to error as are programs. 

Also every program has been tested for accuracy and speed 

on tens of thousands of sample arguments, including 

critical values appropriate to the function and to the 

program under test.  No claim has been refuted by any 

test.  For five years, every user of IBM's Fortran IV on 

the ICS's machine has used these functions instead of IBM's; 

 

            nobody has complained yet (June 1968).  

 

 

 

 

 



 

 

                                                             2. 
 
       The programs described herein are some of the latest 
versions of programs written in 1962-3 for a 7090 at the 
Univ. of Toronto to replace the appalling FORTRAN functions 
supplied by IBM at that time.  Meanwhile IBM's elementary 
FORTRAN functions have improved considerably, and now two 
excellent collections of programs are distributed with 
IBSYS v.13 for the 7090/7094 and with FORTRAN IV  (E.G.H.) 
for System/360.  These programs were produced at the 
University of Chicago chiefly by  Mr. Hirondo Kuki, whose 
work is described in 
 
-    “MATHEMATICAL FUNCTIONS”, a description of the Univ. 
of Chicago Computation Center's 7094 Math. Function 
Library, by  H. Kuki,  with a foreward by  C.C.J. 
Roothan, Feb. 1966. 
 
IBM 7090/7094 IBSYS v.13 IBJOB Processor manual, 
appendix H; Form C28-6389 (Mar. 1966). 
 
IBM System/360 FORTRAN IV Library Subprogram; Form 
C28-6596-2 (1966). 
 
“Performance Statistics of the FORTRAN IV (H) Library 
for the IBM System/360” by  N.A. Clark,  W.J. Cody, 
K.E. Hillstrom  and  E.A. Thieleker, Argonne Nat'l Lab. 
Report ANL-7321, May 1967. 
 
The last report, plus additional work by  W.J. Cody  at Argonne 
and by  L.R. Turner  at NASA's Lewis Res. Center, showed that 
Kuki's  programs for /360 were not as accurate as the best 
comparable programs on some other machines.  Most of the 
trouble was attributable to oversights in the design of /360's 
floating point hardware which  Kuki  had recognized in 1964.  He 
worked self-effacingly on a SHARE committee which, in 1966-67, 
persuaded IBM to remedy most of these oversights; the fruits 
of that effort appear among the differences between releases 
-6 and -7 of  “IBM System/360 Principles of Operation” Form 
A22-6821 (1967-68).  He has now improved his /360 programs, 
taking advantage of better hardware and better algorithms 
described in forthcoming releases of C28-6596, to the point 
where the rest of the computing industry will do well if it 
can match his example. 

      The ICS programs described herein perform better (though 

seldom by much) than comparable programs for the 7094 

distributed by IBM;  this is as it should be because the ICS  

versions were produced for a purpose that cannot be justified 

commercially – to approach perfection.   The design priorities 

were these: 
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i)    Performance will be judged solely by what has been proved 

      mathematically taking roundoff, over/underflow and all 

      other aspects of the 7094-II into account.  The tests 

      are intended to check the proof, not the program; the 

      proof is wrong except perhaps when the program's tests 

      turn out just slightly better than predicted 

ii)   Freedom from exceptions is valued most highly, Accuracy 

      second, Speed third, Storage economy fourth. 

 

      A mathematical model exists which is worth keeping in 

mind when appraising any program.  Let  F(X)  be the numerical 

value stored by a program intended to compute  f(x) .  In 

general, the best that can be proved is a relation 

                      F(X) = (1+ε) f((1+δ)X) 

in which  ε  and  δ  represent errors for which we seek the  
smallest possible bounds.  Some trade-off is possible between 

ε  and  δ  insofar as the bound upon one may be reduced at 
the expense of increasing the other's.  The simplest and most 

desirable case is that when  δ ≡ 0 , so that  ε  can be 
regarded as “the” error in  F(X) = (1+ε) f(X) .  However,  
there are occasions when  δ  cannot be suppressed;  see the  
write-ups for COS/SIN.  Occasionally  δ  can be suppressed 
only at an intolerable cost;  see DP**DQ . 
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     We have attempted to keep  δ = 0  and to keep  ε  well  
below  1 ulp  (unit in the last place stored).  We have also 

attempted to preserve familiar properties of  f(x)  like 

monotonicity, symmetry, simple identities and well-known 

special values as far as possible in the computed approximation 

F(X) .  Examples are   

     SQRT(X**2) = ABS(X)  , 

     SIN(X)**2 + COS(X)**2 = 1.0  within  3  ulp  , 

     LOG(X)/(X-1.) → 1.0  within  3 ulp  as  X → 1.0 , 
     SIN(X)/X ≤ 1.0 ,   ...  .   
Our motives for these attempts have been echoed recently by  

H. Kuki in a memorandum  “Comments on the ANL evaluation  

[ANL-7321 by Clark, Cody et al.] of OS/360 FORTRAN Math Library”  

wherein he says on p.4 

     “a.  It is the strictest accuracy requirement for 
          subroutines one can conceive. 

      b.  Therefore it gives the simplest goal for  
          programmers to aim at so far as accuracy is 
          concerned.  

      c.  In some computations (e.g. integral arguments, 
          assuming all prior computations went 
          meticulously well) where there is no error in 
          the argument, the benefit is real. 

      d.  It is simpler to explain to the users. 

Of these reasons, it seems to me the last is most important.  
After all, coding a subroutine is only half the work, and the 
remaining half consists of informing the users what exactly  
the subroutine accomplishes. 
          ... 
... but it may cost diamond where mere glass may do...” 

 

     To help appraise the costs, here are some characteristics 

of the IBM 7094-II: 

Storage:  32678 words,  36 bits each,  1.4 µsec cycle,  2-way 
           interleave. 
 
Speed:  Most instructions take one word and 2.8 µsec.  Single 
      precision floating point operations take about  4.2 µsec. 
      to add,  5.6 to multiply,  8.4 to divide;  
      double precision takes about twice as long.  
 
Single precision:  27 significant bits;  1 ulp  is a 
      relative error between  .7510

-8  and  1.510
-8   . 

Double precision:  54 bits, of which the last two or three are 
      smeared by double precision multiplication and division. 
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      To prove mathematically that our programs perform at 

least as well as is claimed may at first appear to be a 

formidable task, especially when the error is claimed to be 

so small;  e.g. 

       < .50000163  ulp     for     SQRT and complex arithmetic  

         .52                        LOG  and  QBRT 

         .77                        EXP  

         .854                       CABS 

        1.0                         COSPI, SINPI, DSQRT, DQBRT. 

The proofs were carried out in 1962-5 via lengthy computations 

with both decimal and octal desk calculations.  Nowadays most 

of the proofs would be regarded as routine applications of 

high-precision  Interval Arithmetic.  Here is an example. 

      Nominally, if  2-14 ≤ |f| ≤ ½ , 

      SINPI(f/2) ≡  (((s3f2 + s2)f2 + s1)f2 + π/2)f   
for certain constants  si ;    actually the machine generates 

                              f2 ≡ f2(1+ε1)   , 

SINPI(f/2) ≡ (((s3f2(1+ε2) + s2)(1+ε3)f2(1+ε4) + s1)(1+ε5)f2(1+ε6) +  

                         + (1-δ)π/2)(1+ε7)f(1+ε8)        
where each  εi  represents a rounding error committed after an 
addition or multiplication, and  δ  is the error committed by 
truncating  π/2  to  27  bits.  We wish to compare  SINPI(f/2)  
with  sin(πf/2) = f(π/2 + Σ16 σif2i + ε9σ7 f14)  , 
where  σi = (suitable constant)  and  ε9 = ε9(f) ∈  ]0, 1[   , 

taking into account the fact that each  εi  and  δ  is bounded 
in a way that can be inferred rigorously from the published 

characteristics of the  7094.   
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The comparison is effected first by rearranging the symbolic expression  

for  

             (SINPI(f/2) – sin(πf/2))/sin(πf/2)  
in a way which achieves as much symbolic cancellation as possible, 

second by computing appropriately precise interval approximations 

for the constants  σi   and  π/2  (the  si  are taken precisely 
out of the program  SINPI), and third by using interval  

arithmetic to overestimate the range of values taken by the 

expression as all  εi   and   δ  vary independently over their 
ranges. 

 

      In general, given any function  f(x)  ,  ingenuity may be 

needed to choose a good formula for approximating  f(x) , 

find best values for constants, write an efficient program 

F(X) , and to rearrange  F(X) – f(X)  symbolically in a way 

suitable for  Interval Analysis,  but the rest is routine. 

 

 

 

 

 

                                W. Kahan 
                                Univ. of Toronto 
                                June 1968     
                                                                                                                


