File: 7094l11.doc Version dated 11 July 2010

7094-11 SYSTEM SUPPORT FOR NUMERI CAL ANALYSI S

W Kahan
Department of Conputer Science
Uni versity of Toronto

Draft of first half: August 1966
Wth corrections to June, 1968

Retyped in 2010 for this file by S. K Kahan from
| BM SHARE Secretarial Distribution SSD #159 Item C 4537 (1966)
pl us an extract from
“Error in Numerical Conputation”,
Univ. of Mch. Eng'g Sumer Conf'ce #6818,
Nunerical Analysis (1968)

7094-11 System Support For Nunmerical Analysis

W Kahan, University of Toronto
Abst r act

This is the first half of a progress report on the author's
efforts to inprove the performance of IBSYS in the follow ng areas
of FORTRAN progranm ng:

1. Error-traces and diagnostic nessages to | ocate and explain
flaws found whil e executing FORTRAN prograns.
2. Post-nortemfacilities via the FORTRAN |V st at ement
IF (KICKED (OFF))
3. A consistent, sane and flexible treatment of over/underfl ow
and rel ated phenonena.
4. Digit manipulation (like rounding) via FORTRAN built-in functions.
The eradi cation of anonalies in the conpiler (IBFTC) and
the FORTRAN |ibrary (IBLIB)
6. The expansi on of the FORTRAN library to include reliable
and conveni ent subprogranms for the solution of standard
nunerical problems |ike systenms of |inear equations,
pol ynom al equati ons,
ei genpr obl ens,
m ni max appr oxi mati on,
fitting data by |east squares,
systenms of ordinary differential equations,
etc.

Itens 1 to 5 are herein regarded as essential prerequisites to the
acconpl i shnment of item6 in such a way that users of these subprograns
need not supplenent their own competency in mathematics, science,
engi neering or the humanities by a hyperfine proficiency at both nunerica

anal ysis and the debuggi ng of systenms prograns. Each of the six

areas will be discussed in a correspondi ngly nunbered section of
this report, which begins by introducing the notivations for and
the constraints upon the author's efforts. Sections 1 to 3 follow

section 4 to 6 will be issued separately |ater

Sections 1 to 3 are intended to denonstrate in detail the
validity of the author's rationale for treating unschedul ed
events during a conmputation. The reader who is unfamliar with
I BSYS and IBM s 7094 is asked to persevere; that rationale would
work on his machine too if it were designed right.

I ntroducti on

For as long as el ectronic conputers have been in use (since 1949
at the University of Toronto), there has existed a steadfast policy
to widen the range of intellectual disciplines that m ght benefit
fromthe nachine. That policy is partly responsible for a decline
in the nunmerical sophistication of users, a decline which has yet to be
conpensat ed by an increased sophistication in the programs they can use.
Despite intensive attenpts to educate themin the arts of conputation
too many new users attribute to the numerical |ibrary subprograns the
infallibility of a mathematical proof. They shall be disillusioned.
To what extent can their disillusionment be witten off as part of
their education? To what extent can their dissatisfaction be traced
to shoddy computing systems? There is roomfor inprovenent in both
the quality of education and the quality of computer performance. But
you cannot teach an old dog new tricks, and you cannot teach a new
dog very nmuch. Therefore the bulk of the inprovenment nust and can

cone in the performance of conputer systens.

The performance of IBMs IBSYS on the 7094-11 has left a lot of
room for inprovement. The inprovenents |isted here were notivated
al nost entirely by the inadequaci es uncovered during the author's
researches into nunerical nethods. The object of the researches was
to produce working prograns about which m ght be proved sonething
sinmpl e and useful to a numerically unsophisticated but otherw se
intelligent and educated user. As a by-product of these researches,

the foll owi ng vague generalities have energed:

-Conput ati on costs nmost when its result is not known to be
right nor wong, because it costs so much to find out what is
wong and why. Costs can be cut by a small anmpunt of self-
doubt applied early.

-\Whet her or not the purpose of conputing be “insight”, its
nost dependabl e benefit is hindsight. Programrers dislike
forgoing this benefit through | ack of foresight.

-Errors, anonalies and arbitrary restrictions hurt nbst when

they are too rare to remenber but not rare enough to ignore.

These generalities have influenced the many deci si ons on questions
of detail which arose during the work on the system A nore decisive
i nfl uence was exerted by three constraints.
First, it was deemed essential that progranms be capabl e of
conversion to whatever machine mght replace the 7094-11, and so it
was decided that all nunerical subprograns be witten in a | anguage
i ke FORTRAN or ALGOL, except where efficient coding was so obviously

machi ne dependent that the assenbly | anguage MAP was used. | chose
FORTRAN 1V in preference to ALGOL. | would rather fight than
switch. | amstill fighting with the |atest version (13) of the

| BFTC conpiler to incorporate all the nodifications which | had
i ntroduced into the previous version, and further nodifications to correct
new y di scovered deficiencies.

Second, since no one had anticipated a need to rewite |BSYS
or IBFTCin its entirety, no resources were allocated for such a
task. Therefore, IBSYS and | BFTC have been nodified as little as
possi bl e, instead of being replaced. The nodifications have cost about
three man-years of work all told, rmuch of which has been
di ssipated in the transfer of the nodifications fromversion 12 to
version 13 of |BSYS.

Third, but nopst inportant, is our decision that the Toronto
versi on of |IBSYS remain conpatible with the standard | BM | BSYS.
Consequently, any FORTRAN IV program even if it be in the form of
a binary object-program deck, which has been designed for and runs
correctly on a 7094 under standard IBMIBSYS with a hundred or so storage
| ocations to spare, runs at |east as well under our nodified system
If the program be reconpiled with no other nodification, then the
user may benefit from our inproved diagnostics, especially where
di vision by zero is concerned. Mst of the users of our 7094-1
are unaware of any departure fromstandard. But prograns which run
wel | on our system sonetines fail nysteriously at other 7094
installations.

In this report an attenpt will be made to discrininate between
| BM s standard | BSYS and our nodified IBSYS by referring to theirs
in the past tense whenever it differs fromours. Further details
about IBM s IBSYS can be obtained fromtheir manuals:

C28- 6248 (1 BSYS noni tor)
C28- 6389 (1BJOB; | oader and library)
C28- 6390 (1 BFTC FORTRAN conpi |l er)

Further details about our nodified systemcan be found in
“The Programrers' Reference Manual” 3rd ed.
obt ai nabl e from
The Secretary, Institute of Conputer Science,
Uni versity of Toronto,
Toronto 5, Ontario,
Canada
and henceforth referred to as the PRM Programlistings are obtainable

too if requested by nane.

Acknowl edgenent

The author is deeply grateful for the patient assistance
rendered by several |BM personnel, both in Toronto and el sewhere,
who went out of their way, and sonmetines out on a linmb, to help with
this work. Particular thanks go to J. Leppik, G Howard and J. Bel
for their help with the nonitor, the conmpiler and the revi sed SAVE
pseudo-op. Thanks go as well to colleagues in the Departnent and
in the Institute of Conputer Science for their encouragement over
several years, and for their help with policy decisions about
ki ck-of f and di agnosti c procedures.

Sone of the work reported here was supported by the Nationa
Research Council of Canada

1. Error-traces and Di agnosti c Messages

It may seem peculiar that a Numerical Analyst be preoccupied
with the System Programrer's traditional responsibility for error-
traces, diagnostics and post-morteminformation. But |et us watch
the Nunerical Analyst at work. Mich of his conputer tine is
di ssi pated by the diagnostics and post-nortens which he receives
while trying to discover why his algorithm do not work as well
as he had hoped. Fromtine to tine he hands one of his subprograns
on to some other user nunerically | ess sophisticated than hinself,
and in so doing he tacitly shares with the Systens Progranmers sone
responsibility for issuing diagnostics. H s program may produce
di agnosti c messages for different reasons than nmerely to signa
its own collapse. Diagnhostics nmay be the only “correct” answers
that the program can deliver in response to problens outside the
i ntended domain of its applicability, especially when the programs
domai n cannot easily be defined other than by attenpting to execute
the program For exanple, a hopelessly ill conditioned |inear system

Ax = b

is most easily identified when a sound |inear-equation-solver fails
to solve the systemfor x but exhibits instead a near |inear
dependence d in the left hand side A ; i.e.

lad 7/ (lAalldD =~ o
The Nunerical Analyst's subprogram ought to pass on this kind of
di agnostic information in a formeasily interpreted either by the
user's calling programor by the user personally.

The latter form of diagnostic is usually a nessage printed
am dst the user's output and is often the consequence of an error
or oversight. The crucial question is

“Where was this error comm tted?”

but no computer programcan answer this question. The best that can
be done automatically is to answer the question
“Where did the program first encounter some anomal ous consequence
of the error?”

The answer takes the formof an Error-Trace. Under IBMs |BJOB
this would be provided by library subprogram .FXEM, the FORTRAN
execution Error Monitor. Let us exanine an error-trace typical of
t hose produced by IBMs .FXEM . For exanple, suppose line 2 of
the user's main program MAIN called a subprogram SUBl1 in whose
line 25 was a call to SUB2 in whose line 17 was a reference to
SQRT(-4.0). Wen this reference was executed, the SQRT program
woul d detect the inappropriately negative argument and call .FXEM
(say in line 31) to produce an error-trace and di agnosti c nmessage.
IBMs error-trace would ook like this:

ERROR- TRACE CALLS | N REVERSE ORDER

CALLI NG | FN oR ABSOLUTE
RoUTI NE LI NE No LOCATI oN
SQRT 31 17621
SUB2 17 14513
SUB1 25 07762
MAI' N 2 05413

The nanes in the first colum are the deck-nanes assigned by the user
to his subprogranms (or else, in our nodified system assigned by
default by the systen). The line nunbers or “Internal Formula
Nunbers” in the second colum refer to nunbers printed in the prograns'
source listings, and can be exploited by the FORTRAN IV progranmmer

wi t hout recourse to storage maps. For this reason, the third col um

of absolute octal core locations is of secondary value to the FORTRAN
progranmmer. It is a great convenience that he can ignore this colum
and di spense with storage nmaps nost of the tine.

The conpl eteness of the error-trace shown above is one of its
nost val uabl e features. Conplicated programs can contain severa
references to the SQRT subroutine, and it is vital that the path of
control to the invalid reference by laid out explicitly. The conplete
error-trace is even nore val uabl e when | anguages which permt recursive
procedures are used. |If a user were instead provided with only the
reference to SQRT (or only to SQRT and SUB2) in the error-trace
above, he might waste a lot of tine checking through all of his calls
to SUB2 in an attenpt to uncover the faulty one.

IBMs .FXEM would print out a two-line diagnostic nessage
and provide a nmeans to exercise options regarding kick-off or continued
execution follow ng the diagnostic error-trace. But .FXEM
suffered fromtwo defects.

One, the easiest to renmedy, was that .FXEM could be called only
froma MAP assenbly | anguage program W fixed this by providing
a programcalled UNCLE, any programrer can kick hinself off
(and produce an error-trace plus post-nortem debuggi ng out put)
by executing

CALL UNCLE
He can offer users of his programa |imted range of kick-off-or-
continue options by witing
CALL UNCLE (N
with a suitably chosen integer expression N. He can supply one or
two di aghostic nmessages too by witing
CALL UNCLE (N, Message) or
CALL UNCLE (N, Message |, Message 2)

- 10 -

The nmessages can be inserted literally as Hollerith strings or they
can be referenced as arrays of al phanunerical data. |In the latter
case, rudinmentary binary-to-BCD conversion facilities are avail able
to permt integer valued variables |ike indices or error-codes
to be inserted into the diagnostic without first reserving core
storage for the panoply of FORTRAN i nput/output subprograns.
This last is an inportant considerations when program overl ay
is required during execution. (For nore details about UNCLE
consult the PRM)

.FXEM 's second defect was that it could cope only wth what
| call “scheduled errors” ; these are errors each of which is discovered
in a subprogram which, when it calls .FXEM to produce an error-
trace, can supply whatever linking information is needed by .FXEM
to start the error-trace. For exanple, SQRT(-4.0) is a scheduled
error because SQRT is called in a standard way. But when unschedul ed
errors |ike over/underflow, division by zero, running overtine, ... ,
were detected they would “trap”, i.e. cause interrupts which transferred
control to appropriate subprograms without carrying the standard
linking informati on that made an error-trace possible. Consequently,
t he di agnostics for unschedul ed errors answered the question “where?”
with an absolute octal core location, but could not answer the question

“How did | get there?”

That |1 BSYS' s standard |inking sequence contained a partia
answer to the |ast question was widely recognized. The first
effort to extract a full answer was made by G Wederhold and G D
Johnson at Berkeley (Univ. of California) in 1963. Their work
has appeared in SHARE SSD 121 of My 21/64 and SDA's 3066-7. A
simlar scheme was devised by J. Leppik, G Howard and the author
at Toronto in 1964. Qur schene differs fromtheirs mainly in that
ours is sinmpler to use, slightly less flexible, and fully conpatible
with the standard | BM system

- 11 -

The first step in both schenes is to revise the standard
SAVE pseudo-operation by which subprograns are expected to save and
restore index registers, control |inkages, etc. Wen IBMs SAVE
was executed upon entry to a subprogram SUB, it used to save
inacell called SYSLOC the pointer to the statenent

CALL SuB
but no subsequent use was nade of SYSLOC . W have added two
instructions to SAVE whose effect is to store the sanme pointer
during the RETURN from SUB to the instructions follow ng
CALL SuB ,
in such a way that the contents of SYSLOC show whether SUB
has just been entered or has just returned. This nodification
has no effect upon the way IBMs .FXEM behaves for schedul ed
errors.

Next, | rewote .FXEM so that it can be called froma trap-
handl i ng program Such a CALL is distinguished from other standard
CALLS by the absence of certain otherw se expected |inking information,
the lack of which forces .FXEM into a new npde of action which
exam nes SYSLOC to produce the first line of the error-trace

The behaviour of the new .FXEM is best illustrated by an
exanpl e. Suppose that SUB2 in the exanple above contains, besides
SQRT(-4.0), a division which, when executed, turns out to be a division
of zero by zero. The result is the follow ng diagnostic (in which
the contents of the second |ine depend upon an option selected by

t he user):

- 12 -

0.0/0.0 ERROR AT 14506

RESULTS IN 0.0 or EXECUTI ON TERM NATED
ERROR- TRACE W TH CALLS I N REVERSE ORDER CODE 25
CALL IS IN AT I FN OR ABSOLUTE
DECK NAMED LI NE NO. LOCATI ON

SUB 2 17+ 14513

SUB1 25 07762

MAI' N 2 05413

The i nmportant change shows up in the + sign after the |line
no. 17. This means that the announced anomaly was detected during
or after (in tinme) the execution of line no. 17 of SUB2, but
bef ore any subsequent CALL was executed. Since SUB2 has a call to
SQRT in line 17 at location 14513 (cf. the previous error-trace),
and the 0.0/0.0 occurred five words ahead of this location in the
program it seens |ikely that the program was executing a | oop
per haps a DO-1oop, which contains the offending division just a |line
or two in the listing ahead of the square root; and this | oop was
executed at | east once before the divisor vanished.

The detective work in the last sentence is not typical; usually
the error can be | ocated by the nost superficial inspection. But
the need for any detective work at all is an unfortunate consequence
of the way IBM s FORTRAN IV conpiler works. Instead of identifying
every line in the synbolic listing with a |line nunber that .FXEM
coul d deduce at execution tine (for exanmple, by locating a dumy
instruction

TI X ID, 0, LKDR
at the beginning of the coding emitted by the conpiler for |ine
no. I D of the FORTRAN subprogram whose |inkage information can be
found at LKDR), the conpiler assigns a useable line nunber only
when a CALL is generated. Since an inplicit CALL is generated for
all references to FUNCTI ON subroutines, as well as for nost

- 13 -

exponentiations of the form X**J and X**Y, for input/output,
for conplex multiplication and division, and for a conputed
GO TO (ny ny ny, | , there are few prograns whose |isted

line nunbers are too sparse for a successful interpretation of the
error-trace. And, at worst, the unscheduled error is located to
wi t hi n one subprogram

The CODE 25 at the head of the error-trace tells the programmer
how to exercise his option to define 0.0/0.0 in one of two ways;
ei t her

0.0/0.0 0.0 and continue execution, or
0.0/0.0 EXECUTI ON TERM NATED.
For exanple, the first option is the result of executing
CALL KIKOPT (25, 1)
while the second results from
CALL KIKOPT (25, 0)
The reader is referred to the PRM for precise details about avail able

options and how to exercise themconveniently. What follows is a
condensat i on.

The PRM contains a table of error codes and nessages (cf.
Fig. 25 and the section “Subroutine Library Error Messages” in
IBMs I BJOB nanual , Form C28-6389-1) which describes for each code
its error condition, the options avail able, and which option is
assuned by the systemin default of a request to the contrary.
The default option is usually to provide a nessage and then continue
execution in sone reasonabl e way.

| believe that, taken together with the other diagnostic

facilities in our system our surprisingly sinple set of options
covers alnost all circunstances satisfactorily. For serious errors
we assign positive codes, like +25 for 0.0/0.0, to signify that
the all owed options are

- 14 -

+1) G ve a nmessage and error-trace, and then continue reasonably,
or
+0) G ve a nmessage and error-trace, and then term nate execution.
(Some errors, like
GO TO (1, 2, 3), 4
are so serious that option +1 is denied.) For milder errors we
assign negative codes, like -13 for SQRT (-4.0), which signify
that the allowed options are
-1) Gve a nmessage and error=trace, and then continue reasonably,
or
-0) G ve no nessage nor error-trace; just continue reasonably.
The neani ng of “continue reasonably” is discussed later in

this report. For nowit suffices to give a few exanples:

-15 -

Error Condition and “Reasonabl e” Response Code
SQRT(-X) = - SQRT(X) -13
LOG-A) = LOGABS(A)) -10 *
0.0**0 =1.0 - 3
0**0 =1 -1
0.0**0.0 = 1.0 + 6
0.0/0.0 =0.0 +25

*Footnote: We allow programrers to wite LOQ X) or
ALOG (X) interchangeably as they please
rather than penalize themfor the venia
sin of omtting the A.

Programmers, particularly witers of |library subprograns, can
easily provide other kinds of optional responses to error conditions
detected by their own subprograns because the status of the option-
indicator (a binary digit) associated with any error-code nunber
can be sensed and stored as well as changed via KI KOPT. A conplicated
program may have several error-codes assigned to it, but this causes
no probl enms because 280 codes are available. Progranmers are free
to use error-codes as flags or flip-flops in a way conparable to the
use of sense-switches and sense-lights on the ol der sl ower machines.

A comment is required to explain that last .FXEM option
-0 which, in effect, allows .FXEM's activity to be suppressed
entirely when the error is a mld one with a negative code. Sone
of these errors are better described as differences of opinion
about the nost apt definition of a function or an expression, as in
the cases of 0**0 =1 and 0.0**0 = 1.0 (cf. the Taylor series
S arx' at x = 0.0). In these cases the warning messages serve only
to remind the user that ny definitions are not universally accepted in
the conputing world. If he is satisfied to do things nmy way, he can
turn the nessage off. |If he prefers another way, he can easily change
the rel evant programto his own specifications with the aid of the

docunent ati on whi ch we supply.

- 16 -

O her errors with negative codes sonetines represent mnor

oversights; an exanple is
LOG-X) = LOG ABS(X)) , code - 10.

For reasons discussed later, our policy is to try not to term nate
execution because of such an oversight. Rather, it seens better
to continue and find out what else the programrer overl ooked. W
do not encourage programrers to exploit system side-effects to save
the bother of a sign-test or sone such sinple instruction. W do
not regard the -0 option as one which should be enployed in production
or library prograns to correct oversights, except possibly tenmporarily,
because this type of hidden coding is so difficult to remenber
when | at e- hat chi ng bugs are bei ng sought.

To inplenment the new .FXEM and error-trace required severa
man- mont hs of work, nost of which was spent tracking down anonalies.
For exanpl e, several input/output programs supplied as part of earlier
versions of FORTRAN |V were found to use non-standard subprogram
I i nkages, and these had to be repaired to allow even the old .FXEM
to produce neani ngful error-traces before they were further nodified
to work with the new .FXEM . Every library programhad to be examni ned,;
here we reaped an unexpected reward when we di scovered that the new
.FXEM nmakes possible a shorter and faster subprogram|linkage to
certain library prograns |ike SQRT, COS, LOG EXP, conplex
mul tiply, conplex divide, A**J, and others.

But one large job remains. The FORTRAN conpil er nust be nodified
to generate standard CALLS to Arithnetic Statenment Functions which
at the present, as conpiled by IBMs FORTRAN |V v. 13, use non-
standard CALLS in order to save about 7 m croseconds per CALL. (One
di vision costs 8.4 mcroseconds.) Consequently both IBMs .FXEM and
ours produce error-traces which skip, sonmetinmes confusingly, over
references to Arithmetic Statement Functions.

2. Post-mortem Facilities

We prefer to think of kick-off as an act of desperation on the
part of a subprogram and therefore try not to term nate execution
unless it is overwhel mingly probable that continued execution will
be an utter waste. There is little risk that errors |ike SQRT(-4.0)
will be repeated nmillions of tinmes to no good purpose, because the
noni tor inmposes the user's own limt upon the total number of lines
of printed output, thereby protecting himfroma nillion Iines of
SQRT' s di agnostic and error-trace. Furthernore, programers who are
especially sensitive to a waste of their conputer tinme allotnent can
use statements |ike

I F (CLOCK (TSTART) . GT. TMVAX) CALL UNCLE
to kick thensel ves off when the el apsed tine since
TSTART = CLOCK (0.0)
exceeds TMAX, at a cost of 70 microseconds per execution. (One
square root costs 64 mcroseconds.)

But sometines kick-off is the only reasonable response to an
error. This response gives rise to a breed of programer who has
only one diagnostic and error-trace to show for his several seconds
(or mnutes) of conputer tine. It is uncharitable to advise him
that he shoul d have exerci sed enough foresight to provide internediate
out put as insurance agai nst such an event. Besides, he may reply

“1 thought | had debugged that program”

We doubt the wi sdom of the w despread tendency to inundate
every user who is kicked off with a conplete dunp of storage willy-
nilly. This could drown himin octal data which he is unlikely to

be able to read. It is a costly way to educate students.

- 18 -

The ideal solution would be to display conveniently just those
vari abl es which have figured in the events | eading up to the debacle.
Qur solution is not ideal, but it is sinple and flexible. 1t is an
i mproved version of our PMORT described in Coom A CM 7 (1964)
p. 15. W allow the programmer to wite into his FORTRAN |V
program a statenent of the form

| F (KI CKED(©OFF)) < any executable statenent >
< the next executable statenent »

with the expectation that, because the value of the |logical function

KICKED is always .FALSE. , his programw |l merely execute «<the
next executable statenment> . But if and when his programis kicked
of f, the nonitor will give himthe diagnostic and error-trace that

he deserves and then, after over-witing <«the next executable

statenent> with CALL EXIT, will execute <any executable statenent>

e.g. L | F(KI CKED(OFF)) WRITE(...)

causes the desired information to be witten out if and only after

t he program has been kicked off. The programmer can choose a FORMAT
to suit hinmself or, if nore convenient, he can use the sinple un-
formatted out put provided by the NAVELI ST feature of FORTRAN IV; or
he can CALL DUMP and be drowned.

e.g. 2: | F(KI CKED(OFF)) CALL ... or
GO TO ...

causes the desired transfer of control to take place after kick-off,
and thus pernmits a user to store valuable data on magnetic tapes

and ask the operator to save them O he can call a conplicated

di agnostic program of his own, or he can try again to solve his

probl em by sone net hod other than the one which failed. The nonitor
will allow, say 20 seconds and 300 printed lines of computer activity

after the first kick-off. O course, any second kick-off is final

- 19 -

despite further IF (KICKED(OFF))... requests. Because the user has
recourse to KICKED, witers of library and systens prograns are under
| ess pressure when they have to deci de whet her an anonmal ous condition
shoul d term nate execution or just produce a warning.

Programmers are encouraged to use KICKED as often as they
like in both FORTRAN and MAP assenbly | anguage prograns; and
they can | eave these KICKED statenments in production prograns as
i nsurance agai nst the renpte possibility that an undi scovered bug
may term nate execution in a cloud of nystery. Each executed
reference to KICKED consunes |ess than 14 microseconds (| ess than
two division times) so KICKED can be used in fairly tight |oops
wi t hout seriously wasting time. The nonitor will respond at kick-
off only to the last executed reference to Kl CKED

An inmportant limtation upon KICKED was inmposed by the absence
of any bl ock structure in FORTRAN conparable to that in ALGOL
and by the way that indexing is optinmized in FORTRAN. This limtation
exi sts because, whenever Kkick-off occurs in sone subprogramrenote
fromthe one containing the KICKED statenent and then contro
is passed to «<any executable statenent> after the |F(KICKED(OFF)),
no attenpt is made to restore index registers to the state they were
in when KICKED was called nor to re-set tapes to their fornmer
positions. More inportant, there is no way to reduce the
ef fect of those instructions which may have been placed in “optinuni
positions ahead of the call to KICKED in order to initialize index
regi sters and addresses as efficiently as possible fromthe point of
vi ew of the normal sequence of control. For example, if Kkick-off

occurs during the conputation of FCN in the sequence

DO 3 J=1, 10
A1) =J -1
DO 3 =1, J
| F (KICKED(OFF)) WRITE(...) I, J, B(1), B(J), (A(KJ), K=1,J)
3 A(1+1, J) = FCN(B(1), B(J), A(I+1, J)) + A (I, J)

there is no way at kick-off tine to nove the nunmbers |I and J from
storage into the appropriate cells and index registers for the refer-
ences to B(l), B(J), A(K, J) and “K =1, J° following the call to
Kl CKED.

A second linitation shows up when program overlay takes place;
there is no sinple way to detect whether <any executabl e statenent>
inthe |F (KICKED(©OFF)) statenent has been partially overlaid, or
whet her it refers to data which has been overlaid. Consequently
we inserted an instruction in .LOVRY, the overlay handling
subprogram which causes the nmonitor to forget the | ast reference
to KICKED whenever overlay occurs. W take no pride in this
expedi ent .

Any programer who is aware of these two limitations can
easily code around them Sinple suggestions are contained in the
PRM Indeed, the Iimtations are so easy to circunmvent that programers
sonetines forget to do so, and for this reason we have included a

war ni ng nessage |ike the one in the foll ow ng exanple:

0.0/ 0.0 ERROR AT 14506
EXECUTI ON TERM NATED.

ERROR- TRACE W TH CALLS I N REVERSE ORDER CODE 25
CALL IS IN AT I FN OR ABSOLUTE
DECK NAMED LI NE NO LOCATI ON

SUB2 17+ 14513

SUB1 25 07762

MAI' N 2 05413

EXECUTI NG | FN LI NE NO. 2 OF 'SUBl' AFTER PROGRAM WAS
KICKED OFF. FROM NOW ON I N 'SuUB1, THE VALUE OF A SUB-
SCRI PTED VARI ABLE W TH VARI ABLE SUBSCRI PT, OR THE EXE-
CUTI ON OF A COMPUTED ' GO TO' OR 'DO' STATEMENT W TH
VARl ABLE PARAMVETER, MAY BE | NCORRECT UNLESS THE RELEVANT
I NDEX | S RESET. SEE THE PROGRAMMVERS REFERENCE MANUAL.

- 21 -

This message is nore form dabl e than necessary. It would be
unnecessary altogether if the | F(KICKED(OFF)) statenent were inple-
mented in a | anguage, like ALGOL, with a block structure. Then ki ck-off
within a bl ock woul d cause control to be transferred to the | ast
KI CKED reference, if any, executed in the sane block but not in a
deeper sub-bl ock.

One other conplication would arise were the |F(KI CKED(OFF))
statenment to be inplemented within a conpiler which contained a
MONI TOR statenent. Such a statement is exenplified by

MONI TOR X, Y(*), Z(*,3), PROG n
whi ch woul d cause output of the follow ng kind to be generat ed:

VWhenever the variable X is changed, wite out its new val ue;
X = 14.271434

Whenever the variable Y is changed, indicate which el enent too;
Y (2) = .74131042 E -18

VWhenever the third colum of array Z is changed, say so;
Z(13,3) = 0.0

Whenever the subprogram PROG is called, wite out its argunments;

CALL PROG (13, 27.421493, Y) W TH
Y(1) = 1.4012362
Y(2) = .74131042 E -18
Y(3) = 0.0

If PROGis a function, wite out its val ue too;
PROG (13, 27.421493, Y) = 1.7014 E38 W TH
Y(1) = etc.

Whenever statement n is executed, say so. If this is a |ogical
| F statenent, tell what happened.

- 22 -

The MONITOR facility as described above has been i npl enent ed
*
at least partially in several compilers ; wunfortunately, ours is not

one of them The problemis to deal with the statenent

| F (KI CKED(©OFF)) MONITOR ,
for which the nicest solution would be a retroactive display of,
say, the last 300 lines of output which would have been produced if
that MONITOR statenent had not been bypassed. Some conpilers

al ready have a feature of this kind; the author envies their users.

Now is a good tinme to conpare the error-options needed by the
programer with those available to him He nay want to assign to a
speci fied anomaly, |ike 0.0**0 , one of the follow ng four
consequences:

-0) Re-interpret the request in a way judged to be appropriate
for the majority of users (say 0.0**0 = 1.0) and conti nue
with no nessage nor error-trace.

1) Re-interpret the request as above, and put out a nessage
and error-trace to tell the programer what happened and
where, and then continue execution.

+0) Put out a nessage and error-trace to explain where and
why execution was term nated, and then grant any post-nortem
request that may have been made via

I F (KI CKED(OFF). ..

2) Transfer control to a location designated in advance by the
programer where he may cope with the anonmaly as he pleases,
provi ded the necessary information is easily accessible to
hi m

x

R Bayer, D.Gies, M Paul, HR Wehle [1967] “The ALCOR
[1linois 7090/ 7094 Post Mortem Dunp” Comm ACM 10 #12 pp. 804-8

- 23 -

Qur systemoffers at |east two of the first three options for
nost error conditions. The last option is dangerous in FORTRAN for
the reasons cited while discussing the limtations of KICKED, unless
it is handled carefully. The follow ng discussion explains how some
of our library prograns offer option 2).

Consi der for exanple our |east squares |library subroutine LSTSQ
which, given a rectangular Mx N matrix X and a colum vector vy,
attenpts to find that coefficient vector ¢ which mninmzes the sum

of squares
S=(y-X) (y-Xo) =5i(yi -5 xijcj)? .
A solution c¢ always exists and satisfies the normal equations
XX ¢ = X'y
LSTSQ tries to solve these equations (in double precision, because
that is the fastest adequate nethod on a 7094) for c and the
correspondi ng m ni mum val ue of S and, if requested, the inverse
mat ri x
V = (XTX)'l
But if the colums of X are nearly linearly dependent, in the sense
that there exists a perturbation AX of the order of a few units in
the I ast place of X such that the columms of (X+aAX) are linearly
dependent, then the solution ¢ is not well defined and LSTSQ
produces one of two things instead of c :
0) If the user wote
CALL LSTSQ (X, M N, Y, C 9 or
CALL LSTSQ (X, M N, Y, C S,V
then he has made no provision for the possibility that X
be nearly singular, so he receives a suitable diagnostic

and error-trace and is kicked off.

1) |If the user wote

CALL LSTSQ (X, M N, Y, C, S, $n) or

CALL LSTSQ (X, M N, Y, C S, V, $n)
where n is an integer standing for a statement nunber,
LSTSQ returns control to statenment nunber n in the user's
calling program and diagnostic information is nmade
available in V (or elsewhere if V was not requested)
which permits the calling programto identify the |inear
dependence rel atively easily and change X appropriately.
(Usual ly the calling programjust decreases N.) LSTSQ
does not put out any nessages in this case.

The foregoing description is somewhat sinplified; details can
be found in the PRM The interesting feature is not so much the use
of a FORTRAN IV error return $n as the fact that this error return
is optional. The option is avail able because one of the first
statenments executed within LSTSQ is

CALL ARGCNT (I,J)

whi ch counts the argunents supplied in the CALL to LSTSQ | is the
nunber of argunents exclusive of error returns, and J is the nunber
of error returns. The error options described above are nunbered
0 and 1 according to the value of J. Sinmilarly, LSTSQ determ nes
whet her the user wants V = ()<ZTX)'l or not according as | =7 or
6 respectively. Any other values of | or J indicate an error, like
a period between the integers Mand N instead of a comma, which is
serious enough to term nate execution with an appropriate diagnostic.

The use of variable-length argunent lists lends a certain el egant
simplicity to several of our library prograns, and we hope that this

feature will be incorporated in the programm ng | anguages of the future.

- 25 -

The sinplicity with which the error return schenme can be inpl enented
makes it efficient and satisfactory for a wide range of applications,
but there are two inmportant areas where the schenme is unsatisfactory.
One consists of those difficulties caused by a small |ack of foresight
and recogni zed i mediately with the slight assistance to hindsight
provi ded by a diagnostic. Many of the error conditions nmentioned above,
like LOG X) when LOGABS(X)) was intended, fall into this category.
So do many input/output problens. It suffices here to say that a | ot
nore could be said for the desirability and conveni ence of subprograns
i ke KIKOPT which allow the programmer to revise tenporarily
the execution of his programat each of several spots w thout having
to insert a small explicit change at each spot.

The second area where error returns have proved unsatisfactory
covers Over/Underfl ow, a ubiquitous phenonenon to which the next

section of this report is devoted.

3. Over-Underfl ow

Overfl ow and Underfl ow are what take place in the arithmetic

regi sters of a computer whenever an attenpt is nade to cal cul ate
nunbers outside the normal range. On the 7094, overfl ow occurs
whenever the magnitude of the result of a floating point arithnetic
operation equals or exceeds

212"~ 1.70141183 x 10%® ;
under fl ow occurs whenever the magnitude is not exactly zero and

is smaller than
27129 . 146936794 x 10738

Speci al provision nmust be made to cope with over/underflowin a
way whi ch does not produce m sl eading results.

It is sonetines argued that overflow is an error for which
t he penalty should be

EXECUTI ON TERM NATED
but this penalty would place an intol erable burden upon even the
nost expert nunerical analyst. He is often unable to predict in
advance what the range of nunbers will be in conplicated cal cul a-
tions, especially where exponentials, polynonmials, and rationa
functions of high degree, or spaces of high dinensionality are
concerned. For example, if P(x,y) is a polynomal in x of
degree 10 whose coefficients are wild functions of y , then
the desired solution x = X(y) of the equation P(x,y) =0 my
be wel | -defi ned and reasonabl e even though it is inaccessible
unl ess the pol ynom al - zero-findi ng subprogramis allowed to pursue
a flexible scaling strategy in response to over/underflows, if any,
whi ch occur during the conmputation of P(x,y) . Overfl ows shoul d
not force kick-off; if worse cones to worst, a program can kick
itself off by executing, say,
| FCOVFLOW CALL UNCLE(O0, 22H | NESCAPABLE OVERFLOW)

- 27 -

An opposite attitude of laissez-faire is reflected in the

designs of those nachi nes whose hardware automatically replace

an overfl owed magnitude by a special digit pattern representing

oo

and then plunge on. Such a schenme mght well include, say,

@ to replace an underfl owed nmagnitude and 0% to indicate an

i ndeterm nate value. These synmbols m ght obey rules like the

fol |l owi ng:

i)

iii)

Whenever an arithnetic operation generates + ., @ or %

a corresponding flag is raised to indicate to the

program that overflow, underflow or |ost significance respec-
tively has occurred. |If requested by the progranmer in
advance, a nmessage can be printed out for his information.

Any arithnmetic operation with % as an operand gener at es %
as aresult. %0 is also generated by the foll owi ng expressions

.00 oo 0/0, O0/e, ©0, >*0, ©°*e and x/e

If x 2 (1 unit in the last place of the overfl ow threshol d)
then ©-x = 0/0; otherwise = x =

If (1 unit in the last place of x) < (the underflow threshol d)

thenxt®=%;othervvisexi®=x10=x.
If x =21then x * ®© = % * g5jgn(x) ; otherwise x * « = %0.
Simlar rules hold for x/* , °/x , x*6 and 6/ x

x/0 = ©*sign(x) wunless x =0 or ©
The nunber O can be generated only by direct assignnent or
as the result of x-x with x # @ nor * . The synbol o,

whi ch stands for the set of all nunbers smaller in magnitude
than the underfl ow t hreshol d, can be generated only by direct

assi gnment or by an underfl ow as indicated above.

- 28 -

During comparisons the synbol © sinultaneously falsifies
e >0 |, =0 |, ®@ <0

and x >e@ if and only if x > 0 too.

Rul es like the foregoing are form dabl e, and have not been
i mpl enented in any hardware known to the author (who woul d not
expect to find themin any machi ne except possibly one with
interval -arithmetic built into the hardware). But no other |ess
el aborate rules are known to be foolproof.* For exanple, the CDC
6600' s hardware follows simlar rules whose nost obvious difference
is the lack of any distinction whatever between underflowto @
and the nunber O . A conparable deficiency is to be found at
those IBMinstallations where, to escape a plethora of insigni-
ficant underfl ow nessages, all underfl ow messages are suppressed
by many users nost of the tine. The follow ng segnment of FORTRAN
codi ng shows what can happen when this is done. Here A B, C
D and X are all positive normalized floating point nunbers (not
speci al synbols nor zero).

Y = (A*X+B)/ (C*X+D)

Z = (A+B/ X)/ (C+DI X)

W=1Y/Z

WITE (...) W

In the absence of any indications of over/underflow, howis this
phenonenon to be explained? The only thing unnatural about this
exanple is the WRITE statenent; W is nore likely to have
remai ned “out of sight, out of m nd”

The repl acenent of underfl owed nunbers by zero with no
i ndi cation to program nor programrer is a clearly unsatisfactory

practice. And even when an indication of over/underflow is given,

Experience since this was first witten has found © to be useless.

- 29 -

there is anple reason to protest agai nst the destruction by
hardware (as on the |IBM 360 and CDC 6600) rather than software of
i nformati on which could otherwi se be of significance to the
programer; this is discussed in nore detail below in connection
with the Unnormalized Mode and the Counting Mode of treating over/
underflow. But, to be fair, it nmust be acknow edged that nost

programers woul d be satisfied nbst of the time by the provision

of representations for +> , - @ and % obeying rules like

*
i) to iv) above.

VWhat nore mght a nunerical anal yst demand? Fromtinme to tine
time he will want to generate and use nunbers which |lie beyond
t he over/underfl ow thresholds. And certainly no programer wants
to be forced to check for over/underflow after (nuch | ess before)
t he execution of each arithnetic instruction in his program and
to decide each tine upon an appropriate course of action. He
will prefer to choose one of the several npdes of execution
provided for himby the system wth the understanding that while
the programis being executed in his chosen node each over/underfl ow
will be treated according to the rules tabulated for that node.
Rules i) to iv) above could define one such node. The progranmer
shoul d be all owed to change nodes between one |ine of his program
and the next. ldeally, he should be allowed, if he wants, to define
his own node by specifying in detail just what rules are to be
obeyed for each type of arithnetic operation. Finally, although
t he programmer who is ignorant of the problens of over/underfl ow
nust be warned when they occur, care nmust be taken not to drown
himin a cascade of over/underfl ow messages, especially when they
are obviously irrelevant. (An exanple of an obviously irrel evant
underfl ow is remai nder underflow after a floating point division
in a FORTRAN program which always discards the renminder.)

Except for o

- 30 -

An attenpt has been nade to serve as nany of these needs as
can be served in a FORTRAN context by neans of a substantia
ext ensi on of the service supplied by IBMvia their subprogram
.FPTRP in IBJOB . This programexploits the fact that whenever
a floating point over/underflow occurs the 7094 “traps”; it
interrupts itself and transfers control to a designated core
| ocation after setting up an indicator word (cell 0) to describe
what caused the trap and where. This floating point trap, FPT,
t akes precedence over all others in the nmachine, and when it
occurs the registers in the nachine contain the over/underfl owed
result unaltered, so that no significant information is lost. A
har dwar e option can be purchased (RPQ 880291) which incl udes
i mproper divisions like 1/0 in the scope of the FPT .

| remwote .FPTRP in a way which, while nmaintaining com
patibility, increased its speed and augnented its capabilities
so that prograns can easily choose and change to any one of five
nodes of execution. The Standard Mbdes treat over/underfl ow very
much as I1BM did, the main difference being that now underfl ow
sets up an indicator the sane way as does overflow. The Unnormalized
Modes exploit unnornalized arithnmetic to pernit underflow to
occur “gently” wthout setting up distracting indicators or
messages. The Silent Mddes set indicators to indicate over/
underflow to the program but put out al nbst no nessages for the
programer; cascades of over/underflows in the Silent Mdes do
not slow prograns down appreciably. The Printing Mdes set
i ndicators for the program and al so report each indicated over/
underflow, as it occurs, in a printed message for the progranmer,

t hus hel ping himto debug his program The Counting Mde all ows

- 31 -

certain kinds of computations to be carried out with no risk of
over/underfl ow because the all owed range of magnitudes is extended

to include numbers |ike

i242

2
These five nodes are discussed below in appropriately titled
subsections of this report. The |ast two subsections discuss

i mproper divisions and simul ated over/underfl ows.

The Standard Silent Mde

This is the nmode in which the system operates by default

in the absence of requests for sonme other node. \Wenever a
floating point arithmetic operation overflows, its result is replaced
by the | argest possible nagnitude (1.7014 x 1038) with the sane
sign , and this event is recorded by setting OVFLOW = . TRUE
VWhenever a result underflows it is replaced by zero with the sane
sign, and this event is recorded by setting UNFLOW= . TRUE.
The indicators OVFLOW and UNFLOW are |ogical variables which
can easily be sensed, stored and/or reset to .FALSE. in several
ways described in the PRM |In particular, the declarations

LOG CAL OVFLOW

COMVON OVFLOW OVFLOW
permt statements |ike

IF (OVFLOW. ... and

OVFLOW = . FALSE.
to be executed w thout wasting tinme on subprogram|linkages in
short | oops.

This nmode is called Silent because each over/underfl ow sets
its indicator wthout disturbing the programer’'s output w th any
di agnosti c message. However, just after his program s execution
is termnated (either normally or by kick-off) a nessage is produced
to draw the programmer's attention to any over/underfl ows that
escaped the attention of his programi nore about this later.

In the Standard Silent Mdde, each over/underflow costs 15 to 30

m croseconds; i.e. two to four division tines.

The Standard Printing Mde

This node differs fromthe previous node only in that each

over/underflow, as it occurs, inserts a message into the programer's
out put to answer the follow ng questions:
What happened, overflow or underfl ow?
Wi ch machine registers are involved; AC, MQ or both?
VWhat arithmetic operation was attenpted: +, - , * , [,
doubl e-precision, ...,? (An octal operation-
code is given here.)
What change was nade in the affected register(s)?
Where is the instruction whose execution caused this
over-underflow? (An octal core address is
gi ven here.)
VWere in the source-programdid all this happen?
(An error-trace is given here by
our version of .FXEM .)

We al so considered witing out the operands whose sum product
or quotient had over/underfl owed, but the cost of doing so seened
nore than the information was worth. This point deserves recon-
sideration. Anyway, the error-trace usually points to within a
fewlines of the site of the over-underflow in a FORTRAN program

The over/underfl ow handling subprogram .FPTRP can be swi tched
in 40 microseconds froma Silent Mbdde to the corresponding Printing
Mode via the statenent

CALL NFPTST(M
with a positive integer expression M. Wen this statenent is
executed, an internal counter N is set to M and .FPTRP is

caused to operate in a Printing Mdde until M over-underfl ow

- 34 -

nessages have been put out. N is decreased by 1 each tine a
message i s put out, and when N becomes O an extra nessage
NOW OVER UNDERFLOW MESSAGES ARE | N ABEYANCE
is produced and the Mbde is switched back to Silent.
CALL NFPTST(O0)
swi tches the Mdde back to Silent wthout any extra nessage.

In accordance with current good practice, the FORTRAN
programmer is allowed easily to sense, save, set and/or reset the
nessage-counter N as well as the indicators OVFLOW and UNFLOW.
Details may be found in the PRM But progranmers are advi sed not
to set the latter two logical variables to .TRUE directly in a
FORTRAN program instead they are advised to force an over/underfl ow
like

DUMW = (1.7E38)**2

This is done because, whenever over/underfl ow occurs, .FPTRP
stores the current contents of SYSLOC into the appropriate
indicator to nake it .TRUE. . Later, when the prograni s execution
is finished, the nonitor |ooks at each indicator to see whether it
is .TRUE. , and if so then that indicator is interpreted as a
pointer in roughly the sane fashion as .FXEM interprets SYSLOC
when providing the first line of the error-trace inmedi ately after
an over/underflow in the Printing Mode. Consequently, the
programer's output finishes, whenever appropriate and possible,
with a nmessage |ike

LAST UNREQUI TED OVERFLOW WAS | N OR AFTER

LINE 17 OF DECK SUB2

LAST UNREQUI TED UNDERFLOW WAS | N A SUBPROGRAM CALLED I N

LI NE 24 OF DECK SuUB1
O'ten the programmer can deduce fromthe information given here

that the over/underflow did no harm then, since the nessages have

- 35 -

not tainted his formatted output, he is free to cut themoff and
publish the rest.

I f program overlay has intervened between the |ast unnoticed
over/underfl ow and programterm nation, or if the indicators
OVFLOW and UNFLOW were set to .TRUE. in a naive way, then the
post - executi on nessage nay describe the desired deck-name and |ine
nunber as UNKNOWN

It is especially inportant to understand that the word “UNREQU TED
signifies that the programhas not reset the indicators to .FALSE
presunmably because it has not responded to the over/underflows. The
system may al ready have printed several nessages for the programer,
notifying himeach time his programignored an over/underfl ow while
the systemwas in the Printing Mde.

| see now that we could have supplied, at little extra cost,
post - executi on warnings nore |like this:

3943 OVERFLOWS VENT UNREQUI TED BY THE PROGRAM BETWVEEN
LINE 17 OF DECK SUB2

AND A SUBPROGRAM CALLED I N LI NE 64 OF DECK SUBL

Such a nessage can be nore useful in deciding whether or not
to ignore the over-underflows. Al so, the counts of overfl ows
and underfl ows coul d be used by any programrer who, for reasons
unclear to me, wished to termnate his program s execution after
a specified nunber of overflows had occurred. Another inprovenent
woul d be to allow a negative value for M in

CALL NFPTST(M

to signify that -M overflow nessages are to be allowed while al
under fl ow nessages are to be suppressed. Mst of these inprove-
ments have been incorporated into the adaptati on of our schene for
t he Burroughs B5500 witten by M. Mchael D. Green at Stanford
University in 1966, and | expect to put theminto our system soon

-36 -

The Treatment of Underfl ow

Sone programers have good reasons to want to be inforned
about underflow. They may want to avoid consequent | oss of precision
or subsequent division by zero. But nost programmers whom | asked
said they preferred that underfl owed nunmbers be replaced by zero
wi thout their attention being distracted by the event. This
attitude was justified at a tine when nost over/underfl ow messages
reported “MQ UNDERFLOW during an addition, subtraction, nulti-
plication or double precision division. This message signified
that the double-length result of those operations in the AC M)
regi ster was small enough to cause the characteristic of the |ess
significant word in the MQ to underflow even though the nore
significant word was correct. Since the less significant word is
entirely ignored in single-precision FORTRAN expressions, and since
t he doubl e-preci sion hardware of the 7094 ignores the characteristic
of the less significant word in doubl e-precision expressions, |

decided that .FPTRP. should sinply ignore MQ wunderflow after
*
t hose operations where it was obviously irrel evant. This decision's

first consequence was a wel cone reduction in the nunber of nessages
and conpl aints, especially where iterative calculations with residuals
tending to zero were concerned. The second consequence was t hat
certain old 7090 prograns which had performed doubl e-precision
arithmetic by simulating the 7094's doubl e-preci si on hardware,

ran into spurious overflow troubles and required revision so that

they woul d use instead of sinulate our machine's hardware. For-
tunately, any user who insists upon running a 7090 program

unchanged upon our 7094 can do so in safety by nerely changing two

wel | -marked instructions in .FPTRP . The second instruction

*
The 27 significant bits in the MQ are not ignored nor cleared when

the characteristic of the MQ underflows, so no accuracy is |ost.

- 37 -

is needed to force appropriate actions when renmai nders underfl ow
after division; otherwi se they would be ignored too.

It is not good enough that the systemignores obviously
irrelevant underflows. Many irrelevant underflows are not obviously
irrelevant. Consider, for exanple, a segnent of a typical matrix
handl i ng program whi ch conputes

r=>b - % a Xj

The usual rule, which replaces each underfl owed sum or product

by zero, is satisfactory except when b and all the products
ajXj are so close to the underflow threshold that the usual rule

produces a significantly wong value for r . If all underfl ows
are reported, how can the rare significant reports be distinguished
fromthe common ignorable ones? |If no underflows are reported,
how can the rare incorrect values of r be distinguished fromthe
conmon correct ones? The easiest way | know to cope with these

qguestions is to use our Unnornalized Mdes.

- 38 -

The Unnornalized Silent Mbde and the Unnormalized Printing Mde

These two nodes differ fromone another in just one respect;
the Printing Mdde reports overflows in the way described under the
Standard Printing Mode above. The two Unnornalized Modes differ
fromtheir corresponding Standard Modes only in the way they treat
underflow. A nunber, which in a Standard Mbdde woul d have under -
flowed to zero and set UNFLOW= .TRUE. , is in an Unnornalized
Mbde replaced by its closest unnornalized approxinmati on and UNFLOW
i s unchanged. For exanpl e, consider a deciml nachi ne whose
underfl ow threshold is .10000000 x 103 . |In a Standard Mode,

. 15743219 x 10°*° would underflow to zero, but in an Unnormali zed

Mode it is replaced by .00157432 «x 10°%® . A nunber nust now

drop below .00000001 x 10738 before it is silently replaced by
zero.

In the Unnormalized Mddes the range of non zero floating point

nunbers representable in the 7094 is extended downward from 2129

to 27 155 2" 182

in single-precision and i n doubl e-precision
This allows underflow to take place nore gently, and inproves the
accuracy of certain results. But these benefits are secondary;
the primary justification for the Unnornalized Mddes is that they
ease the task of deciding, in certain cases, whether a result is
ri ght or wong.

For exanple, consider the foll owi ng FORTRAN programto conpute

r=b- " ax

(I'n accordance with good conputing practice, and because it costs
al nbost nothing extra to do so on our 7094-11, the products of the
singl e-preci sion nunbers a; and x; are accunulated to double

preci sion before r is rounded (not truncated) to single-precision.)

DOUBLE PRECI SION D
DIMENSI ON A(...), X(...)

D=-B
C ENTER THE UNNORMALI ZED MODE. (14 M CROSEC.)
CALL FPTUN
DO 1 I=1,N
1 D=A)*X(1) + D
C RESTORE THE STANDARD MODE, (13 M CROSEC.)
CALL FPTST

R = 0.0 — RNDXD)

The last statenent rounds D to single precision, changes
sign, and adds zero before storing the result in R . |If the
rounded value of D is a nonzero unnormalized nunber, then the
normal i zation that always follows addition will cause an underfl ow
which, in the Standard Mdde, will set R = 0.0 and UNFLOW = . TRUE.
But if RND(D) is a normalized nunber then adding zero will not
change anything. Consequently, R is correct as it stands,
despite the possible underflows of intermediate results, with the
foll ow ng exceptions:

- If OVFLOWor UNFLOW is .TRUE. , R is wong.

- If severe cancellation has taken place in statenent 1,
R may be badly contam nated by doubl e-precision truncation
errors. This possibility is independent of over/underfl ow,
and is irrelevant if B, A and X are each uncertain by a
unit in their respective last places.

- If R=0.0 then it may be further contam nated by an

error of 2 1°6 , although this is irrelevant if B is

non zero and uncertain by a unit inits |ast place. But

- 40 -

if B=0.0 then all the products A(I)*X(1) mght have
underflowed to zero silently.

There are very few applications where any but the first exception
is relevant, and that one is caught by the system The absence
of over/underflow tests in the inner |loop permits calculations in
the normal range to proceed with no noticeable |oss of speed.

The Unnornmal i zed Modes may be used in single precision,
doubl e precision and conplex arithnmetic at the cost of 42 mcro-
seconds per underflow. These nodes woul d be nuch nore useful on
a 7094 but for a quirk in the hardware which forces the “normalized”
product of two nonzero unnornalized nunbers to be zero on certain
occasi ons. The Unnormalized Mddes are best suited to those
machi nes, |ike the Burroughs B5500, which handl e unnornmalized
operands wi thout serious anonalies. But, because of the peculiar
behavi our of our machine, the Unnormalized Mbdes are so beset by
restrictions (for which see the PRM that the author and a few of
his students are perhaps the only programers who use them W
find themval uable for conputations with matrices, power series,
and nurerical quadrature.

The Counting Mode

This node deals with over/underflow in a way which pernits
programmers to save all the significant digits which are |ost by
the other nodes, and is specially useful for evaluating expressions
like

q = IIlN (aj+bi)/ (cj+di)
when q is likely to be a reasonabl e nunber even though its partia
products and quotients are afflicted with over/underflow. The
execution of

CALL FPTCT(J) ,
where J is the nane of an integer variable, switches .FPTRP in
14 microseconds to the Counting Mode and designates cell J to act
as a leftward extension for the 8-bit characteristics of the AC
and MQ registers. Henceforth, over/underflows are counted in J .

Whenever an arithnmetic operation overflows, its result is divided by

22%% and J is increased by 1 . Wenever an arithnmetic operation

256 and J is decreased

underflows, its result is nultiplied by 2
by 1.
For exanple, the FORTRAN statenents
CALL FPTCT(J)
J=0
X=(AB)*(C+D*(E/F) /G
produce a pair (J,X) whose values really satisfy

(A+B) (C+D) (E/ F)/ G = 2%°% x

In effect, the missing binary digits in X s characteristic have
been added to J while X s other significant binary digits have
remai ned unchanged.

- 42 -

FORTRAN programers who use the Counting Mode nust be reasonably
famliar with the workings of the conpiler so that they will not try

to eval uate expressions like

A (B+O) nor A*B+C nor A**B
i n one FORTRAN st at enent .
The foll owi ng exanpl e shows how the Counting Mbde is used to

eval uat e
q = HIN (ai+bi)/ (ci+di)

for large N wth no over/underflow tests inside the DO | oops,

al t hough each over/underfl ow does cost 35 microseconds.

J=20 Initialize Over/Underfl ow Counter
PAB = 1. Nuner at or, and
PCD = 1. Denomi nat or.
CALL FPTCT(J) Switch to Counting Mde.
DO 1 | =1,N Conput e Denomi nat or usi ng
1 PCD=RND(PCD* RND(C(1) +D(1))) Rounded Arithnetic
|F(PCD .EQ 0.0) GO TO 3 ... because Nunerator vanished.
J=-1 Rever se neani ng of Counter
DO 2 I1=1,N
2 PAB=RND(PAB* RND(A(1) +B(1))) Conput e Nurner at or
Q = PAB/ PCD
CALL FPTST Swi tch back to Standard Mode
IF (Q.EQ 0.0 J=0 ... because Nunerator vani shed.
IF (J) 4, 5, 3
3 ...Qhas Overflowed, because J > 0 or Denominator = 0
4 ...Q has Underfl owed, because J < 0
5 ...Qis correct as it stands, because J =0

VWhat ever value J may have, and provided the denoni nator PCD
is non zero, the stored value Q is related to the desired val ue
q by

q = 2256J Q

- 43 -

The Counting Mode works for both single and doubl e precision
arithmetic, and is indispensable for computing determn nants and
certain ratios of factorials, but | have not yet figured out howto
make a Conpl ex Counting Mode work with conparabl e el egance on our
machi ne. However, the next exanple is one where our Counting
Mode is useful in a conplex arithmetic cal cul ation

Suppose the conplex array Z(l) 1is given and we seek K such
t hat
CABS(Z(K)) = maxi<i <Ny CABS(Z(1))
(Here CABS(Z) =|Z] in FORTRANIV.) To avoid the square roots,
we nay prefer to calculate only squared magnitudes, thereby
expl oiting the equival ence between the statenents
[a +ib] >]u + iv] (i)

and

a? + b? > u’+ v? (i)

But the squared magni tudes nmay over/underfl ow despite that the
magnitudes |a + ib] and |u + iv|] are well within the nachine's
range. The follow ng programexploits the equival ence between (ii)
above and

(a-u) (a+u) > (v-b)(v+h) (iii)
and then copes with over/underflows via the Counting Mdde. N
is assuned to exceed 1

COMPLEX Z(...), C W
DI MENSI ON ABC(2), UVW(2)
EQUI VALENCE (C, ABC, A), (B, ABC(2)), (WUWU), (V,UW?2))

C Thi s EQUI VALENCE makes c=a+ib and w=u+iv
CALL FPTCT(J)
K=1 Initialize current maxi num
CZ(1)
DO 5 [1=2,N
J=0
WEZ(1)
XL = (A-U*(A+Y)
J= -]

XR = (V- B)*(V+B)
IF(XR .EQ 0. .OR XL .EQ 0.) GO TO 3

IF(J) 2, 3, 1
C J>0 neans | XR| shoul d exceed | XL|, so ignore XL .
1 IF(XR) 5, 5, 4
C J<0 neans | XL| should exceed |XR|, so ignore XR.
2 IF(XL) 4, 5, 5
C J=0 neans XL and XR are directly conparable.
3 IF(XL .GE. XR) GO TO 5
4 =l Updat e current maxi mum whenever
c=w wW> C
5 CONTI NUE
CALL FPTST

Now C = Z(K) is the largest in magnitude of the values Z(I)
Sonme minor refinements can be introduced to reduce the influence
of roundoff in critical cases of near equality, but they do not
change the relative speed and sinplicity exhibited by this program
when conpared with alternatives. (For nore details, see our library
program CMAXA in the PRM)

An attenpt was made to extend the idea of FPTCT to cope with
i nteger overflows; i.e. we wanted to allow the FORTRAN programrer

to designate a cell which would act as a |l eftward extension of the

- 45 -

i nteger accurmulator in the same way as J in FPTCT(J) acts as a

| eftward extension of the floating point accumulator's characteristic.
However, this schene would first have required certain nodifications
to the 7094 to pernmit trapping on fixed point overflow and then the
FORTRAN |V conpil er would have had to be extensively rewitten. A
frustrating feature of the present conpiler is that it renders
certain integer overflows undetectable! Consequently, FORTRAN
programs whi ch mani pul ate large integers are very much conpli cated

by the need for frequent overflow tests in advance of arithnetic
*
operations. The sane conplication afflicts ALGOL and any other

progranmm ng | anguage | know, it is the price we nmust pay for a | apse
in conmuni cation anbng the architects, inplenenters and users of a
progranm ng | anguage.

A simlar lapse has frustrated attenpts so far to inplenent the
Unnor mal i zed and Counting Modes upon sone ot her machi nes. The B5500
di scards one of the digits in the characteristic of an over/under-
flowed result, thereby preventing any analysis from determ ning
whet her the result over/underflowed by a little or by a lot. The

| BM 360 series wantonly destroys everything, including the sign of an
overfl owed result.i The CDC 6600 has its own fixed ideas about over/

underfl ow. The tendency of other high-performance machi nes, |ike
the 1BM 360/91, to suffer frominprecise interrupts inplies that
t hose nmachines will have to deal with over/underflow entirely in

their hardware. This in turn inplies that their treatnent of over/

underflow will be intol erable unless nunerical analysts act soon to

| ay down reasonabl e guidelines for machi ne designers to foll ow.

*
These overflows can cause enbarrassnent if they are ignored; see R Korfhage,

Bul letin Amer. Math. Soc. 70 (1964), pp.341-2, and the retraction on p.747.

iIn Feb. 1967, | BM undertook to renedy these and other of the less attractive
aspects of the 360's floating point hardware. There have been significant

i mprovenents. See IBMs Form A22-6821-7, and an article by A Padegs in
IBM's System Journal 7 (1968) pp. 22-29.

| mpr oper Divi sions

On a 7094 with divide-check-trap hardware, inproper divisions
do not turn on the divide-check indicator. Instead they trap to
. FPTRP which, in our system responds as illustrated bel ow

1.0/0.0 = 1.7014 x 1038 and overflow occurs.

Any floating point division (single precision, double precision
or conplex) of a non zero nunber by zero is treated as a

quotient overflow and sets OVFLOW= .TRUE. . No provision

has been made to distinguish such divisions by zero from ot her
guotient overflows (except in the Counting Mbde, where a nessage
can be produced) because both events al nost al ways have the

same causes and consequences. Besides, the programer can easily
(and should) test directly whether a divisor is zero or not.

Each division by zero consunes nore than thrice as nmuch tine

as any other overfl ow

1/0 = Kickoff unl ess otherw se has been requested.

Fi xed point integer division by zero is alnpbst certainly a
drastic error in a FORTRAN program |In ALGOL the issue m ght

not be so clear.

0.0/0.0 = Kickoff unless otherwi se has been requested.

Fl oating point division of zero by zero is a synptom of a

serious flaw in the analysis behind a program

Unnornal i zed Division may ki ck off unl ess otherw se has been requested.

Fl oating point division by an unnormalized nunmber causes a
trap (unless the quotient produced by the hardware happens to
be correct). This is a synptomof certain programrng errors
l'ike

reference to a variabl e whose val ue has not previously been set,

ALOGE 3) instead of ALOG3.0)

a forgotten EQUI VALENCE (A1) ,

reference to A(13) when DI MENSI ON A(6) , or

a significant underflow in an Unnornalized Mde.

After the new . FPTRP was installed, failures began to show
up in programs which had previously been allowed to proceed silently
with a zero quotient for each inproper division. A few programers
protested that they liked the old ways better, but they seemto
represent a lunatic fringe anbng progranmers as a whole. The author
is under the inpression that the new .FPTRP's treatnent of inproper
divisions is nmore widely appreciated than all his other works put
toget her; actually the credit should be shared with R Jones and
J. Bell, who found a way to sinulate the divide-check-trap hardware
on a 7094 without that equi pnent. (The equi pment is soon to be
installed, and with it will come sone systemsinplification.)
However, the nobst inportant contribution nade by the new

.FPTRP is that a progranmer who has to cope with a conplicated
nunerical problemcan still wite whatever programfirst cones into
his mnd, just as he did before. And now he will rest assured that,
should his algorithmbe frustrated by over/underflow, he will find
out what happened and, perhaps, be able to cope with his difficulty
by sinply re-coding a snmall part of his programinstead of
| aboriously devising a deeper mathenatical analysis of his problem
The new .FPTRP strengthens the programer's nost val uabl e tool
hi ndsi ght .

- 48 -

Si nul ated Over/Underflow in Library Prograns

The concept of over/underflow is normally associated with the
elementary arithmetic operations, but it takes no inmagination to
extend the concept fromsinple functions of X 1like

AtX , A*X , AIX, X**2
to nore conplicated functions |ike
LOG X) , EXP(X) , COT(X) ,
In general, it seens reasonable to associate overflow with the

foll owi ng behavi our:
as X — Xo (xo may be £), f(x)> + ®
e.Jg. as x — 0+ log(x)— -°° ;
as X — +%° exp(x) - +

And underfl ow mi ght just as reasonably be associated with this

behavi our :

as X -+ | f(x) - 0.

e.Jg. as X —» - %, exp(x) - 0.

But we should not |ike to associate underflow with the val ue
log(l) =0 . In other words, underflow occurs only when the val ue of
the function f(x) is not zero though closer to zero than the

under fl ow t hreshol d.

Here are sone exanples to illustrate how our functions behave
i n FORTRAN:

LOG 0. 0) ~ -1.7014 E38 and OVFLOW is set

COT(£0.0) ~ *1.7014 OVFLOW

EXP(3000.) ~ 1.7014 E38 OVFLOW

EXP(-3000.) = 0.0 UNFLOW

(£0.0)**(-3.0) =~ +£1.7014 E38 OVFLOW

0.0**(-3.0) ~ 1.7014 E38 OVFLOW

(-100.)**(-25) = -0.0 UNFLOW

— 49 -

The | ast exanple is interesting because the | BM program signals
overfl ow during the conputation; we avoid overfl ow by conputing
(1./100)**25 instead of 1./(100.**25) . The previous tw exanples
shoul d not be confused with (integer)

0**(-3) = Kickoff , code 25 ;

the distinction is consistent with the rules for inmproper divisions.
Finally, no underflows occur when LOQG1.0) = 0.0 or when
SINPI (X) = sin oX vanishes for integer values of X.

| have rewitten several of the elementary function subprograns
inthe IBLIB library to ensure that their over/underfl ow behavi our
is consonant with the foregoing. Wen necessary, over/underflowis
simulated; this nerely neans that a transfer to .FPTRP is forced
in such a way that the FPT indicator word (cell 0) contains just
the informati on needed for the desired nmessage from .FPTRP . The
sinmplest way to do this in a FORTRAN programis to square a very
large or very small number. O course, .FPTRP nust be operating
in one of its Standard Mddes to allow such simul ated over/underfl ows
to produce their intended effects. |If the Printing Mode is in use,
as it should be while a programis being debugged, then the error-
trace points to the function which caused the apparent over/underfl ow,
ot herwi se the post-execution nmessage may sonetines identify that
function. As far as | can see, no vital information is |ost by
thus failing to discrininate between the sinul ated over/underfl ows
and the others. The user's view of the library prograns becomes | ess
cluttered by their various demands for valid argunents. And the
system gai ns several storage |ocations vacated by superfl uous
nessages.

However, sonme programers claimthat one desirable capability

has been lost. For exanple, they would prefer to be able to wite

CALL KI KOPT (9, 0)

in their main program whenever they want references to LOGX) in
all their subprograms to cause kickoff when X = 0.0 . M schene
requires that each appearance of LOQ X) be preceded by something
like

IF (X .EQ 0.0) CALL UNCLE(9, 18H LOG(X=0.0) ERROR)
I think that prograns witten the second way are easier to read and
to debug; but anyone who wants to |live dangerously can easily change
the library programs to suit hinmself because their listings are
usual |y anply supplied with coments.

A nmore penetrating criticismof ny schene is that it denies too
many users the val uabl e education obtained by reading certain | BM
di agnostics. For exanple, increasingly many of our users have too
little familiarity with the rate of growth of exp(x) to appreciate
that exp(88.0297) exceeds the overflow threshold. Qur university
used to include a professor whose first assignment to freshman
physi cs students was to plot a graph of exp(x) for 0 < x < 10 .
His attitude nmight well serve as an exanple for the socially acceptable
conput er systems of the near future.

The extension of a conprehensive treatnent of over/underfl ow
over the entire library of nunerical subprograns is an enornobus task
prodi gi ously demandi ng of attention to detail. Here is a sinple
exanpl e of a typical detail. The CABS function computes the

absol ute value of a conplex variable using the fornul ae
|a+ib|=|a|\/(1+(b/a)2) if |lal > |Db]
= b V(1 + (alb)?) if |bl 2 |al

- 51 -

For sinplicity assune the former case. Then underflow will occur
during the computation of 1 + (b/ a)2 whenever (b/ a)2 i s nonzero
but smaller than the underflow threshold. This underflowis
irrelevant, so our CABS program suppresses it. Had the program
been written in FORTRAN the suppression would have been acconpli shed
by conputing 1 + (b/a)2 in the Unnormalized Mbde. Simlar but
nore conplicated considerations affect the division of one conpl ex
nunber by anot her.

The task of tami ng over/underflow in the library is not yet
conpl eted; there are several relatively rarely used progranms that
remain to be revised. |Is this project worth its price? Wo should
say? Qur users can no longer offer a qualified opinion because
so few of themare now aware of the issues, and even those few hardly

ever have trouble dealing with over/underfl ow nowadays.

Addendum (June 1968)

Currently machi nes are being produced which expl oit
paral | el i sm and pipeline principles to achieve extrenely high
processi ng speeds, but at the cost of what are called
“inprecise interrupts”. The problemis illustrated by the
foll owi ng sequence of FORTRAN code.

A= ...
B=CDE
|F (OVFLOW GO TO 999
10 1 =1 +1

11 F = (AQ/B

A typical sequence of events in the conputer's central processing

units will be described on the assunption that none of the

variables A B, C, D E F, G | or OVFLOW share storage by virtue
of an EQUI VALENCE st at enent .

After instructions for statement 8 have been fetched, and
while the value intended for A is being conputed,
C is fetched (from storage),

D is fetched,

the value of A is delivered ready for storing,
instructions for statement 9 are fetched,
multiplication of C'D is initiated,

A is stored,

E is fetched,

OVFLOW is fetched,

OVFLOW is tested and found to be .FALSE. |,
instructions for statement 10 are fetched,

I is fetched,

the product C*D is delivered ready for use.

- B3 -

If CD has overflowed, a flag is set now to recoed the event;
if the overflowis going to be allowed to interrupt the system
another flag is set to inhibit any further fetches of instructions.
The value of C*D is replaced by sonething el se and processing
conti nues.
The division (C*D/E is initiated,
1 is fetched,
the sum 1+1 is formed in a fast integer adder
instructions for statement 11 are fetched (unless a flag is set),
I =141 is stored,
A is fetched (unless ...),
G is fetched (unless ...),
the floating addition of (A+G is initiated (unless ...)
fetching B is inhibited by instructions held over fromstatenent 8

the quotient (C*D)/E becones ready for storage into B
and use in statenent 11

This is the earliest point at which overflowin C*D can

suspend the nornmal sequence of execution w thout |eaving fragnents

of partially executed instructions circulating in the central
processor; but the time is too | ate because instruction 9 has been

passed.

- B4 -

The foregoi ng sequence gives only a rough illustration
of the probl em because details of machine design vary
consi derably from nodel to nodel. Ampbng the machi nes which
suffer fromsone formof inmprecise interrupt (at this date) are
the CDC 6600 and 7600, the |IBM 360/91, and the Burroughs B 8500.
Over/underflows on these nachines are dealt with by their
hardware in a manner simlar to our Standard Silent Mde. A
program s every attenpt to deal with over/underfl ow nore
flexibly is frustrated by the hardware. For exanple, there is
no easy way to tell whether a conputation has overflowed only
slightly or by a lot; there is no easy way to distinguish
bet ween i nmportant and uni nportant underflows as we do in the
Unnornal i zed Modes; division by zero is always treated as a

di saster.

There seens to be no way to i nprove these machi nes
treatment of arithmetic exceptions that does not involve
substantial changes to the hardware. W shall offer here two
suggesti ons which confine the changes to the floating point
part of the central processor

One possibility is to micro-programfacilities conparable
to our five Modes into the hardware. Such a m cro-program does
not have to run at the same high speed as the rest of the
har dwar e because a nodest | oss of speed on rare occasions is

i nconsequenti al

- 55 -

A second possibility is to I engthen the centra
processor's registers so that they may hol d nunmbers |ying
beyond the range normally held in storage, thereby permtting
expressions of nodest conplexity to be evaluated correctly
despite what might otherw se be over/underflow in sub-
expressions. Consequently, over/underfl ow need occur only when
information is lost by an attenpt either to store a nunber
that cannot be fitted into storage, or to push the contents

of a register beyond its extended range.

Both possibilities are conplicated, but not as
conplicated as the lengths to which programmers will occasionally
be forced to go to deal with arithmetic exceptions on those

machi nes.

Sanpl es of Library Program Wite-Ups from
The PROGRAMMVERS REFERENCE MANUAL,
3rd edition, Aug. 1967
Univ. of Toronto, Institute of Conputer Science.

(Extracted for a Sumtmer Course at the Univ. of M chigan
June 17-21, 1968.}

The foll owi ng FORTRAN functions are described herein:

A**B DP**DQ CABS , COos/SIN COSPI/ SINPI
Conplex arithnetic CSQRT DOBRT , DSQRT , EXP ,
TWOXP (Variable)**(Integer) , LOG LOG 10

LOG 2 , Max/ m n over arrays, QBRT SQRT

These have been coded to run under an |ICS-nodified version
of IBMs IBSYS v.13 on the 7094-11. They differ from prograns
supplied by IBMmainly in two respects:

i) Al'l programs conformto the I CS conventions concerning
over/underflow, contentious values |like 0**0 , and

di agnosti c options and nessages.

ii) Al clains to accuracy have been proved mat hematically by
the programmer; this provides no guarantee of accuracy
since proofs are as vulnerable to error as are prograns.

Al so every program has been tested for accuracy and speed

on tens of thousands of sanple argunents, including

critical values appropriate to the function and to the
program under test. No claimhas been refuted by any

test. For five years, every user of IBMs Fortran IV on

the I1CS' s machi ne has used these functions instead of |BMs;

nobody has conpl ai ned yet (June 1968).

The progranms described herein are some of the | atest
versions of programs witten in 1962-3 for a 7090 at the
Univ. of Toronto to replace the appalling FORTRAN functions
supplied by IBMat that time. Meanwhile IBMs elenentary
FORTRAN functions have inproved consi derably, and now two
excell ent collections of programs are distributed with
I BSYS v. 13 for the 7090/7094 and with FORTRAN IV (E.GH.)
for Systeni 360. These progranms were produced at the
Uni versity of Chicago chiefly by M. Hirondo Kuki, whose
work is described in

- “ MATHEMATI CAL FUNCTI ONS”, a description of the Univ.
of Chicago Conputation Center's 7094 Math. Function
Library, by H Kuki, wth a foreward by C. C. J.

Root han, Feb. 1966.

| BM 7090/ 7094 1 BSYS v. 13 | BJOB Processor manual ,
appendi x H, Form C28-6389 (Mar. 1966).

| BM Systemf 360 FORTRAN |V Library Subprogram Form
C28- 6596- 2 (1966) .

“Performance Statistics of the FORTRAN IV (H) Library
for the IBM Systeni 360" by N A dark, WJ. Cody,
K.E. HIllstrom and E A Thieleker, Argonne Nat'l Lab.
Report ANL-7321, My 1967.

The | ast report, plus additional work by WJ. Cody at Argonne
and by L.R Turner at NASA's Lewis Res. Center, showed that
Kuki's progranms for /360 were not as accurate as the best
conpar abl e prograns on sone other machines. Mst of the
trouble was attri butable to oversights in the design of /360's
floating point hardware which Kuki had recognized in 1964. He
wor ked sel f-effacingly on a SHARE comittee which, in 1966-67,
persuaded IBMto remedy nmost of these oversights; the fruits

of that effort appear anpng the differences between rel eases

-6 and -7 of “IBM System 360 Principles of Operation” Form
A22-6821 (1967-68). He has now i nproved his /360 prograns,

t aki ng advant age of better hardware and better algorithms
described in forthconmi ng rel eases of C28-6596, to the point
where the rest of the conputing industry will do well if it

can match his exanpl e.

The 1 CS prograns described herein performbetter (though
sel dom by much) than conparabl e prograns for the 7094
distributed by IBM this is as it should be because the ICS
versi ons were produced for a purpose that cannot be justified
commercially — to approach perfection. The design priorities

wer e t hese:

i) Performance will be judged solely by what has been proved
mat hemati cal |y taking roundoff, over/underflow and al
ot her aspects of the 7094-11 into account. The tests
are intended to check the proof, not the program the
proof is wong except perhaps when the program s tests
turn out just slightly better than predicted

ii) Freedom from exceptions is valued nost highly, Accuracy

second, Speed third, Storage econony fourth.

A mat hemati cal nmodel exists which is worth keeping in
m nd when apprai sing any program Let F(X) be the nunerica
val ue stored by a programintended to compute f(x) . In

general, the best that can be proved is a relation
F(X) = (1+e) f((1+3)X)

inwhich ¢ and & represent errors for which we seek the
snal | est possi bl e bounds. Sone trade-off is possible between
¢ and & insofar as the bound upon one may be reduced at

t he expense of increasing the other's. The sinplest and nost
desirable case is that when & =0, so that ¢ can be
regarded as “the” error in F(X) = (1+¢) f(X) . However,
there are occasi ons when & cannot be suppressed; see the
wite-ups for COS/SIN. Cccasionally & can be suppressed

only at an intolerable cost; see DP**DQ

We have attenpted to keep & = 0 and to keep ¢ well
below 1 ulp (unit in the last place stored). W have al so
attenpted to preserve famliar properties of f(x) Ilike
nonotonicity, symretry, sinple identities and well-known
speci al values as far as possible in the conputed approxinmation
F(X) . Exanples are

SQRT(X**2) = ABS(X)

SIN(X)**2 + COS(X)**2 = 1.0 within 3 ulp |,

LOG X)/(X-1.) - 1.0 within 3 ulp as X - 1.0

SIN(X)/X < 1.0
Qur notives for these attenpts have been echoed recently by
H Kuki in a nenorandum “Comments on the ANL eval uation
[ANL- 7321 by Clark, Cody et al.] of OS/ 360 FORTRAN Math Library”
wherein he says on p. 4

“

a. It is the strictest accuracy requirenent for
subrouti nes one can concei ve.

b. Therefore it gives the sinplest goal for
programmers to aimat so far as accuracy is
concer ned.

c. In sone conputations (e.g. integral argunments,
assum ng all prior computations went
meticul ously well) where there is no error in
the argunment, the benefit is real

d. It is sinpler to explain to the users.

O these reasons, it seems to ne the last is nost inportant.
After all, coding a subroutine is only half the work, and the
remai ni ng hal f consists of informng the users what exactly

t he subroutine acconpli shes.

but it may cost di anond where nere gl ass may do...”

To hel p apprai se the costs, here are sone characteristics
of the I BM 7094-11

Storage: 32678 words, 36 bits each, 1.4 psec cycle, 2-way
interl eave.

Speed: Most instructions take one word and 2.8 psec. Single
preci sion floating point operations take about 4.2 psec.
to add, 5.6 to multiply, 8.4 to divide;
doubl e precision takes about twi ce as | ong.

Single precision: 27 significant bits; 1 ulp is a
rel ative error between .75158 and 1.510'8

Doubl e precision: 54 bits, of which the last two or three are
sneared by double precision multiplication and division

To prove mathematically that our progranms perform at
least as well as is clainmed may at first appear to be a

form dabl e task, especially when the error is clainmed to be

so small; e.g.
< .50000163 ulp for SQRT and comnpl ex arithnetic
.52 LOG and QBRT
.77 EXP
. 854 CABS
1.0 COSPI, SINPI, DSQRT, DQBRT.

The proofs were carried out in 1962-5 via | engthy conputations
wi th both deci mal and octal desk cal cul ati ons. Nowadays nost
of the proofs would be regarded as routine applications of
hi gh-precision Interval Arithmetic. Here is an exanple.
Nonminally, if 2% <|f] <%,
SINPI(f/2) = (((ssf? + s)f2 + s)f? + n/2)f
for certain constants sj ; actual ly the machi ne generates

fo = f2(1+eq) :
SINPI (f/2) = (((S3f 2(1+€2) + Sz) (1+€3)f2(1+€4) + S]_) (1+€5)f2(1+€6) +

+ (1-6)H/2) (1+e7) f(1+eg)
where each ¢ represents a rounding error conmitted after an
addition or nultiplication, and & 1is the error conmtted by

truncating nm/2 to 27 bits. W wsh to conpare SINPI(f/2)
with sin(nf/2) = f(w/2 + $8 6 f% + egor 114 |
where oj = (suitable constant) and eg9 = eo(f) []0, 1f

taking into account the fact that each ¢ and & is bounded

in a way that can be inferred rigorously fromthe published

characteristics of the 7094.

The conparison is effected first by rearranging the synbolic expression
for

(SINPI(f/2) — sin(nf/2))/sin(nf/2)
in a way whi ch achieves as much synbolic cancell ation as possibl e,
second by conputing appropriately precise interval approximtions
for the constants o and /2 (the s; are taken precisely
out of the program SINPlI), and third by using interva
arithnmetic to overestimte the range of val ues taken by the
expression as all ¢ and 5 vary independently over their

ranges.

In general, given any function f(x) , ingenuity may be
needed to choose a good fornula for approximting f(x) ,
find best values for constants, wite an efficient program
F(X) , and to rearrange F(X) — f(X) synbolically in a way

suitable for Interval Analysis, but the rest is routine.

W Kahan
Univ. of Toronto
June 1968

