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The routing game models congestion in transportation networks, communication networks, and other cyber
physical systems in which agents compete for shared resources. We consider an online learning model of
player dynamics: at each iteration, every player chooses a route (or a probability distribution over routes,
which corresponds to a flow allocation over the physical network), then the joint decision of all players
determines the costs of each path, which are then revealed to the players.

We pose the following estimation problem: given a sequence of player decisions and the corresponding
costs, we would like to estimate the parameters of the learning model. We consider in particular entropic
mirror descent dynamics and reduce the problem to estimating the learning rates of each player.

In order to demonstrate our methods, we developed a web application that allows players to participate
in a distributed, online routing game, and we deployed the application on Amazon Mechanical Turk. When
players log in, they are assigned an origin and destination on a shared network. They can choose, at each
iteration, a distribution over their available routes, and each player seeks to minimize her own cost. We
collect a data set using this platform, then apply the proposed method to estimate the learning rates of each
player. We observe in particular that after an exploration phase, the joint decision of the players remains
within a small distance of the set of Nash equilibria. We also use the estimated model parameters to predict
the flow distribution over routes, and compare our predictions to the actual distributions, showing that the
online learning model can be used as a predictive model over short horizons. Finally, we discuss some of the
qualitative insights from the experiments, and give directions for future research.
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1. INTRODUCTION
The routing game is a non-cooperative game that models congestion in many cyber
physical systems (CPS) in which non-cooperative agents compete for shared resources,
such as transportation networks (the resources being roads) and communication net-
works (the resources being communication links) [Beckmann et al. 1955; Roughgarden
2007; Ozdaglar and Srikant 2007]. The game is played on a directed graph that repre-
sents the network, and each player has a source node and destination node, and seeks
to send traffic (either packets in a communication setting, or cars in a transportation
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setting) while minimizing the total delay of that traffic. The delay is determined by
the joint decision of all players, such that whenever an edge has high load, it becomes
congested and any traffic using that edge incurs additional delay. This delay is given
by a congestion function that models the underlying physical process. This model of
congestion is simple yet powerful, and routing games have been studied extensively
since the seminal work of Beckman [Beckmann et al. 1955].

1.1. Learning models and convergence to Nash equilibria
The Nash equilibria of the game are simple to characterize, and have been used to
quantify the inefficiency of the network [Roughgarden 2007], using the price of anar-
chy definition due to [Koutsoupias and Papadimitriou 1999]. However, the Nash equi-
librium concept may not offer a good descriptive model of actual behavior of players.
Besides the assumption of rationality, which can be questioned [Simon 1955], the Nash
equilibrium assumes that players have a complete description of the structure of the
game, their own cost functions, and those of other players. This model is arguably not
very realistic for the routing game, as one does not expect users of a network to have
an accurate representation of the cost function on every edge, or of the other users
of the network. One alternative model of players is a model of repeated play [Mar-
den and Shamma 2013; Fox and Shamma 2013; Marden et al. 2013], sometimes called
learning models [Cesa-Bianchi and Lugosi 2006] or adjustment models [Fudenberg
and Levine 1998]. In such models, one assumes that each player makes decisions it-
eratively (instead of playing a one-shot game), and uses the outcome of each iteration
to adjust their next decision. Formally, if x(t)

k is the decision of player k at iteration t

(in this case a flow distribution over available routes), and `
(t)
k is the vector of costs

(in this case, delays), then player k faces a sequential decision problem in which she
iteratively chooses x(t)

k then observes `(t)k . These sequential decision problems are cou-
pled through the cost functions, since `(t)k depends not only on x

(t)
k but also on x

(t)
k′ for

k′ 6= k. Such models have a long history in game theory, and date back to the work
of [Hannan 1957] and [Blackwell 1956]. In recent years, there has been a resurgence
of research on the topic of learning in games using sequential decision problems, see
for example [Cesa-Bianchi and Lugosi 2006] and references therein.

When designing a model of player decisions, many properties are desirable. Per-
haps the most important property is that the dynamics should be consistent with the
equilibrium of the game, in the following sense: Asymptotically, the learning dynam-
ics should converge to the equilibrium of the one-shot game (be it Nash equilibrium
or other, more general equilibrium concepts). In this sense, players “learn” the equi-
librium asymptotically. Much progress has been made in recent years in character-
izing classes of learning dynamics which are guaranteed to converge to an equilib-
rium set [Freund and Schapire 1999; Hart and Mas-Colell 2001; Hart 2005; Fox and
Shamma 2013; Marden et al. 2013; Arslan and Shamma 2004]. In particular for the
routing game, different models of learning have been studied for example in [Fischer
and Vöcking 2004; Blum et al. 2006; Kleinberg et al. 2009; Krichene et al. 2015a;
Krichene et al. 2015b], with different convergence guarantees.

1.2. A mirror descent model of learning
We will focus in particular on the mirror descent model used in [Krichene et al. 2015b],
since it offers a large family of models that have strong convergence guarantees to
Nash equilibria. This model describes the learning dynamics as solving, at each step,
a simple minimization problem parameterized by a learning rate. It is described in
detail in Section 2.2, but at a high level, the learning model can be thought of as an
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update algorithm that specifies x(t+1)
k as a function of x(t)

k , `(t)k and a learning rate η(t)
k .

The learning rate intuitively trades-off two terms: The first term encourages allocating
the flow to the best routes of the previous iteration, and the second term penalizes
large deviations between x

(t)
k and x(t+1)

k (thus encourages stationarity of the sequence
of decisions). Therefore the learning rate describes how aggressive the update is: A
small learning rate results in a small change in strategy, while a large learning rate
results in a significant change.

1.3. Estimating the learning rates
Motivated by this interpretation of the learning dynamics, we propose the following
estimation problem: Given a sequence of observed player decisions (x̄

(t)
k ), and the se-

quence of corresponding costs (¯̀(t)
k ), can we estimate the parameters of the learning

model to fit these observations? These quantities are effectively measured in our ex-
perimental setting using the routing game web application, and can be measured on
transportation networks using many existing traffic monitoring and forecasting sys-
tems, such as the Mobile Millennium system [Bayen et al. 2011] or the Grenoble Traffic
Lab [Canudas De Wit et al. 2015].

More precisely, we assume that the player is using a given learning algorithm with
an unknown sequence of learning rates (η

(t)
k ), and we estimate the learning rates given

the observations (x̄
(t)
k ), (¯̀(t)

k ). One way to pose the estimation problem is to minimize,
at each iteration, the distance between the prediction of the model x(t+1)

k (η), and the
actual decision x̄

(t+1)
k . We show in particular that for a careful choice of the distance

function, this problem is convex in η and can be solved efficiently. This method allows
us to estimate one parameter η(t)

k per iteration t and per player k. When we have a
sequence of observations available, it can be desirable to control the complexity of the
model by assuming a parameterized sequence of learning rates, instead of estimat-
ing each term separately. Thus, we propose a second method which assumes that the
learning rate is of the form η

(t)
k = η

(0)
k t−αk , with parameters η(0)

k > 0 and αk ∈ (0, 1).
The resulting estimation problem is non-convex in general, but since it is a two dimen-
sional problem (only two parameters to estimate), it can be minimized efficiently.

1.4. Summary of contributions and organization of the article
Our main contributions are to

(1) Pose the learning rate estimation problem, and show that it is convex for an appro-
priate choice of the distance function. We also give an example application of the
estimated model: It can be used to predict the decision of the players over the next
few iterations, by propagating the model forward with the estimated values of the
learning rates.

(2) Give the first online implementation at scale of a routing game and deploy on the
Amazon Mechanical Turk platform in order to collect data on routing decisions.
We developed a web application in which a master user can create an instance of
the routing game by defining a graph and cost functions on edges of the graph.
Then other users can connect to the interface as players. The game then proceeds
similarly to our learning model: At each iteration, every player chooses a flow dis-
tribution on their available routes (using a graphical user interface with sliders),
then their decisions are sent to a backend server, which computes the total cost of
each route, and sends this information back to the players. We discuss and propose
solutions to some technical and experimental challenges associated with such ex-
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periments, such as player synchronization, and handling attrition (players losing
connection or dropping out of the game).

(3) Apply the proposed methods to the data collected from the routing game system,
and give quantitative and qualitative insights into the decision dynamics of human
players. In particular, we observed that in the first few iterations, the flow distri-
butions tend to oscillate, which typically corresponds to a high value of estimated
learning rates. For later iterations, the flow distributions remain close to equilib-
rium, and the learning rates are lower, although some players may occasionally
move the system away from equilibrium by performing aggressive updates. It was
also interesting to observe that in some rare cases, the best fit is obtained for a neg-
ative learning rate, which means that the player updated her strategy by assigning
more traffic to routes with higher cost, a counter-intuitive behavior which is hard to
model (we comment on this in Section 5). Finally, we comment on the performance
of the prediction over a short horizon, which indicates that the mirror descent model
is a good descriptive model for player behavior in this setting.

The remainder of the article is organized as follows: In Section 2, we formally de-
fine the routing game and the mirror descent dynamics and review its convergence
guarantees. In Section 3, we pose the learning rate estimation problem in the entropy
case, then extend it to the generalized entropy case. We also briefly discuss the flow
prediction problem. In Section 4, we describe the experimental setting and the nature
of the collected data. We also give some implementation details of the web application
and how it can be interfaced with the Amazon Mechanical Turk platform. In Section 5,
we use the data collected from the experiment to solve the estimation and prediction
tasks. We comment on the quality of the prediction, and give some qualitative and
quantitative insights into the decision dynamics. We conclude in Section 6 by summa-
rizing our results and giving directions for future research.

2. THE ROUTING GAME AND THE LEARNING MODEL
In this section, we give the definition of the (one-shot) routing game, and the model of
learning dynamics.

2.1. The routing game
The routing game is played on a directed graph G = (V,E), where V is a vertex set
and E ⊂ V × V is an edge set. The players will be indexed by k ∈ {1, . . . ,K}, and each
player is associated with an origin vertex ok ∈ V , a destination vertex dk ∈ V , and a
traffic mass mk ≥ 0 that represents the total traffic that the player needs to send from
ok to dk. The set of available paths connecting ok to dk will be denoted by Pk, and the
action set of player k is simply how to allocate the total mass mk along paths in Pk.
This action set can be described simply by the probability simplex over Pk, which we
denote by ∆Pk = {xk ∈ R|Pk|+ :

∑
p∈Pk xk,p = 1}. In other words, each player k chooses

a distribution xk ∈ ∆Pk over their available paths, so her total flow contribution to a
path p is mkxk,p. The joint decision of all players is denoted by x = (x1, . . . , xK). The
costs of the players are then determined as follows:
a) The cost on an edge e is ce(φe(x)), where ce(·) is a given, increasing function (this

models the actual cost due to the physical process, for example delay on a road
segment due to accumulation of cars), and φe(x) is the total traffic flow on edge e
induced by x, obtained simply by summing all the path flows that go through that
edge, i.e. φe(x) =

∑K
k=1

∑
{p∈Pk:e∈p}mkxk,p.

b) The cost on a path p ∈ Pk is denoted by `k,p(x), and is the sum of edge costs along
the path, i.e. `k,p(x) =

∑
e∈p ce(φe(x)).
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c) The cost for player k is the total path cost for all the traffic sent by player k, i.e.∑
p∈Pk mkxk,p`k,p(x). This is simply the inner product between the flow vector mkxk

and the cost vector `k(x), which we denote by 〈`k(x),mkxk〉.
Remark 2.1 (A note on the player model). Some formulations of the routing game,

e.g. [Sandholm 2001; Krichene et al. 2015a], define the game in terms of populations
of players, such that each population is an infinite set of players with the same origin
and destination. This assumes that each player contributes an infinitesimal amount
of flow, so each player can play a single path. In our model, each player is macroscopic,
and can split its traffic across multiple routes. Both models are equivalent in terms
of analysis, the only difference is the interpretation of the model. We choose the finite
player interpretation because it is more consistent with our experimental setting, since
we run the game with finitely many players.

Definition 2.2 (Nash equilibrium). A distribution x? = (x?1, . . . , x
?
K) is a Nash

equilibrium (also called Wardrop equilibrium in the traffic literature, in reference
to [Wardrop 1952]) if it satisfies the following condition: For all other feasible distribu-
tions x = (x1, . . . , xK) and for all k, 〈`k(x?), xk − x?k〉 ≥ 0.

In words, x? is a Nash equilibrium if for every player k, the expected cost under x?k
is lower than the expected cost under any other distribution xk (thus player k has
no incentive to unilaterally change her distribution xk). If we define the inner prod-
uct 〈x, `〉 =

∑
k 〈xk, `k〉, then this is equivalent to: x? is an equilibrium if and only if

〈`(x?), x− x?〉 ≥ 0 for all feasible x. This variational inequality is, in fact, equivalent to
the first-order optimality condition of the following potential function, usually referred
to as the Rosenthal potential, in reference to [Rosenthal 1973]:

PROPOSITION 2.3 (EXISTENCE OF A CONVEX POTENTIAL). Consider a routing
game with increasing edge costs ce(·), and define the following function

f(x) =
∑
e∈E

∫ φe(x)

0

ce(u)du.

Then f is convex its gradient is ∇f(x) = `(x).

This result can be found for example in [Roughgarden 2007]. Due to the fact that the
delay function `(·) coincides with the gradient field ∇f(·) of the Rosenthal potential,
the Nash condition can be rewritten as 〈∇f(x?), x− x?〉 ≥ 0 for all feasible x, and since
f is convex, this is a necessary and sufficient condition for optimality of x? (see e.g.
Section 4.2.3 in [Boyd and Vandenberghe 2010]). Therefore the set of Nash equilibria
is exactly the set of minimizers of the convex potential f . This is important both for
computation (computing a Nash equilibrium can be done by minimizing a convex func-
tion), and for modeling: One can model player dynamics as performing a distributed
minimization of the potential function. More precisely, if we adopt the point of view pre-
sented in the introduction, in which each player faces a sequential decision problem,
and plays x(t)

k then observes `k(x(t)), then this corresponds to a first-order distributed
optimization of the function f , where each player is responsible for updating the vari-
ables x(t)

k , and observes, at each iteration, the gradient `k(x(t)) = ∇xkf(x(t)). Using
this connection to distributed optimization, a model of player dynamics was proposed
in [Krichene et al. 2015b]. We review the model in the next Section.

2.2. The learning model: Mirror descent dynamics
Each player is assumed to perform a mirror descent update given by the following
algorithm:
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Algorithm 1 Distributed mirror descent dynamics with DGF ψk and learning rates
(η

(t)
k ).

1: for each iteration t ∈ {1, 2, . . . } do
2: for each player k ∈ {1, . . . ,K} do
3: Play x(t)

k ,
4: Observe `(t)k = ∇xkf(x(t)),
5: Update distribution by solving the problem

x
(t+1)
k = arg min

xk∈∆Pk

[
η

(t)
k

〈
`k(x(t)), xk

〉
+Dψk(xk, x

(t)
k )
]

(1)

In the update equation (1), Dψk(xk, x
(t)
k ) is the Bregman divergence between the

distributions xk and x
(t)
k , defined as Dψ(x, y) = ψ(x) − ψ(y) − 〈∇ψ(y), x− y〉, for a

strongly convex function ψ, called the distance generating function (DGF). In partic-
ular, Dψ(x, y) is non-negative, and it is zero if and only if x = y (by strong convexity
of ψ). For a review of Bregman divergences and their uses in optimization, see for
example [Censor and Zenios 1997; Banerjee et al. 2005]. Some special cases include:

a) The Euclidean case: If ψ(x) =
‖x‖22

2 , then Dψ(x, y) =
‖x−y‖22

2 . In this case, mirror
descent reduces to the projected gradient descent algorithm.

b) The entropy case: If ψ(x) = −H(x) where H(x) = −
∑
p xp lnxp is the entropy,

then Dψ(x, y) =
∑
p xp ln

xp
yp

is the Kullback-Leibler (KL) divergence from x to y.
In this case, the mirror descent algorithm is sometimes called the entropic de-
scent [Beck and Teboulle 2003], or exponentiated gradient descent [Kivinen and
Warmuth 1997].

Mirror descent is a general method for convex optimization proposed in [Nemirovsky
and Yudin 1983]. The model in Algorithm 1 is a distributed version of mirror descent,
applied to the Rosenthal potential function f (defined in Proposition 2.3). To give some
intuition of the method, the first term in the minimization problem (1),

〈
`
(t)
k , xk

〉
, can

be thought of as a linear approximation of the potential function (since `(x) = ∇f(x)),
and the second term Dψ(xk, x

(t)
k ) penalizes deviations from the previous iterate x(t)

k .
This the algorithm minimizes a linear combination of the two terms, and the learning
rate η(t)

k determines the tradeoff between them, and can be thought of as a generalized
step size: A smaller η(t)

k results in a distribution which is closer to the current x(t)
k .

Thus, from the potential function point of view, the player minimizes a linearization
of the potential plus a Bregman divergence term that keeps xk close to x(t)

k . From the
routing game point of view, minimizing the first term

〈
`
(t)
k , xk

〉
encourages putting

weight on the paths that have smaller cost during the previous iteration, and the sec-
ond term keeps the distribution close to its current value; the learning rate parameter
η

(t)
k determines how aggressive the player is in shifting traffic to the paths which had

a lower cost during the previous iteration.
The convergence of this distributed learning model is discussed in [Krichene et al.

2015b]. The learning dynamics given in Algorithm 1 is guaranteed to converge under
the following assumptions:

ACM Transactions on Cyber Physical Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



On Learning How Players Learn: Estimation of Learning Dynamics in the Routing Game A:7

THEOREM 2.4 (THEOREM 3 IN [KRICHENE ET AL. 2015B]). Consider the routing
game with mirror descent dynamics defined in Algorithm 1, and suppose that for all k,

η
(t)
k is decreasing to 0. Then f(x(t))− f(x?) = O

(∑
k

(
1

tη
(t)
k

+
∑t
τ=1 η

(τ)
k

t

))
.

In particular, if the learning rates are polynomially decreasing, η(t)
k = η

(0)
k t−αk , with

αk ∈ (0, 1), then one can bound the sum
t∑

τ=1

η
(t)
k = η

(0)
k

t∑
τ=1

τ−αk ≤ η(0)
k

∫ t

0

τ−αkdτ =
η

(0)
k

1− αk
t1−αk ,

and, as a consequence,

f(x(t))− f(x?) = O

(∑
k

tαk−1

)
+O

(∑
k

t−αk

)
= O

(∑
k

t−min(αk,1−αk)

)
,

which converges to 0. While this specific convergence rate does not matter for the pur-
poses of the estimation problem, this convergence guarantee motivates the modeling
assumptions we make in the next section: In particular, we will assume that the play-
ers use a polynomially decaying sequence of learning rates of the form η

(t)
k = η

(0)
k t−αk

3. LEARNING MODEL ESTIMATION
In this section, we assume that we have access to a sequence of observations of traffic
distributions (x̄

(t)
k ), and a sequence of delay vectors (¯̀(t)

k ), for a given player k. The over
bar is used to make a clear distinction between quantities which are observed (e.g.
x̄

(t)
k ) and quantities which are estimated or predicted by the model (e.g. x(t)

k ). Given
this sequence of observations, we would like to fit a model of learning dynamics. From
the previous section, the learning model in Algorithm 1 is naturally parameterized by
the DGF ψk and the learning rate sequence (η

(t)
k ). We will assume that the DGF is

given, and discuss how one can estimate the learning rates.

3.1. Estimating a single term of the learning rates sequence

Given the current flow distribution x̄
(t)
k and the current delay vector ¯̀(t)

k = `k(x̄(t)), the
mirror descent model of Algorithm 1 prescribes that the next distribution is given by

x
(t+1)
k (η) := arg min

xk∈∆Pk

η
〈

¯̀(t)
k , xk

〉
+Dψk(xk, x̄

(t)
k ), (2)

where ψk is given. Therefore, x(t+1)
k can be viewed as a function of η, (hence the notation

x
(t+1)
k (η)) and to estimate η, one can minimize the deviation between what the model

predicts and what is observed, as measured by the Bregman divergence; i.e. minimize

d
(t)
k (η) := Dψk(x̄

(t+1)
k , x

(t+1)
k (η)). (3)

The estimate of the learning rate is then

η
(t)
k = arg min

η≥0
d

(t)
k (η). (4)

Note that we impose the constraint that η ≥ 0. This is an assumption of the model, and
in our experiments, this turns out to be an important constraint, as we will see that
d

(t)
k (η) can, in some rare cases, be minimal for negative values of η if the problem were

solved without the non-negativity constraint. This is further discussed in Section 5.
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In the next theorem, we show that problem (4) is convex when the DGF is the nega-
tive entropy. In fact, one can explicitly compute the gradient of dk(η) in this case, which
makes it possible to solve Problem (4) efficiently using gradient descent for example.
The negative entropy is a natural choice of DGF for many reasons, both theoretical (it
yields an optimal dependence of the convergence rate on the dimension of the problem)
and practical (it yields a closed form solution of the update equation (1)), see [Ben-Tal
et al. 2001; Beck and Teboulle 2003] for a more detailed discussion.

THEOREM 3.1. If ψk is the negative entropy, then d
(t)
k (η) := Dψk(x̄

(t+1)
k , x

(t+1)
k (η)) is

a convex function of η, and its gradient with respect to η is given by
d

dη
d

(t)
k (η) =

〈
¯̀(t)
k , x̄

(t+1)
k − x(t+1)

k (η)
〉
.

PROOF. When ψk is the negative entropy, the solution of the mirror descent up-
date (2) is given by

x
(t+1)
k,p (η) =

x̄
(t)
k,pe

−η ¯̀(t)
k,p

Z
(t)
k (η)

(5)

where Z
(t)
k (η) is a normalization constant, given by Z

(t)
k (η) =

∑
p x̄

(t)
k,pe

−η ¯̀(t)
k,p , see for

example [Beck and Teboulle 2003]. Given this expression of x(t+1)
k (η), we can explicitly

compute the Bregman divergence (which, in this case, is the Kullback-Leibler diver-
gence):

dk(η) = DKL(x̄
(t+1)
k , x

(t+1)
k (η))

=
∑
p∈Pk

x̄
(t+1)
k,p ln

x̄
(t+1)
k,p

x
(t+1)
k,p (η)

=
∑
p∈Pk

x̄
(t+1)
k,p

(
ln
x̄

(t+1)
k,p

x̄
(t)
k,p

+ η ¯̀(t)
k,p + lnZ

(t)
k (η)

)

= DKL(x̄
(t+1)
k , x̄

(t)
k ) + η

〈
¯̀(t)
k , x̄

(t+1)
k

〉
+ lnZ

(t)
k (η), (6)

where we used the explicit form (5) of x(t+1)
k (η) in the third equality, and the fact

that
∑
p x̄

(t+1)
k,p = 1 in the last equality. In this expression, the first term does not

depend on η, the second term is linear in η, and the last term is the function η 7→
lnZ

(t)
k (η) = ln

∑
p x̄

(t)
k,pe

−η ¯̀(t)
k,p , which is known to be convex in η (see for example Section

3.1.5 in [Boyd and Vandenberghe 2010]). Therefore d(t)
k (η) is convex, and its gradient

can be obtained by differentiating each term

d

dη
d

(t)
k (η) =

〈
¯̀(t)
k , x̄

(t+1)
k

〉
+

d
dηZ

(t)
k (η)

Z
(t)
k (η)

=
〈

¯̀(t)
k , x̄

(t+1)
k

〉
+

∑
p−¯̀(t)

k,px̄
(t)
k,pe

−η ¯̀(t)
k,p

Z
(t)
k (η)

=
〈

¯̀(t)
k , x̄

(t+1)
k

〉
−
〈

¯̀(t)
k , x

(t+1)
k (η)

〉
,

which proves the claim.
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3.2. Generalized negative entropy
In this section, we propose to use a generalization of the entropy DGF, motivated
by the following observation: according to the entropy update and its explicit solu-
tion (7), the support of x(t+1)

k (η) always coincides with the support of x̄(t)
k (due to

the multiplicative form of the solution). As a consequence, if we observe two con-
secutive terms x̄

(t)
k , x̄

(t+1)
k such that some p is in the support of x̄(t+1)

k but not in
the support of x̄(t)

k , the KL divergence DKL(x̄
(t+1)
k , x

(t+1)
k (η)) is infinite for all η, since

support(x̄(t+1)) 6⊂ support(x
(t+1)
k (η)) (in measure theoretic terms, x̄(t+1) is not absolutely

continuous with respect to x(t+1)
k (η)). This is problematic, as the estimation problem is

ill-posed in such cases (which do occur in the data set used in Section 5). To solve this
problem, we propose two possible approaches:

(1) First, we observe that from equation (6), the KL divergence can be decomposed into
two terms as follows:

d
(t)
k (η) = DKL(x̄

(t+1)
k , x̄

(t)
k ) + η

〈
¯̀(t)
k , x̄

(t+1)
k

〉
+ lnZ

(t)
k (η),

where the first term, DKL(x̄
(t+1)
k , x̄

(t)
k ) may be infinite (if support(x̄(t+1)) 6⊂

support(x̄
(t)
k )), but does not depend on η, while the second term, η

〈
¯̀(t)
k , x̄

(t+1)
k

〉
+

lnZ
(t)
k (η) is finite for all values of η ≥ 0, regardless of the supports of the observa-

tions. Thus, instead of minimizing d(t)
k (η), we can minimize d(t)

k (η)−DKL(x̄
(t+1)
k , x̄

(t)
k )

and the problem becomes well-posed function regardless of the supports.
(2) Second, instead of using the negative entropy as a DGF, we can consider the follow-

ing DGF introduced in [Krichene et al. 2015c]: Fix ε > 0, and let

ψε(xk) = −H(x+ ε) =
∑
p

(xk,p + ε) ln(xk,p + ε).

The corresponding Bregman divergence is

Dψε(xk, yk) =
∑
p

(xk,p + ε) ln
xk,p + ε

yk,p + ε
,

and can be interpreted as a generalized KL divergence: it measures the KL diver-
gence between the vectors xk+ε and yk+ε. In particular, for any ε > 0, this Bregman
divergence is finite for any xk, yk ∈ ∆Pk , regardless of their supports, unlike the KL
divergence. Finally, it is worth observing that when ε > 0, the update equation (1)
does not have a closed-form expression as in (5); however, the solution can be com-
puted efficiently using the algorithm of [Krichene et al. 2015c]. In our numerical
simulations in Section 5, we use the generalized entropy DGF proposed here.

3.3. Estimating the decay of the learning rate sequence
In the previous section, we proposed a method to estimate a single term of the learning
rate sequence. One can of course repeat this procedure at every iteration, thus generat-
ing a sequence of estimated learning rates. However, the resulting sequence may not be
decreasing. In order to be consistent with the assumptions of the model in Section 2.2,
we can assume a parameterized sequence of learning rates (which is by construction
decreasing), then estimate the parameters of the sequence, given the observations.
Motivated by Theorem 2.4, we will assume, in this section, that η(t)

k = η
(0)
k t−αk with

parameters η(0)
k > 0 and αk ∈ (0, 1).
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Given the observations (x̄
(t)
k ) and (¯̀(t)

k ), we can define a cumulative cost,
D

(t)
k (αk, η

(0)
k ) :=

∑t
τ=1 d

(τ)
k (η

(0)
k τ−αk), where each term of the sum is as defined in equa-

tion (3), then estimate (αk, η
(0)
k ) by solving the problem

(αk, η
(0)
k ) = arg min

αk∈(0,1),η
(0)
k ≥0

D
(t)
k (αk, η

(0)
k ). (7)

Note that this problem is non-convex in general, however, since it is low-dimensional
(two parameters to estimate), it can also be solved efficiently using non-convex opti-
mization techniques.

3.4. Traffic flow prediction
We discuss one important application of the proposed estimation problem. Once we
have estimated the learning rates, we can propagate the model forward in order to
predict the distributions of the players for the next time step. More precisely, given the
current flow distribution x̄(t) and a current estimate of the learning rate η(t)

k , according
to the learning model in Algorithm 1, the next flow distribution is given by

x
(t+1)
k = gk(x̄(t), η

(t)
k ) := arg min

xk∈∆Pk

η
(t)
k

〈
xk, `k(x̄(t))

〉
+Dψk(xk, x̄

(t)
k )

where we defined the function g, which takes the current distribution x̄(t) and a learn-
ing rate η(t)

k and propagates the model forward one step.
We can inductively estimate the next terms by propagating the model further over a

horizon h: let x(t)
k = x̄

(t)
k and for i ∈ {0, . . . , h− 1},

x
(t+i+1)
k = gk(x(t+i), η

(t+i)
k ). (8)

Here, we assume that we can extrapolate the learning rate sequence to estimate the
terms η(t+i)

k . If we assume that the learning rate sequence is of the form η
(t)
k = η

(0)
k t−αk ,

then once we have an estimate of η(0)
k and αk, we obtain an estimate of the entire

sequence. However, if each term of the sequence is estimated separately, we can simply
set the future learning rates to be constant, using one of the following simple methods
(which we evaluate in Section 5):

(1) As a baseline method, we simply set η(t+i)
k = η

(t−1)
k for all i (we use the last estimated

value).
(2) Second, we set η(t+i)

k = 1
N

∑N
n=1 η

(t−n)
k for all i (we use the average of the last N

estimates, for a fixed parameter N ).

We conclude this section by observing that while we chose to apply the model to
a simple prediction task, the estimated model can be used, more generally, in any a
receding-horizon optimal control problem, by using the current estimate of the model
as a plant in the control problem.

4. THE ROUTING GAME WEB APPLICATION
In order to conduct the experiment, we have implemented a web application based on
the routing game, using the Python Django Framework. The code for the web appli-
cation is available on Github at the following url: www.github.com/walidk/routing.
The application has been deployed on the Heroku service at the following url:
routing-game.herokuapp.com. We have then interfaced the web application with the
Amazon Mechanical Turk platform www.mturk.com which allows for easy recruiting of
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players. In this section, we will describe the architecture of the web application along
with how the experiment is conducted on Amazon Mechanical Turk.

4.1. Web Application Architecture

Server

Admin

x̄(t)

x̄
(t)
1

(¯̀(t)
1 , ¯̀(t−1)

1 , . . . )

x̄
(t)
2

x̄
(t)
3

(¯̀(t)
2 , ¯̀(t−1)

2 , . . . )

(¯̀(t)
3 , ¯̀(t−1)

3 , . . . )

game parameters

Fig. 1. General architecture of the system. The administrator sets up the game. During iteration t, the
clients input the current values of the distributions x̄(t)k and send them to the server. At the end of the
iteration, the server uses these values to compute the cost functions ¯̀(t)

k and sends them back to the clients.

The web application implements the repeated routing game described in Section 2.
The general architecture of the system is summarized in Fig. 1. It consists of two
different client interfaces, that are used respectively by the administrator of the game
and the players, shown in Figures 2 and 3, and a backend server that is responsible for
collecting inputs from the clients, updating the state of the game, then broadcasting
current information to each player.

4.1.1. Admin Interface. The administrator can set up the game using the admin inter-
face shown in Fig. 2 by:

(1) Creating a graph and defining the cost functions on each edge,
(2) Creating player models. A player model is defined by its origin, destination and total

mass. When a player connects to the game, she is randomly assigned to one of the
player models,

(3) Setting additional parameters of the game, such as the total number of iterations
and the duration of each iteration.

During the game, the administrator can monitor, for each player, her expected cost,
learning rate estimates as well as the flow prediction, computed as described in Sec-
tion 3.4. The administrator can also use the interface to update some of the parameters
of the game (such as the duration of each turn), even after the game has started.

4.1.2. Player Interface. Figure 3 shows a screenshot of the client interface for the play-
ers. The table is the main element of the graphical user interface, and can be used by
the player to set weights on the different paths, using the sliders. The weights deter-
mine the flow distribution x̄

(t+1)
k . The table also shows the previous flow distribution

(x̄(t)
k ), and the previous costs (¯̀(t)

k ). Clicking a path on the table will also highlight that
path on the graph. The bottom charts show the full history of flows x̄(τ)

k , costs ¯̀(τ)
k , and
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Fig. 2. Admin interface
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Fig. 3. User interface

expected costs given by the inner product
〈
x̄

(τ)
k , ¯̀(τ)

k

〉
, for τ ≤ t. The origin and desti-

nation of the player are displayed on the client interface, underneath the input table.
The top navigation bar also shows the time left until the end of the current iteration,
and the number of iterations left until the end of the game.

4.1.3. Game Progress. Once a game is set up by the administrator (i.e. the graph of
the game is created, the edge costs are set, and the population models are defined),
players can log in to the client interface, and each player is assigned to an arbitrary
player model (note that several players can share the same model). Once the game
starts, it is played in iterations, such that each iteration lasts a specified period of time
shown by the timer on top of the client interface (each iteration lasts 30 seconds in our
experiments). Each player k can use the sliders to set her flow distribution x

(t)
k during

iteration t. At the end of the iteration, the server uses the values of x(t)
k for all players

k ∈ {1, . . . ,K} to compute the costs `(t)k , then sends this information to the client side,
which then updates the charts and the table with the last value of the cost. Note that
each player only has access to the information about her own paths, so in this sense,
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the learning is completely distributed, as players do not observe the decision or the
costs of other players. The decisions of the players (x̄

(t)
k ) and the costs (¯̀(t)

k ) are logged
by the server, with no identifiable information about the players.

Finally, the application can be set up to run several games consecutively. After the
maximum number of iterations is reached, all the players are notified that they will
transition to the next game, and they are redirected to a page with a 30 second count-
down, at the end of which the next game starts.

4.2. Conducting The Experiment on Amazon Mechanical Turk
Amazon Mechanical Turk (AMT) is a marketplace for work where it is possible to ac-
cess on-demand, scalable and cheap workforce. It has been successfully used to perform
game theoretic experiments, see [Mason and Suri 2011] and references within. Work-
ers on AMT are paid to perform tasks called Human Intelligence Tasks (HITs). Each
HIT has a number of assignments. This number defines how many different work-
ers can work on the HIT. By design, HITs are asynchronous tasks. Since the routing
game experiment requires simultaneous participation of all players, the corresponding
tasks are inherently synchronous. Thus, we followed Mason and Suri’s recommenda-
tions [Mason and Suri 2011] on how to run a synchronous task on AMT. In particular,
the following steps must be achieved:

- Build a panel of potential participants.
- Notify workers.
- Create an online waiting room.
- Handle attrition.

4.2.1. Panel Building and Worker Notification. In order to build a panel of potential partic-
ipants, a preliminary experiment has been run on AMT, which consisted in a simple,
two-player version of the Routing Game. In this version, the first player is controlled
by the worker, while the second player is controlled by an algorithm, based on an im-
plementation of the mirror descent model described in Algorithm 1, with a vanishing
learning rate η(t) = 1√

t
, where t is the iteration number. We refer to this version of the

game as the “Worker Vs. AI” Routing Game. It is designed not only to build the panel
but also to select players that perform well during the game, i.e that manage to arrive
at a distribution that is close to the Nash equilibrium. To measure how close the player
is to equilibrium, we simply compute the expected cost of the player

〈
`k(x(t)), x

(t)
k

〉
,

normalized by the cost at equilibrium
〈
`k(xNash), xNash

k

〉
. If this value is no more than

1 + ε for a predefined threshold ε (taken to be .05 in our experiments), we consider that
the player is close to equilibrium. Workers who successfully complete the “Worker Vs.
AI” game are then notified by email about the full game, which involves all players
simultaneously.

4.2.2. The Waiting Room. During the full game, workers who have been notified may
log in and accept the HIT at different times. Thus to ensure that the game starts
when a majority of players are present, one needs to implement a waiting room, which
allows workers to accept HITs within an interval of a few minutes, then wait for the
start of the game. The first worker to arrive to the waiting room triggers a countdown.
Once the countdown reaches zero, the game starts with the players that are currently
connected. Any player that logs in after the game has started is redirected to a second
waiting room, and is allowed to participate in the next game.

4.2.3. Attrition Handling. Despite being synchronous, the game should not stop if one or
several players drop out of the game (either by actively abandoning the game, or simply
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Fig. 4. Mechanical Turk interface

due to a connection loss). This phenomenon is referred to as “attrition” in [Mason and
Suri 2011]. To handle attrition, we designed the client interface to periodically ping
the server, and whenever the server does not receive a ping for more than a given
threshold, the player is considered disconnected, and an artificial intelligence takes
over the control of that player’s flow distributions, and continues to play in lieu of the
player. However, if the player reconnects at a later iteration (i.e. the client interface
pings the server again), the A.I. is suspended and the player can resume the game.
The A.I. simply implements the mirror descent algorithm described in Algorithm 1.
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We considered several options for handling a connection loss:

(1) The player is entirely removed from the game (i.e. the mass of the player is set to
zero). This has the negative effect of disrupting the game, since changing the total
mass of players will result in a sudden change in path losses. This also results in
changing the set of Nash equilibria of the game.

(2) The player is kept in the game but the flow distribution of the player is not updated.
While this preserves the total mass and the set of Nash equilibria, it makes it un-
likely for the game to converge to a Nash equilibrium (since the disconnected player
may be far from an equilibrium).

(3) The player is kept in the game, and the flow distributions of the player are updated
by an A.I. that implements the mirror descent model of Algorithm 1. This has the
advantage of preserving the total mass and the set of Nash equilibria, and makes
it possible for the system to converge to equilibrium even after one or several play-
ers have dropped out of the game. This method may affect the conclusions that can
be drawn from the experiment, since the experiment does not purely involve hu-
man decisions. However, we believe that the advantages of this method outweigh
its shortcomings.

4.3. Deploying the routing game application on Heroku
For simple tasks, AMT provides a set of templates that can be used to build HITs.
For more complicated tasks such as the routing game (in particular tasks that require
synchronization of different workers), AMT offers the possibility of creating external
HITs. The requester simply provides a link to the external url of the HIT, and AMT
displays this url in a frame as shown in Fig. 4.

Heroku is a cloud platform to deploy web applications. It supports different frame-
works such as Python-Django or Java-Play. Heroku also offers different add-ons which
we have used in our implementation. For running the experiment with 10 players, we
have used the following resources:

— 15 Professional Dynos Standard 1X/2X: Dynos are processes which are used to han-
dle requests. More dynos are required for handling an increased volume of traffic.
The number of Dynos should be scaled linearly with the number of players.

— Heroku Postgres Database Hobby Basic Plan.
— Redis Cloud 2.5Gb Plan: Redis is a caching service that we used to cache the values

of flow distributions and path costs, in order to minimize database calls.

5. EXPERIMENTAL RESULTS
To illustrate the methods proposed in this article, we ran the experiment on two differ-
ent networks (shown in Fig. 5), with 10 anonymous players. The first game is played
over a horizon of 16 iterations, while the second one is played over a horizon of 25
iterations. In both games, the edge cost functions are taken to be linear increasing.
The experiment was conducted according to the protocol described in Section 4.2. We
use the data set collected by the experiment to illustrate the estimation and predic-
tion problems proposed in Section 3, and give some comments on some qualitative and
quantitative aspects of the decision dynamics of the players.

5.1. Exploration and convergence to equilibrium
First, we evaluate whether the (distributed) decisions of the players converge to the
Nash equilibrium of the game. The distance to equilibrium can be measured simply
by the Rosenthal potential defined in Proposition 2.3. Fig. 6 shows, for the first game,
the potential f(x(t)) − f(x?) as a function of iteration t, as well as the corresponding
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Fig. 5. Graphs used in the two games of the experiment.
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Fig. 6. Exploration and convergence to equilibrium in the first game. The left figure shows the distance
to equilibrium, measured by the Rosenthal potential f(x(t)) − f(x?) as a function of iteration t, where
x(t) = (x

(t)
1 , . . . , x

(t)
K ) is the joint decision of all players. The right figure shows the costs of each player,

normalized by the equilibrium costs
〈
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(t)
k , `

(t)
k

〉
/
〈
xNashk , `Nashk

〉
(so that their values are comparable).
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Fig. 7. Sample flow distributions x(t)k as function of the iteration t for two different players in the first
game.

costs
〈
x

(t)
k , `

(t)
k

〉
of the players, normalized by the equilibrium costs

〈
xNash
k , `Nash

k

〉
(so

that, close to equilibrium, the normalized costs are close to one). Fig. 7 shows the flow
distributions x(t)

k for two different players in the first game. We can observe that at the
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beginning of the game, there is a clear exploration phase in which players tend to make
aggressive adjustments in their distributions (observe the oscillations in the early it-
erations on Fig. 7), while during later turns, the adjustments become, in general, less
aggressive and the joint distribution x(t) remains close to equilibrium (as measured by
the potential function f on Fig. 6). The system does move away from equilibrium on
iteration 9 (due to a player performing an aggressive update), which results in a sharp
increase in the potential value, and we can observe that the players react to this sud-
den change by significantly changing their distribution. Note that this only occurred in
the first game, while in the second game no such perturbation was observed. The sys-
tem quickly recovers after this perturbation, and remains close to equilibrium during
the later iterations.
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Fig. 8. Comparison of the distributions x(t)k of the estimated model to the actual distributions x̄(t)k , for
player k = 2. Each subplot corresponds to a path.

5.2. Estimation and prediction
We now apply the methods proposed in Section 3 to estimate the learning rates of each
player, then use the estimated rates to predict the decision of the players over a short
horizon. In this section, we take the Bregman divergence to be the generalized entropy
defined in Section 3.2, with ε = 10−3. We use the data collected during the second
game, since it was played over a longer horizon.

First, we solve Problem (4) to estimate the learning rate sequence one term at a time.
Fig. 8 compares the estimated distributions by the model, to the actual distributions,
for one of the players in the second game. The figure shows that the estimated dis-
tributions closely fit the actual distributions, which indicates that the mirror descent
model proposed in Section 2 is expressive enough to describe the observed behavior of
the players.

In addition to estimating one term of the learning rate sequence at a time, we also
compute moving averages of the estimated rates (over a window of 5 iterations), then
we use the parameterized form η

(t)
k = η

(0)
k t−αk , and estimate η

(0)
k and αk by solving

problem (7). The results of the three methods are shown in Fig. 9.
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Fig. 9. Estimated sequences of learning rates in semi-logarithmic scale. In the first method, we estimate
one term of the sequence at a time, in the second method we use a moving average of the single-term
estimates, and in the third method, we use the parameterized form of the estimates, η(t)k = η

(0)
k t−αk . We

start the estimated sequence at t = 5 in order to have enough data points to have a good initial estimate.

Irrational updates. It was interesting and perhaps surprising to observe that when
estimating learning rates one term at a time, in some rare instances, the objective
d

(t)
k (η

(t)
k ), as defined in equation (4), is minimal at a negative η(t)

k (if we ignore the con-
straint η ≥ 0), which means that the player shifted the probability mass towards paths
with higher costs. Fig. 10 shows the histogram of the number of irrational updates for
the second game. In particular, 50% of the players performed at least one irrational
update, and a total of 10 irrational updates were observed across all players (corre-
sponding to 4.17% of total number updates for this game). In the first game, the rate of
irrational updates was 6.25%.

Such behavior is hard to interpret or justify (at least within our framework which
models players as sequential decision makers). A negative learning rate does not make
sense in our model, since the minimization problem (1), which defines the mirror de-
scent update, would encourage shifting mass towards paths with higher cost. Thus we
add the constraint η ≥ 0 when solving the estimation problem (4). Note that this prob-
lem does not occur when we estimate the entire sequence in its parameterized form,
as discussed in Section 3.3.

Predicting future distributions. Next, we use the estimated learning rates to predict
the distributions of the players over a short horizon h ∈ {1, . . . , 7}. More precisely,
given a horizon h, we compute, at each iteration t, the estimated learning rates up to t,
then propagate the model forward from t to t+h, by iteratively applying the function g
defined in (8). We evaluate each method by computing the average Bregman divergence
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Fig. 10. Histogram of irrational updates (left), corresponding to iterations t such that the inner product〈
¯̀(t)
k , x̄

(t+1)
k − x̄

(t)
k

〉
> 0, which means that the player shifts probability mass to paths with higher costs,

which is hard to predict by the model. Example of an irrational update (right), corresponding to iteration
t = 2 for player P6. In particular, this player decreased the flow on path p2 even though this is the best
path).

(per player and per iteration) between the predicted distribution x
(t+h)
k and the actual

distribution x̄
(t+h)
k , i.e.

1

K

K∑
k=1

1

tmax − tmin

tmax−1∑
t=tmin

Dψk(x̄
(t+h)
k , x

(t+h)
k ),

where tmin is taken to be equal to 5 (so that there is always a minimal history of
observations to estimate the parameters). The results are given in Fig. 11. One can
observe that for all methods, as the horizon h increases, the average divergence tends
to increase, since the modeling errors propagate and the quality of the predictions
degrade. The best overall performance is obtained with the parameterized model η(t)

k =

η
(0)
k t−αk , although for h = 1, the best prediction is achieved using the per-iteration

estimate of η(t)
k (since this model has as many parameters as time steps, it allows for a

much better fit of the observed data, but has poor generalization performance, i.e. its
prediction quickly degrades beyond the first iteration).
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Fig. 11. Average Bregman divergence per player and per iteration, between the predicted distributions and
the actual distributions, as a function of the prediction horizon.
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6. CONCLUSION
We proposed a problem of model estimation in the routing game, to fit the parame-
ters of a distributed learning model to observations of player decisions. The estimated
model can then be used to predict the decisions at future iterations, or, more generally,
as a plant model in an optimal control problem.

We considered in particular a model based on the mirror descent algorithm, param-
eterized by a sequence of learning rates (η

(t)
k ), and gave an intuitive interpretation of

how this model can describe player behavior. We showed that the problem of estimat-
ing one term of the learning rate sequence is convex in the case of the KL divergence
(it remains open to prove this result for other Bregman divergences). To control the
complexity of the model and to make the estimation consistent with the theoretical
assumptions (decreasing learning rates), we proposed to parameterize the sequence
with an initial term η

(0)
k and a decay rate αk ∈ (0, 1).

This estimation problem can be extended to estimate the DGF in addition to the
learning rates. One way to pose the problem is to consider a finite collection of distance
generating functions {ψi}i∈I , then to assume that each player k uses a DGF that is a
linear combination ψ =

∑
i θk,iψi, then estimate the parameter vector θk. This would

increase the expressive power of the model.
When we tested these methods on data collected from our routing game experiment,

the parameterized sequence estimation outperformed the other methods on the pre-
diction task. Our test results suggest that the mirror descent model can be a good
descriptive model of player behavior, although in some rare cases, a player decision
can be hard to model (e.g. when a player increases flows on previously bad routes).
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