15-252

More Great Ideas in Theoretical Computer Science

Spring 2021

Course Staff

Office hours: TBA
No office hours this week

- Other times besides OH available upon request

We look forward to getting to know you well,
Andrii Riazanov
so never hesitate to reach out!

Course pages

http://www.cs.cmu.edu/~venkatg/teaching/15252-sp21/

piazza.com/cmu/spring2021/15252

Zoom link (common for all lectures and office hours) communicated via email.

- Add it to your calendar for convenience!

Topics

- Mix of digging into more advanced version of 251 material, and some one-off topics.
- Happy to customize to some extent.

The course is for your fun and intellectual enrichment.

- Feedback (on topics, level, speed, etc.) always welcomed.

Grading (Pass/Fail)

Class participation + Homeworks

- Weekly homework, roughly one per lecture, out Friday
- Each with couple of problems
- Submit and graded via gradescope
- HW preferably typeset in LaTeX, but not required
- If handwritten, please write clearly and legibly. Solutions in rough/poor form will not be graded.
- Collaboration and other rules specified in HW

Feature Presentation

Feel free to ask questions

The chef in our place is sloppy; when he prepares pancakes they come out all different sizes.

When the waiter delivers them to a customer, he rearranges them
(so that the smallest is on top, and so on, down to the largest at the bottom).

He does this by grabbing several from the top and flipping them over, repeating this (varying the number he flips) as many times as necessary.

How do we sort this stack? How many flips do we need?

Four Flips Are Necessary

If we could do it in three flips:
First flip has to put 5 on bottom, because...
Second flip has to bring 4 to the top, because...

$5^{\text {th }}$ Pancake Number

Number of flips required to sort when your
$P_{5}=$ worst enemy gives you
a stack of 5 pancakes
$\mathrm{P}_{5}=$ MAX over all 5 -stacks \mathbf{S}
of MIN \# of flips to sort \mathbf{S} of MIN \# of flips to sort S

What is P_{n} for small n ?
Can you do $\mathrm{n}=0,1,2,3$?

n	0	1	2	3
P_{n}	0	0	1	3

Upper Bound on P_{n}

Fix the biggest pancake.

Upper Bound on P_{n}

Fix the biggest pancake.

$$
? \leq \mathrm{P}_{\mathrm{n}} \leq 2 \mathrm{n}-3
$$

Let's think about a lower bound for P_{n}

1. Show a specific n-stack.
2. Argue that every way
of sorting this stack uses
a lot of flips.

Breaking-Apart Argument

Suppose the stack has an adjacent pair which should not be adjacent in the end.

Spatula must go between them at least once.
("Adjacent pair" includes bottom pancake and the plate.)

Each flip can achieve
at most 1 "break-apart".

Lower Bound on P_{n}

This stack seems pretty painful!

Prosf of $\mathrm{P}_{\mathrm{n}} \geq \mathrm{n}$

Case 2: n is odd.
S contains n adjacent pairs which need to be broken apart, each necessitating at least one flip.

$$
\text { Detail: Assuming n > } 3 \text {. }
$$

Slight Digression

From any n-stack to sorted n -stack in $\leq \mathrm{P}_{\mathrm{n}}$
From sorted n-stack to any n-stack in $\leq P_{n}$?

Reverse the sequence of flips used to sort!
Hence: any n-stack to any n-stack in $\leq 2 \mathrm{P}_{\mathrm{n}}$

Is there a better way?

The Known Pancake Numbers

n	$\mathbf{P}_{\mathbf{n}}$
1	0
2	1
3	3
4	4
5	5
6	7
7	8
8	9
9	10
10	11
11	13
12	14
13	15
14	16
15	17
16	18
17	19
18	20
19	22

Any Stack S to Any Stack T in $\leq \mathrm{P}_{\mathrm{n}}$

Rename the pancakes in T to be $1,2,3, \ldots, \mathrm{n}$
Rewrite S using the new naming scheme

In $\leq \mathrm{P}_{\mathrm{n}}$ flips can sort "new S ".
The same sequence of flips also brings S to T .

P_{20} is unknown

It is either 23 or 24 , we don't know which.
$20 \cdot 19 \cdot 18 \cdot \cdots 2 \cdot 1=20$! possible 20-stacks

$$
\begin{aligned}
20!=2.43 & \times 10^{18} \\
& (2.43 \text { exa-pancakes })
\end{aligned}
$$

Brute-force analysis would take forever!

Is This Really Computer Science?

In 1977,
the observations we have made so far were published by
Mike Garey, David Johnson, \& Shen Lin

"On the Diameter of the Pancake Network" Journal of Algorithms 25(1), 1997
$(15 / 14) \mathrm{n} \leq \mathrm{P}_{\mathrm{n}} \leq(5 / 3) \mathrm{n}+5 / 3$
by Hossain Heydari and Hal Sudborough

Posed in Amer. Math. Monthly 82(1), 1975, by "Harry Dweighter" (haha).

AKA Jacob Goodman, a computational geometer.

Bounds For

Sorting By Prefix Reversal
Discrete Mathematics 27(1), 1979

```
(17/16)n \leq P P 
```

 by:
 William H. Gates (Microsoft, Albuquerque NM) Christos Papadimitriou (UC Berkeley)

"An (18/11)n Upper Bound For

Sorting By Prefix Reversals"
Theoretical Computer Science 410(36), 2009

$$
(15 / 14) \mathrm{n} \leq \mathrm{P}_{\mathrm{n}} \leq(18 / 11) \mathrm{n}
$$

by B. Chitturi, W. Fahle, Z. Meng, L. Morales, C.O. Shields, I.H. Sudborough, W. Voit @ UT Dallas

Worst Case: There is an algorithm using $\leq(18 / 11)$ n flips, even when your worst enemy gives you stack of n pancakes

$$
(3 / 2) \mathrm{n}-1 \leq \mathrm{BP}_{\mathrm{n}} \leq 2 \mathrm{n}+3
$$

Average Case: There is an algorithm using $\leq(17 / 12)$ n flips on average when given a random stack of n pancakes

(Josef Cibulka, 2009)

Burnt Pancakes

$$
(3 / 2) \mathrm{n} \leq \mathrm{BP}_{\mathrm{n}} \leq 2 \mathrm{n}-2
$$

"On The Problem Of Sorting Burnt Pancakes" Discrete Applied Math. 61(2), 1995
by Davic X. Cohen and Manuel Blum

Applications

"The Pancake Network"

on $n!$ nodes

Nodes are named after the n ! different stacks of n pancakes

Put a link between two nodes if you can go between them with one flip

Pancake Network, $\mathrm{n}=4$

Pancake Network:

 ReliabilityIf up to $\mathrm{n}-2$ nodes get hit by lightning, the network remains connected, even though each node is connected to only $\mathrm{n}-1$ others

The Pancake Network is optimally reliable for its number of nodes and links

Pancake Network: Message Routing Delay

What is the maximum distance between two nodes in the pancake network?

P_{n}

Computational Biology

Transforming Cabbage Into Turnip: polynomial algorithm for sorting signed permutations by reversal by S. Hannenhalli \& P. Pevzner

Lessons

- Simple puzzles might be hard to solve and hold exciting mysteries
- Simple puzzles can have unforeseen applications
- By studying pancakes (theory puzzles) you may become a billionaire

Analogy with computation

- Input: initial stack
- Output: sorted stack
- Computational problem: (input, output) pairs pancake sorting problem
- Computational model: specified by allowed operations on input (flip top segment of stack)
- Algorithm: a precise description of how to obtain output from input (precise sequence of flips)
- Computability: is it always possible to sort the stack?
- Complexity: how many operations (flips) are needed?

High Level Point

Computer Science is not merely
about computers or programming - it is about mathematically modeling computational scenarios in our world,
about finding better and better ways to solve problems, and
understanding fundamental limits of how well we can solve problems

Today's lecture is a microcosm of this.

Definitions of:
$\mathrm{n}^{\text {th }}$ pancake number
upper bound
lower bound

Proof of:
Bring-To-Top
Breaking-Apart
ANY to ANY in $\leq \mathrm{P}_{\mathrm{n}}$
HW 1 will be posted on course webpage by tomorrow (with accompanying alert on Piazza) Due midnight next Friday (Feb 12).

