On the Convergence of No-regret Learning in Selfish Routing

ICML 2014 - Beijing

Walid Krichene ¹ Benjamin Drighès ² Alexandre Bayen ³

¹ walid@cs.berkeley.edu
² benjamin.drighes@polytechnique.edu
³ bayen@berkeley.edu
Routing game: players choose routes.
Population distributions: $\mu^{(t)} \in \Delta^{P_1} \times \cdots \times \Delta^{P_K}$
Nash equilibria: \mathcal{N}
Classes of dynamics such that $\mu^{(t)} \to \mathcal{N}$
Introduction

Routing game: players choose routes.
Population distributions: $\mu^{(t)} \in \Delta P_1 \times \cdots \times \Delta P_K$
Nash equilibria: \mathcal{N}
Classes of dynamics such that $\mu^{(t)} \to \mathcal{N}$

- Under no-regret dynamics, $\bar{\mu}^{(t)} = \frac{1}{t} \sum_{\tau \leq t} \mu^{(\tau)} \to \mathcal{N}$.
- New classes with $\mu^{(t)} \to \mathcal{N}$?
Outline

1. Online learning in the routing game

2. Convergence of average strategies $\bar{\mu}^{(t)}$

3. Convergence of strategies $\mu^{(t)}$
Routing game

Figure: Example network

- Directed graph \((V, E)\)
- Population \(\mathcal{X}_k\): paths \(\mathcal{P}_k\)
Routing game

- Directed graph \((V, E)\)
- Population \(X_k\): paths \(P_k\)
- Player \(x \in X_k\): distribution over paths \(\pi(x) \in \Delta P_k\)
- Population distribution over paths \(\mu^k \in \Delta P_k\), \(\mu^k = \int_{X_k} \pi(x)dm(x)\)
- Loss on path \(p\): \(\ell^k_p(\mu)\)

Figure: Example network
Routing game

- Directed graph \((V, E)\)
- Population \(X_k\): paths \(P_k\)
- Player \(x \in X_k\): distribution over paths \(\pi(x) \in \Delta P_k\)
- Population distribution over paths \(\mu^k \in \Delta P_k\), \(\mu^k = \int_{X_k} \pi(x) dm(x)\)
- Loss on path \(p\): \(\ell^k_p(\mu)\)
Online learning model

\[\pi(t) \in \Delta P_1 \]

Sample \(p \sim \pi(t) \)

Discover \(\ell(t) \in [0, 1]^{P_1} \)

Update \(\pi(t+1) \)
The Hedge algorithm

- Update the distribution according to observed loss

\[\pi_p^{(t+1)} \propto \pi_p^{(t)} e^{-\eta_t \ell_p^k(t)} \]
Nash equilibria

\[\mu \in \mathcal{N} \text{ if } \forall k, \forall p \in \mathcal{P}_k \text{ with positive mass}, \]
\[\ell^k_p(\mu) \leq \ell^k_{p'}(\mu) \forall p' \in \mathcal{P}_k \]

- How to compute Nash equilibria?
Nash equilibria

Nash equilibrium

μ ∈ N if ∀k, ∀p ∈ P_k with positive mass,

\[\ell^k_p(\mu) \leq \ell^k_{p'}(\mu) \forall p' \in P_k \]

- How to compute Nash equilibria? Convex formulation
Nash equilibria

Convex potential function

\[V(\mu) = \sum_e \int_0^{(M\mu)_e} c_e(u) du \]

- \(V \) is convex.
- \(\nabla_{\mu^k} V(\mu) = \ell^k(\mu) \).
- Minimizer not unique.

- How do players find a Nash equilibrium?
 - Iterative play.
Nash equilibria

Convex potential function

\[V(\mu) = \sum_e \int_0^{(M\mu)_e} c_e(u)du \]

- \(V \) is convex.
- \(\nabla_{\mu^k} V(\mu) = \ell^k(\mu) \).
- Minimizer not unique.

- How do players find a Nash equilibrium?
- Iterative play.
- Ideally: distributed, and has reasonable information requirements.
Assume sublinear regret dynamics

- Losses are in $[0, 1]$.
- Expected loss is $\langle \pi^{(t)}(x), \ell^k(\mu^{(t)}) \rangle$
- Discounted regret

$$
\bar{r}(T)(x) = \frac{\sum_{t \leq T} \gamma_t \langle \pi^{(t)}(x), \ell^k(\mu^{(t)}) \rangle - \min_p \sum_{t \leq T} \gamma_t \ell^k_p(t)}{\sum_{t \leq T} \gamma_t}
$$
Assume sublinear regret dynamics

- Losses are in $[0, 1]$.
- Expected loss is $\langle \pi^{(t)}(x), \ell^k(\mu^{(t)}) \rangle$
- Discounted regret

$$
\bar{r}^{(T)}(x) = \frac{\sum_{t \leq T} \gamma_t \langle \pi^{(t)}(x), \ell^k(\mu^{(t)}) \rangle - \min_p \sum_{t \leq T} \gamma_t \ell^k_p(t)}{\sum_{t \leq T} \gamma_t}
$$

Assumptions

- $\gamma(t) > 0$
- $\gamma(t) \downarrow 0$
- $\sum_t \gamma(t) = \infty$
Convergence to Nash equilibria

Population regret

\[\bar{r}^k(T) = \frac{1}{m(X_k)} \int_{X_k} \bar{r}^{(T)}(x) dm(x) \]

Convergence of averages to Nash equilibria

If an update has sublinear population regret, then

\[\bar{\mu}^{(T)} = \sum_{t \leq T} \gamma_t \mu^{(t)} / \sum_{t \leq T} \gamma_t \]

converges

\[\lim_{T \to \infty} d \left(\bar{\mu}^{(T)}, \mathcal{N} \right) = 0 \]
Convergence to Nash Equilibria

Population Regret

\[
\bar{r}^k(T) = \frac{1}{m(X_k)} \int_{X_k} \bar{r}^{(T)}(x) dm(x)
\]

Convergence of Averages to Nash Equilibria

If an update has **sublinear population regret**, then

\[
\bar{\mu}(T) = \sum_{t \leq T} \gamma_t \mu^{(t)} / \sum_{t \leq T} \gamma_t
\]

converges

\[
\lim_{T \to \infty} d \left(\bar{\mu}^{(T)}, \mathcal{N} \right) = 0
\]

Proof: show

\[
V(\bar{\mu}^{(T)}) - V(\mu^*) \leq \sum_k \bar{r}^k(T)
\]
Convergence of a dense subsequence

Proposition

Under any algorithm with sublinear discounted regret, a dense subsequence of \((\mu(t))_t\) converges to \(N\)

- Subsequence \((\mu(t))_{t \in T}\) converges
- \(\lim_{T \to \infty} \frac{\sum_{t \in T: t \leq T} \gamma_t}{\sum_{t \leq T} \gamma_t} = 1\)
Proposition

Under any algorithm with sublinear discounted regret, a dense subsequence of \((\mu^{(t)})_t\) converges to \(N\)

- Subsequence \((\mu^{(t)})_{t \in T}\) converges
- \(\lim_{T \to \infty} \frac{\sum_{t \in T: t \leq T} \gamma_t}{\sum_{t \leq T} \gamma_t} = 1\)

Proof.

- Absolute Cesàro convergence implies convergence of a dense subsequence.

Example: Hedge with learning rates γ_T

\[\pi_p^{(t+1)} \propto \pi_p^{(t)} e^{-\eta_t \ell_p^{(t)}} \]

Regret bound

Under Hedge with $\eta_t = \gamma_t$,

\[\bar{r}(T)(x) \leq \rho \frac{\ln \pi_{\text{min}}^{(0)}(x) + c \sum_{t \leq T} \gamma_t^2}{\sum_{t \leq T} \gamma_t} \]
Simulations

Figure: Example network
Simulations

Figure: Path losses and strategies for the Hedge algorithm with constant γ_τ
Simulations

Figure: Path losses and strategies for the Hedge algorithm with \(\gamma_\tau = 1/(10 + \tau) \)
Sufficient conditions for convergence of $\left(\mu^{(t)}\right)_t$

- Have $\bar{\mu}^{(t)} \to \mathcal{N}$.
Sufficient conditions for convergence of \((\mu(t))_t\)

- Have \(\bar{\mu}(t) \to \mathcal{N}\).

Sufficient condition

If \(V(\mu(t))\) converges (\(\mu(t)\) need not converge), then

- \(V(\mu(t)) \to V_*\)
- \(\mu(t) \to \mathcal{N}\) (\(V\) is continuous, \(\mu(t) \in \Delta\) compact)
Replicator dynamics

Imagine an underlying continuous time. Updates happen at \(\gamma_1, \gamma_1 + \gamma_2, \ldots \)

\[\begin{array}{c}
0 \\
\gamma_1 \\
\gamma_1 + \gamma_2 \\
\vdots
\end{array} \]

Figure: Underlying continuous time
Replicator dynamics

Imagine an underlying continuous time. Updates happen at \(\gamma_1, \gamma_1 + \gamma_2, \ldots \)

\[
\begin{array}{c}
0 \\
\circ \\
\gamma_1 \\
\circ \\
\gamma_1 + \gamma_2 \\
\circ \\
\cdots
\end{array}
\]

Figure: Underlying continuous time

In the update equation \(\mu_p^{(t+1)} \propto \mu_p^{(t)} e^{-\gamma_t \ell_p(t)} \), take \(\gamma_t \to 0 \)

We obtain the autonomous ODE:

Replicator equation

\[
\forall p \in P_k, \quad \frac{d\mu_p^k}{dt} = \mu_p^k \left(\langle \ell^k(\mu), \mu^k \rangle - \ell_p^k(\mu) \right) \tag{1}
\]

Also in evolutionary game theory.
Replicator dynamics

Replicator equation

$$\forall p \in \mathcal{P}_k, \frac{d\mu^k_p}{dt} = \mu^k_p(\langle \ell^k(\mu), \mu^k \rangle - \ell^k_p(\mu))$$
Replicator dynamics

Replicator equation

$$\forall p \in \mathcal{P}_k, \frac{d\mu^k_p}{dt} = \mu^k_p(\langle \ell^k(\mu), \mu^k \rangle - \ell^k_p(\mu))$$

Theorem (Fischer and Vöcking (2004))

Every solution of the ODE (1) converges to the set of its stationary points.
Replicator dynamics

Replicator equation

\[\forall p \in P_k, \frac{d \mu^k_p}{dt} = \mu^k_p(\langle \ell^k(\mu), \mu^k \rangle - \ell^k_p(\mu)) \]

Theorem (Fischer and Vöcking (2004))

Every solution of the ODE (1) converges to the set of its stationary points.

Proof: \(V \) is a Lyapunov function.
AREP update

Discretization of the continuous-time replicator dynamics

\[\pi_p^{(t+1)} - \pi_p^{(t)} = \eta_t \pi_p^{(t)} \left(\left\langle \ell^k(\mu^{(t)}), \pi^{(t)} \right\rangle - \ell_p^k(\mu^{(t)}) \right) + \eta_t U_p^{k(t+1)} \]

\((U^{(t)})_{t \geq 1}\) perturbations that satisfy for all \(T > 0\),

\[\lim_{\tau_1 \to \infty} \max_{\tau_2 : \sum_{t=\tau_1}^{\tau_2} \eta_t < T} \left\| \sum_{t=\tau_1}^{\tau_2} \eta_t U^{(t+1)} \right\| = 0 \]

Benaïm (1999)
Convergence to Nash equilibria

Theorem

Under any no-regret algorithm which is approximate REP, \(\mu(t) \to \mathcal{N} \).
Convergence to Nash equilibria

Theorem

Under any no-regret algorithm which is approximate REP, $\mu(t) \rightarrow N$.

Proof uses two facts

- Affine interpolation of $\mu(t)$ is an asymptotic pseudo trajectory for the ODE.
- V is a Lyapunov function for Nash equilibria.
In particular

- REP update: take $U = 0$

$$\pi_p(t+1) - \pi_p(t) = \eta_t \pi_p(t) \left(\left< \ell^k(\mu(t)), \pi(t) \right> - \ell^k_p(\mu(t)) \right)$$
REP update

In particular

- REP update: take $U = 0$

$$
\pi_p^{(t+1)} - \pi_p^{(t)} = \eta_t \pi_p^{(t)} \left(\left\langle \ell_k^{k}(\mu^{(t)}) , \pi^{(t)} \right\rangle - \ell_k^{k}(\mu^{(t)}) \right)
$$

- Hedge

$$
\pi_p^{(t+1)} - \pi_p^{(t)} = \eta_t \pi_p^{(t)} \frac{e^{-\eta_t \ell_k^{k}(\mu^{(t)})} - 1}{\eta_t \sum_{p'} e^{-\eta_t \ell_k^{k}(\mu^{(t)})}}
$$
Consider the convex problem
\[\text{minimize}_{\mu \in \Delta} V(\mu) \]

Algorithm 1 Mirror Descent Method

1: for \(t \in \mathbb{N} \) do
2: \(\mu^{(t+1)} = \arg \min_{\mu \in \Delta} \langle \nabla V(\mu^{(t)}), \mu \rangle + \frac{1}{\eta_t} D_\psi(\mu, \mu^{(t)}) \)
3: end for

where \(D_\psi \) is a Bregman divergence

\[D_\psi(\mu, \nu) = \psi(\mu) - \psi(\nu) - \langle \nabla \psi(\nu), \mu - \nu \rangle \]

Figure: Mirror Descent iteration.
Mirror Descent

Hedge = Mirror descent on V

- Take $D_{\psi}(\mu, \nu) = \sum_k D_{KL}(\mu^k, \nu^k)$
- Update:

$$\mu^{(t+1)} = \arg \min_{\mu \in \Delta^1 \times \cdots \times \Delta^K} \left(\langle \ell^k(\mu^{(t)}), \mu^k \rangle + \frac{1}{\eta_t} D_{KL}(\mu^k, \mu^{k(t)}) \right)$$
Mirror Descent

Hedge = Mirror descent on V

- Take $D_{\psi}(\mu, \nu) = \sum_k D_{KL}(\mu^k, \nu^k)$
- Update:

$$\mu^{(t+1)} = \arg \min_{\mu \in \Delta^1 \times \cdots \times \Delta^K} \sum_k \left(\langle \ell^k(\mu^{(t)}), \mu^k \rangle + \frac{1}{\eta_t} D_{KL}(\mu^k, \mu^{(t)}(t)) \right)$$

- Solution: Hedge algorithm with learning rate η

$$\mu_p^{k(t+1)} \propto \mu_p^{k(t)} e^{-\eta \ell_p^{k(t)}}$$
Mirror Descent

Hedge = Mirror descent on V

- Take $D_\psi(\mu, \nu) = \sum_k D_{KL}(\mu^k, \nu^k)$
- Update:
 $$\mu^{(t+1)} = \arg \min_{\mu \in \Delta^1 \times \cdots \times \Delta^K} \sum_k \left(\langle \ell^k(\mu^{(t)}), \mu^k \rangle + \frac{1}{\eta_t} D_{KL}(\mu^k, \mu^{k(t)}) \right)$$

- Solution: Hedge algorithm with learning rate η
 $$\mu_p^{k(t+1)} \propto \mu_p^{k(t)} e^{-\eta \ell^k_p}$$

General result

Convergence of $\bar{\mu}^{(T)} = \frac{\sum_{t \leq T} \eta_t \mu^{(t)}}{\sum_{t \leq T} \eta_t}$ to \mathcal{N} for Any Mirror Descent method
Strong convergence of Mirror Descent

Convex V with L-Lipschitz gradient

If η_t small enough, MD update guarantees $V(\mu(t+1)) \leq V(\mu(k))$.

Figure: Mirror Descent iteration for a function with L-Lipschitz gradient.
Convex V with L-Lipschitz gradient

If η_t small enough, MD update guarantees $V(\mu^{(t+1)}) \leq V(\mu^{(k)})$.

Figure: Mirror Descent iteration for a function with L-Lipschitz gradient.

$V(\mu^{(t)})$ is monotone, converges, so $\mu^{(t)} \to \mathcal{N}$.
Summary

- Convergence of $\bar{\mu}(t)$ under no-regret updates.
- Convergence of a dense subsequence $(\mu(t))_{t \in \mathcal{T}}$.
- Convergence of $\mu(t)$ for no-regret AREP updates.
 - Hedge, REP
- Convergence of $\mu(t)$ for MD updates (+ convergence rate)
 - Hedge

Future work
Bandit setting.
Stochastic perturbations on the losses.
Summary

- Convergence of $\bar{\mu}^{(t)}$ under no-regret updates.
- Convergence of a dense subsequence $(\mu^{(t)})_{t \in T}$.
- Convergence of $\mu^{(t)}$ for no-regret AREP updates.
 - Hedge, REP
- Convergence of $\mu^{(t)}$ for MD updates (+ convergence rate)
 - Hedge

Future work

- Bandit setting.
- Stochastic perturbations on the losses.
Thank you.

walid@cs.berkeley.edu
benjamin.drighes@polytechnique.edu
bayen@berkeley.edu