Stability of Nash equilibria in Congestion Games under Replicator Dynamics

Benjamin Drighes Walid Krichene Alexandre Bayen

Electrical Engineering and Computer Sciences, UC Berkeley
Ecole Polytechnique, France

December 15, 2014
Outline

1 Introduction

2 Stability of replicator dynamics

3 Simulations

4 Extensions
Class of Congestion Games, under Replicator Dynamics.

Congestion games

- Population of players (non atomic), with action set \mathcal{A}
- Mass distribution $x \in \Delta^\mathcal{A}$ determines losses $\ell(x) \in \mathbb{R}_+^\mathcal{A}$
Class of Congestion Games, under Replicator Dynamics.

Congestion games
- Population of players (non atomic), with action set \mathcal{A}
- Mass distribution $x \in \Delta^\mathcal{A}$ determines losses $\ell(x) \in \mathbb{R}_+^\mathcal{A}$

Replicator dynamics
Players’ mass distribution obeys ODE

$$\dot{x}_a(t) = x_a(t) (\langle \ell(x(t)), x(t) \rangle - \ell_a(x(t)))$$

$x_a(0)$ given

Our goal: study stability of equilibria.
Example: routing game

- Population: packet routers / drivers.
- Action set A: paths from 0 to 1
- Mass distribution x determines, edge loads Mx, edge costs $c(Mx)$.
- Loss function:
 \[\ell_a(x) = M_a^T c(Mx) \]

$M \in \mathbb{R}^{E \times A}$: path-edge incidence matrix of the graph.
Nash equilibria

A mass distribution x^* is a Nash equilibrium if $\forall x \in \Delta^A$,

$$\langle \ell(x^*), x^* - x \rangle \leq 0$$
<table>
<thead>
<tr>
<th>Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
</tr>
<tr>
<td>2. Stability of replicator dynamics</td>
</tr>
<tr>
<td>3. Simulations</td>
</tr>
<tr>
<td>4. Extensions</td>
</tr>
</tbody>
</table>
Replicator dynamics

For $a \in A$

$$\dot{x}_a(t) = x_a(t) \left(\langle \ell(x(t)), x(t) \rangle - \ell_a(x(t)) \right)$$

$x_a(0)$ given

Model:

- Randomly match players
- Compare actions a and a'
- Player with higher loss replicates action of other player with probability $\ell_a - \ell_{a'}$.
Stationary points

Stationary points \mathcal{R}

$$\dot{x} = 0 \iff \forall a, \ x_a (\langle \ell(x), x \rangle - \ell_a(x)) = 0$$

$$\iff \ell_a(x) \text{ constant on the support of } x$$

Nash equilibria \mathcal{N}

$$x \in \mathcal{N} \iff \langle \ell(x), x \rangle \leq \langle \ell(x), y \rangle \ \forall y$$

$$\iff \ell_a(x) \text{ constant and minimal on the support of } x$$

Theorem [1]

Solution trajectories converge to \mathcal{R}.

Stationary points

Stationary points \mathcal{R}

$$\dot{x} = 0 \iff \forall a, \ x_a (\langle \ell(x), x \rangle - \ell_a(x)) = 0$$

$$\iff \ell_a(x) \text{ constant on the support of } x$$

Nash equilibria \mathcal{N}

$$x \in \mathcal{N} \iff \langle \ell(x), x \rangle \leq \langle \ell(x), y \rangle \ \forall y$$

$$\iff \ell_a(x) \text{ constant and minimal on the support of } x$$

Theorem [1]

Solution trajectories converge to \mathcal{R}.

- Stability of equilibria?

Stability of replicator dynamics

\[\dot{x}_a(t) = F_a(x(t)) \]
\[= x_a(t) (\langle \ell(x(t)), x(t) \rangle - \ell_a(x(t))) \]

Instability of non-Nash equilibria

If \(x \in \mathcal{R} \setminus \mathcal{N} \), then \(x \) is unstable.

proof:

- \(\mathcal{H} = \sum_{a \in A} x_a = 0 \), then \(F(\Delta) \subset \mathcal{H} \).
- Derive Jacobian \(\tilde{\nabla}F \) of \(F \) restricted to \(\mathcal{H} \).
- If \(A^* \) is the support of \(x \) and \(A^\circ \) its complement, then
 \[\text{Sp} (\tilde{\nabla}F(x)) \supset \{ \langle \ell(x), x \rangle - \ell_a(x) \}_{a \in A^\circ} \]
Exponential stability

If M is injective, then

$$x \in \mathcal{N} \iff x \text{ is locally exponentially stable}$$

proof:
If M is injective, can show that $\tilde{\nabla} F(x)$ is negative definite.
Outline

1. Introduction

2. Stability of replicator dynamics

3. Simulations

4. Extensions
Figure: Routing game with $|A| = 4$.
Simulations

\[\mathcal{N} = \{x : x_1 = .757, x_2 = 0, x_3 + x_4 = .2426\} \]

Figure: Masse trajectories \(x_a(t), a \in \{p_1, p_2, p_3, p_4\} \)
Simulation

Figure: Losses $\ell_a(x(t))$
Simulation

\[\dot{x}_a(t) = x_a(t) \left(\langle \ell(x(t)), x(t) \rangle - \ell_a(x(t)) \right) \]

\(\mathcal{N} \): Nash equilibria

\(\mathcal{R} \): Stationary points

Figure: Mass trajectories in the simplex: convergence to restricted equilibria
Outline

1. Introduction
2. Stability of replicator dynamics
3. Simulations
4. Extensions
Extension to discrete time

Convergence of discrete time dynamics: approximate replicator dynamics [2]

\[x_a^{(t+1)} - x_a^{(t)} = \eta_t x_a^{(t)} \left(\langle \ell(x^{(t)}), x^{(t)} \rangle - \ell_a(x^{(t)}) \right) + \eta_t U_a^{(t)} \]

- \(U_a^{(t)} \): stochastic perturbation term.
- \(\eta_t \): discretization time steps, \(\sum_t \eta_t = \infty \).

In 31st International Conference on Machine Learning (ICML). JMLR, 2014
Extension to discrete time

Convergence of discrete time dynamics: approximate replicator dynamics [2]

\[x_a^{(t+1)} - x_a^{(t)} = \eta_t x_a^{(t)} \left(\langle \ell(x^{(t)}), x^{(t)} \rangle - \ell_a(x^{(t)}) \right) + \eta_t U_a^{(t)} \]

- \(U_a^{(t)} \): stochastic perturbation term.
- \(\eta_t \): discretization time steps, \(\sum_t \eta_t = \infty \).

Convergence of approximate replicator dynamics

\(x^{(t)} \to N \) almost surely, under mild conditions on \(U^{(t)}, \eta_t \).

E.g. \(\sup_t \mathbb{E} \| U^{(t)} \|^q < \infty \) and \(\sum_t \eta_t^{1+\frac{q}{2}} < \infty \)

In 31st International Conference on Machine Learning (ICML). JMLR, 2014
Congestion games, under replicator dynamics

- Trajectories converge to stationary points \(\mathcal{R} \)
- Non-Nash equilibria \(\mathcal{R} \setminus \mathcal{N} \) are unstable
- If injective incidence matrix: \(\mathcal{N} \Leftrightarrow \) loc. exp. stable equilibrium
- Extension to discrete-time dynamics

Thank you!

walid@eecs.berkeley.edu

