On convergence of online learning in routing games

Walid Krichene Benjamin Drighes Alex Bayen

September 13, 2013
Outline

1. No-regret selfish routing
 - The routing game and Nash equilibria
 - No-regret routing
 - Weak convergence of no-regret routing

2. Discounted regret
 - Motivation for decreasing learning rates
 - Weak convergence of no-discounted-regret learning

3. Strong convergence
 - A continuous-time version of dynamics
 - The REP update rules

4. Open problems and extensions
Outline

1. No-regret selfish routing
 - The routing game and Nash equilibria
 - No-regret routing
 - Weak convergence of no-regret routing

2. Discounted regret
 - Motivation for decreasing learning rates
 - Weak convergence of no-discounted-regret learning

3. Strong convergence
 - A continuous-time version of dynamics
 - The REP update rules

4. Open problems and extensions
Routing game

\begin{itemize}
 \item Graph \((V, E)\)
 \item source-sink pairs, \((s_k, t_k)\): total flow \(F_k\) (cars/s, packets/s etc.), paths \(\mathcal{P}_k\)
 \item feasible flow: \(f\) such that for all \(k\), \(\sum_{p \in \mathcal{P}_k} f_p = F_k\)
\end{itemize}

Figure: Example network
Routing game

Graph \((V, E)\)

source-sink pairs, \((s_k, t_k)\): total flow \(F_k\) (cars/s, packets/s etc.), paths \(P_k\)

feasible flow: \(f\) such that for all \(k\), \(\sum_{p \in P_k} f_p = F_k\)

Latency on edge \(e\): \(\ell_e : f_e \mapsto \ell_e(f_e)\), convex increasing
Routing game

- Graph \((V, E)\)
- Source-sink pairs, \((s_k, t_k)\): total flow \(F_k\) (cars/s, packets/s etc.), paths \(\mathcal{P}_k\)
- Feasible flow: \(f\) such that for all \(k\), \(\sum_{p \in \mathcal{P}_k} f_p = F_k\)
- Latency on edge \(e\): \(\ell_e : f_e \mapsto \ell_e(f_e)\), convex increasing
- Players choose a path \(p \in \mathcal{P}_k\) selfishly, want to minimize personal latency \(\ell_p(f) = \sum_{e \in p} \ell_e(f_e)\)

Player = infinitesimal amount of flow.
\(f = \) combined decision of all players.
More precisely

- Measurable set of players \((S_k, S_k, m_k)\), atomless
- \(F_k = m_k(S_k)\)
More precisely

- Measurable set of players \((S_k, S_k, m_k)\), atomless
- \(F_k = m_k(S_k)\)
- Path choice function \(C_k : S_k \rightarrow \mathcal{P}_k\)

\[
f_p^k = m_k(C_k^{-1}(\{p\}))
\]
Selfish routing game

Nash equilibrium

\(f \) is a Nash equilibrium if for all \(k \), for all \(p \in \mathcal{P}_k \) with positive flow, \(\ell_p(f) \) is minimal on \(\mathcal{P}_k \)

\((\ell_p(f) \leq \ell_{p'}(f) \) for all \(p' \in \mathcal{P}_k \).
Selfish routing game

Nash equilibrium

f is a Nash equilibrium if for all k, for all $p \in \mathcal{P}_k$ with positive flow, $\ell_p(f)$ is minimal on \mathcal{P}_k

$(\ell_p(f) \leq \ell_{p'}(f) \text{ for all } p' \in \mathcal{P}_k)$.

Equivalent to Nash equilibrium for almost every player.
Selfish routing game

Nash equilibrium

\(f \) is a Nash equilibrium if for all \(k \), for all \(p \in \mathcal{P}_k \) with positive flow, \(\ell_p(f) \) is minimal on \(\mathcal{P}_k \)

\((\ell_p(f) \leq \ell_{p'}(f) \) for all \(p' \in \mathcal{P}_k \)).

Equivalent to Nash equilibrium for almost every player.

- How to compute Nash equilibria?
Selfish routing game

Nash equilibrium

f is a Nash equilibrium if for all k, for all $p \in \mathcal{P}_k$ with positive flow, $\ell_p(f)$ is minimal on \mathcal{P}_k

$(\ell_p(f) \leq \ell_{p'}(f)$ for all $p' \in \mathcal{P}_k)$.

Equivalent to Nash equilibrium for almost every player.

- How to compute Nash equilibria?
 Convex formulation

Rosenthal potential function

f is a Nash equilibrium iff it minimizes a potential function

$$\min_{f \geq 0, \phi} \sum_e \int_0^{\phi_e} \ell_e(u) du$$

subject to

$$\forall e, \sum_{p \ni e} f_p = \phi_e \quad \sum_p f_p = F$$
Motivation for a learning model

How do players find a Nash equilibrium?
Motivation for a learning model

- How do players find a Nash equilibrium?
 Ideally: distributed, and has minimal information requirements.
Motivation for a learning model

- How do players find a Nash equilibrium? Ideally: distributed, and has minimal information requirements.
- Need a model of dynamics to apply control
Outline

1. No-regret selfish routing
 - The routing game and Nash equilibria
 - No-regret routing
 - Weak convergence of no-regret routing

2. Discounted regret
 - Motivation for decreasing learning rates
 - Weak convergence of no-discounted-regret learning

3. Strong convergence
 - A continuous-time version of dynamics
 - The REP update rules

4. Open problems and extensions
The hedge algorithm

Fix one player. Player maintains a probability distribution $\mu(t)$ over paths, draw path according to $\mu(t)$.

Multiplicative Weights

- distribution $\mu(t)$ over paths p on day t
- update the distribution according to observed loss $\mu_p(t + 1) \propto \mu_p(t)e^{-\gamma \ell_p(t)}$
Regret Bound

- Assume losses are in $[0, \rho]$.
- Expected loss is $\ell_{\text{alg}}(t) = \sum_p \mu_p(t) \ell_p(t)$

\[
R(T) = \sum_{t=1}^{T} \ell_{\text{alg}}(t) - \min_p \sum_{t=1}^{T} \ell_p(t)
\]
Regret Bound

- Assume losses are in $[0, \rho]$.
- Expected loss is $\ell_{\text{alg}}(t) = \sum_p \mu_p(t) \ell_p(t)$

\[
R(T) = \sum_{t=1}^{T} \ell_{\text{alg}}(t) - \min_p \sum_{t=1}^{T} \ell_p(t)
\]

Regret of the expected loss

\[
\frac{R(T)}{T} \leq \frac{\rho \ln |\mathcal{P}|}{T \gamma} + \rho \gamma
\]
No-regret routing at the population level

- Assume all players apply the same learning algorithm.
No-regret routing at the population level

- Assume all players apply the same learning algorithm.
- For any player x, $C(x, t)$ is a random variable with $P(C(x, t) = p) = \mu_p(t)$
Assume all players apply the same learning algorithm.

For any player \(x \), \(C(x, t) \) is a random variable with \(P(C(x, t) = p) = \mu_p(t) \).

The flows \(f_p(t) = m(C(\cdot, t)^{-1}(\{p\})) \) is a random variable.
No-regret routing at the population level

- Assume all players apply the same learning algorithm.
- For any player x, $C(x, t)$ is a random variable with $P(C(x, t) = p) = \mu_p(t)$
- The flows $f_p(t) = m(C(\cdot, t)^{-1}\{p\})$ is a random variable
- $f_p(t) = \mu_p(t)$ a.s. (Fubini's theorem)
Outline

1. No-regret selfish routing
 - The routing game and Nash equilibria
 - No-regret routing
 - Weak convergence of no-regret routing

2. Discounted regret
 - Motivation for decreasing learning rates
 - Weak convergence of no-discounted-regret learning

3. Strong convergence
 - A continuous-time version of dynamics
 - The REP update rules

4. Open problems and extensions
Weak convergence

Weak convergence of no-regret routing

If an update rule satisfies the regret bound, then for all $\epsilon > 0$, there exists $\gamma > 0$ such that no-regret learning with rate γ converges in the sense

$$
\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \mu(t) \in \mathcal{N}_\epsilon
$$

\mathcal{N}_ϵ: ϵ-approximate Nash equilibrium.

Recall the regret bound

$$
\frac{R(T)}{T} \leq \frac{\rho \ln |\mathcal{P}|}{T \gamma} + \rho \gamma
$$
Outline

1. No-regret selfish routing
 - The routing game and Nash equilibria
 - No-regret routing
 - Weak convergence of no-regret routing

2. Discounted regret
 - Motivation for decreasing learning rates
 - Weak convergence of no-discounted-regret learning

3. Strong convergence
 - A continuous-time version of dynamics
 - The REP update rules

4. Open problems and extensions
Hedge as a regularized greedy algorithm

Can show the hedge update rule is solution to

Greedy algorithm, regularized by the K-L divergence

\[
\text{minimize}_{\mu \geq 0} \sum_p \mu_p \ell_p(t - 1) + \frac{1}{\gamma} D(\mu || \mu(t - 1))
\]

subject to

\[
\sum_p \mu_p = 1
\]
Hedge as a regularized greedy algorithm

Can show the hedge update rule is solution to

Greedy algorithm, regularized by the K-L divergence

\[
\begin{align*}
\text{minimize}_{\mu \geq 0} \quad & \sum_p \mu_p \ell_p(t - 1) + \frac{1}{\gamma} D(\mu || \mu(t - 1)) \\
\text{subject to} \quad & \sum_p \mu_p = 1
\end{align*}
\]

- \(D(\mu || \mu(t - 1)) = \sum_p \mu_p \ln \frac{\mu_p}{\mu_p(t-1)} \)
- \(\ell_p(t - 1) \) loss on the previous day.
Hedge as a regularized greedy algorithm

Can show the hedge update rule is solution to

Greedy algorithm, regularized by the K-L divergence

\[
\begin{align*}
\text{minimize}_{\mu \geq 0} & \quad \sum_p \mu_p \ell_p(t-1) + \frac{1}{\gamma} D(\mu || \mu(t-1)) \\
\text{subject to} & \quad \sum_p \mu_p = 1
\end{align*}
\]

- \(D(\mu || \mu(t-1)) = \sum_p \mu_p \ln \frac{\mu_p}{\mu_p(t-1)} \)
- \(\ell_p(t-1) \) loss on the previous day.

Limit cases:
- \(\gamma \to \infty \), greedy algorithm
- \(\gamma \to 0 \), static distribution
Discounting the losses

Put weights on time \((\gamma(t))_{t \in \mathbb{N}}\) : players care more about present than future. The sequence of discounting factors \(\gamma\) is universal.
Assumption: \(\gamma\) positive, non-summable, \(\longrightarrow 0\).
Discounting the losses

Put weights on time \((\gamma(t))_{t \in \mathbb{N}}\): players care more about present than future. The sequence of discounting factors \(\gamma\) is universal. Assumption: \(\gamma\) positive, non-summable, \(\longrightarrow 0\).

Definition (Discounted regret)

\[
R(T) = \sum_{t=0}^{T} \gamma(t) \sum_{p} \mu_p(t) \ell_p(\mu(t)) - \min_{p} \sum_{t=0}^{T} \gamma(t) \ell_p(\mu(t))
\]

No-regret if

\[
\frac{1}{\sum_{t=0}^{T} \gamma(t)} R(T) \xrightarrow{T \to \infty} 0
\]
Discounted hedge algorithm

Regret bound

\[R(T) \leq \rho \log |\mathcal{P}| + \rho \sum_{t \leq T} \gamma(t)^2 / 8 \]

Consequence: if \(\gamma \) is square-summable, discounted Hedge achieves no-regret.
Discounted hedge algorithm

Regret bound

\[R(T) \leq \rho \log |\mathcal{P}| + \rho \sum_{t \leq T} \gamma(t)^2 / 8 \]

Consequence: if γ is square-summable, discounted Hedge achieves no-regret.
Outline

1. No-regret selfish routing
 - The routing game and Nash equilibria
 - No-regret routing
 - Weak convergence of no-regret routing

2. Discounted regret
 - Motivation for decreasing learning rates
 - Weak convergence of no-discounted-regret learning

3. Strong convergence
 - A continuous-time version of dynamics
 - The REP update rules

4. Open problems and extensions
Weak convergence to Nash equilibria

Theorem

Under a discounted no-regret routing algorithm, \((\mu(t))_t\) converges to Nash equilibria on a subset of days of density one.

- Subsequence \((\mu_{t_k})_k\) converges

\[
\frac{\sum_{t \leq T} \gamma(t)}{\sum t \leq T} \xrightarrow{T \to \infty} 1
\]
Weak convergence to Nash equilibria

Theorem

Under a discounted no-regret routing algorithm, $(\mu(t))_t$ converges to Nash equilibria on a subset of days of density one.

- subsequence $(\mu_{t_k})_k$ converges
 \[
 \frac{\sum_{k \leq T \gamma(t_k)}}{\sum_{t \leq T} \gamma(t)} \xrightarrow{T \to \infty} 1
 \]

Proof.

- Convexity:
 \[
 V(\mu(t)) - V(\mu) \leq \nabla V(\mu(t))^T (\mu(t) - \mu) = \sum_{k=1}^K F_k \sum_{p \in \mathcal{P}_k} \ell_p(\mu(t))(\mu_p(t) - \mu_p)
 \]
Weak convergence to Nash equilibria

Theorem

Under a discounted no-regret routing algorithm, \((\mu(t))_t\) converges to Nash equilibria on a subset of days of density one.

- subsequence \((\mu_{t_k})_k\) converges

\[
\frac{\sum_{t_k \leq T} \gamma(t_k)}{\sum_{t \leq T} \gamma(t)} \xrightarrow{T \to \infty} 1
\]

Proof.

- Convexity:

\[
V(\mu(t)) - V(\mu) \leq \nabla V(\mu(t))^T (\mu(t) - \mu) = \sum_{k=1}^{K} F_k \sum_{p \in \mathcal{P}_k} \ell_p(\mu(t))(\mu_p(t) - \mu_p)
\]

- Discounted no-regret:

\[
\sum_{t \leq T} \gamma(t)(V(\mu(t)) - V(\mu)) \leq \sum_{k=1}^{K} F_k R_k(T)
\]
Weak convergence to Nash equilibria

Theorem

Under a discounted no-regret routing algorithm, \((\mu(t))_t\) converges to Nash equilibria on a subset of days of density one.

- Subsequence \((\mu_{t_k})_k\) converges
 \[
 \frac{\sum_{t_k \leq T} \gamma(t_k)}{\sum_{t \leq T} \gamma(t)} \xrightarrow{T \to \infty} 1
 \]

Proof.

- Convexity:
 \[
 V(\mu(t)) - V(\mu) \leq \nabla V(\mu(t))^T (\mu(t) - \mu) = \sum_{k=1}^{K} F_k \sum_{p \in \mathcal{P}_k} \ell_p(\mu(t))(\mu_p(t) - \mu_p)
 \]

- Discounted no-regret:
 \[
 \sum_{t \leq T} \gamma(t)(V(\mu(t)) - V(\mu)) \leq \sum_{k=1}^{K} F_k R_k(T)
 \]

- Absolute Cesaro convergence implies convergence on a subset of density one.
Outline

1. No-regret selfish routing
 - The routing game and Nash equilibria
 - No-regret routing
 - Weak convergence of no-regret routing

2. Discounted regret
 - Motivation for decreasing learning rates
 - Weak convergence of no-discounted-regret learning

3. Strong convergence
 - A continuous-time version of dynamics
 - The REP update rules

4. Open problems and extensions
Replicator dynamics

Replicator equation

In the update equation $\mu_p(t + 1) \propto \mu_p(t)e^{-\gamma \ell_p(t)}$, let $\gamma \to 0$. We obtain the autonomous ODE:

\[
\begin{aligned}
\mu(0) &\in \Delta \\
\forall p \in \mathcal{P}_k, \quad \frac{d\mu_p}{dt} &= \frac{\mu_p(\ell^k(\mu) - \ell_p(\mu))}{\rho}
\end{aligned}
\]

Also in evolutionary game theory.

Restricted Nash equilibria are stationary points, partitioned into:

- Nash equilibria
- non-Nash equilibria
Replicator dynamics

Replicator equation

In the update equation $\mu_p(t + 1) \propto \mu_p(t) e^{-\gamma \ell_p(t)}$, let $\gamma \to 0$.

We obtain the autonomous ODE:

$$\begin{cases}
\mu(0) \in \Delta \\
\forall p \in \mathcal{P}_k, \frac{d\mu_p}{dt} = \mu_p(\bar{\ell}^k(\mu) - \ell_p(\mu)) / \rho
\end{cases} \quad (1)$$

Also in evolutionary game theory.

Restricted Nash equilibria are stationary points, partitioned into:

- Nash equilibria
- non-Nash equilibria unstable
Replicator dynamics

Replicator equation

In the update equation $\mu_p(t + 1) \propto \mu_p(t) e^{-\gamma \ell_p(t)}$, let $\gamma \to 0$. We obtain the autonomous ODE:

$$\begin{cases}
\mu(0) \in \Delta \\
\forall p \in \mathcal{P}_k, \frac{d\mu_p}{dt} = \mu_p(\bar{\ell}^k(\mu) - \ell_p(\mu))/\rho
\end{cases} \tag{1}$$

Also in evolutionary game theory.

Restricted Nash equilibria are stationary points, partitioned into:

- Nash equilibria
- non-Nash equilibria unstable

Theorem

Every solution of the ODE (1) converges to the set of restricted Nash equilibria of the routing game.
Replicator dynamics

Replicator equation

In the update equation $\mu_p(t + 1) \propto \mu_p(t)e^{-\gamma \ell_p(t)}$, let $\gamma \to 0$.
We obtain the autonomous ODE:

\[
\begin{align*}
\mu(0) \in \hat{\Delta} \\
\forall p \in P_k, \quad \frac{d\mu_p}{dt} = \mu_p(\bar{\ell}^k(\mu) - \ell_p(\mu))/\rho
\end{align*}
\]

(1)

Also in evolutionary game theory.

Restricted Nash equilibria are stationary points, partitioned into:

- Nash equilibria
- non-Nash equilibria unstable

Theorem

Every solution of the ODE (1) converges to the set of restricted Nash equilibria of the routing game.

Proof: V is a Lyapunov function for \mathcal{RN}.

Walid Krichene (UC Berkeley) On convergence of online learning in routing | September 13, 2013 21 / 27
Outline

1. No-regret selfish routing
 - The routing game and Nash equilibria
 - No-regret routing
 - Weak convergence of no-regret routing

2. Discounted regret
 - Motivation for decreasing learning rates
 - Weak convergence of no-discounted-regret learning

3. Strong convergence
 - A continuous-time version of dynamics
 - The REP update rules

4. Open problems and extensions
REP algorithms

Discretization of the replicator dynamics (REP):

\[
\begin{cases}
\mu(0) \in \Delta \\
\mu_p(t + 1) - \mu_p(t) = \gamma(t)\mu_p(t) \left(\bar{\ell}^k(\mu(t)) - \ell_p(\mu(t)) \right) / \rho + \gamma(t)U_p(t + 1)
\end{cases}
\]

\((U(t))_{t \geq 1}\) deterministic or stochastic perturbations that satisfy for all \(T > 0\),

\[
\lim_{\tau \to \infty} \max_{\tau'} \left\{ \left\| \sum_{t=\tau}^{\tau'-1} \gamma(t) U(t + 1) \right\| : \tau' = \{ \tau + 1, \cdots, \sup\{ t \geq 0 : t \geq T_t + T \} \} \right\} = 0
\]
In particular for $U = 0$, we obtain a new update rule

\[
\begin{cases}
\mu(0) \in \Delta \\
\mu_p(t+1) - \mu_p(t) = \gamma(t)\mu_p(t) \left(\bar{\ell}_k(\mu(t)) - \ell_p(\mu(t)) \right) / \rho
\end{cases}
\]
In particular for $U = 0$, we obtain a new update rule

\[
\begin{aligned}
\mu(0) &\in \Delta \\
\mu_p(t+1) - \mu_p(t) &= \gamma(t)\mu_p(t) (\bar{\ell}_k(\mu(t)) - \ell_p(\mu(t))) / \rho
\end{aligned}
\]

- Discounted no-regret algorithm.
In particular for $U = 0$, we obtain a new update rule

$$\begin{cases} \mu(0) \in \Delta \\
\mu_p(t+1) - \mu_p(t) = \gamma(t) \mu_p(t) \left(\ell^k(\mu(t)) - \ell_p(\mu(t)) \right) / \rho \end{cases}$$

- Discounted no-regret algorithm.
- Solution to regularized optimization:

$$\mu(t) \in \arg \min_{\mu \in \Delta} \sup_{p} \mu_p \ell_p(\mu(t-1)) / \rho + \frac{1}{\gamma(t)} R(\mu_{\|} \mu(t-1))$$

where $R(x\|y) = \frac{1}{2} \sum_p y_p \left(\frac{x_p}{y_p} - 1 \right)^2$
In particular for $U = 0$, we obtain a new update rule

$$
\begin{cases}
\mu(0) \in \Delta \\
\mu_p(t + 1) - \mu_p(t) = \gamma(t) \mu_p(t) \left(\bar{\ell}^k(\mu(t)) - \ell_p(\mu(t)) \right) / \rho
\end{cases}
$$

- Discounted no-regret algorithm.
- Solution to regularized optimization:

$$
\mu(t) \in \arg\min_{\mu \in \Delta} \sup_p \mu_p \ell_p(\mu(t - 1)) / \rho + \frac{1}{\gamma(t)} R(\mu \| \mu(t - 1))
$$

where $R(x \| y) = \frac{1}{2} \sum_p y_p \left(\frac{x_p}{y_p} - 1 \right)^2$

The discounted hedge algorithm is also a REP algorithm.
Convergence to Nash equilibria

Theorem

Under any discounted no-regret REP algorithm, the sequence $\mu(t)$ converges to the set of Nash equilibria.

Proof:

Let X be the affine interpolation of the sequence $\mu(t)$. X is an Asymptotic Pseudo Trajectory for the ODE.

Let $L(X)$ be the set limit points of X. V is constant over $L(X)$. Use weak convergence to conclude that constant value is minimum of V.

Walid Krichene (UC Berkeley)
Convergence to Nash equilibria

Theorem

Under any discounted no-regret REP algorithm, the sequence $\mu(t)$ converges to the set of Nash equilibria.

Proof:

- Let X be the affine interpolation of the sequence $\mu(t)$. X is an Asymptotic Pseudo Trajectory for the ODE.
Convergence to Nash equilibria

Theorem
Under any discounted no-regret REP algorithm, the sequence $\mu(t)$ converges to the set of Nash equilibria.

Proof:
- Let X be the affine interpolation of the sequence $\mu(t)$. X is an Asymptotic Pseudo Trajectory for the ODE.
- Let $L(X)$ be the set limit points of X.
Theorem

Under any discounted no-regret REP algorithm, the sequence $\mu(t)$ converges to the set of Nash equilibria.

Proof:

- Let X be the affine interpolation of the sequence $\mu(t)$. X is an Asymptotic Pseudo Trajectory for the ODE.
- Let $L(X)$ be the set limit points of X.
- V is constant over $L(X)$.
Convergence to Nash equilibria

Theorem

Under any discounted no-regret REP algorithm, the sequence $\mu(t)$ converges to the set of Nash equilibria.

Proof:

- Let X be the affine interpolation of the sequence $\mu(t)$. X is an Asymptotic Pseudo Trajectory for the ODE.
- Let $L(X)$ be the set limit points of X.
- V is constant over $L(X)$.
- Use weak convergence to conclude that constant value is minimum of V.
Open problems and extensions

- Conjecture: if $\mu(0) \in \hat{\Delta}$, the replicator dynamics converge to N.
Open problems and extensions

- Conjecture: if $\mu(0) \in \bar{\Delta}$, the replicator dynamics converge to N.
- Relax assumption that all players “learn in the same way” (universal discount sequence $\gamma(t)$, universal initial distribution $\mu(0)$).
Open problems and extensions

- Conjecture: if $\mu(0) \in \Delta$, the replicator dynamics converge to N.

- Relax assumption that all players “learn in the same way” (universal discount sequence $\gamma(t)$, universal initial distribution $\mu(0)$).

- Apply control to the system: e.g. tolling.
Thank you.