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What is a computation/algorithm?

Hilbert’s 10th problem (1900):

Given a multivariate polynomial w/ integer coeffs,
e.g. 4x2y3 − 2x4z5 + x8, 

“devise a process according to which it can be
determined in a finite number of operations”

whether it has an integer root.

Mathematicians: “we should probably try to
formalize what counts as 

an ‘algorithm’ ”.



What is a computation/algorithm?

Hilbert’s Entscheidungsproblem (1928):
(“decision problem”)

Given a sentence in first-order logic,
give an “effectively calculable procedure”

for determining if it’s provable.

Mathematicians: “we should probably try to
formalize what counts as 

an ‘algorithm’ ”.



Gödel (1934):
Discusses some ideas for definitions of 
what functions/languages are “computable”,
but isn’t confident what’s a good definition.

Church (1936):
Invents lambda calculus,
claims it should be the definition.

Gödel, Post (1936):
Arguments that Church’s claim isn’t justified.

Meanwhile… in Princeton… a certain British 
grad student of Alonzo Church…



Alan Turing (1936, age 22):
Describes a new model of computation,
now known as the Turing Machine.

Emil Post (1936), independently, proposed an especially simple type
of TM (2-way infinite tape, each cell holding a bit), which was later
proved to be equivalent to Turing Machines.

Turing’s model gained acceptance as a right general 
mathematical model of computability

1937:  Turing proves  TMs ≡ lambda calculus



Today we’re going to discuss this alternate model of 
computing called Lambda Calculus.  

It’s a simple programming language invented in the 
1930s by Alonzo Church, for the purpose of 
defining computability.



Historically it preceded Turing Machines. 

It is elegant, and offers an alternate higher level perspective on 
computation.

It’s the simplest known sufficiently powerful programming 
language.

It has direct relevance to programming; modern functional 
programming languages (e.g. ML, Scheme, Haskell, F#, 
Scala) are direct descendants of lambda calculus.  



Church–Turing Thesis:

Any natural / reasonable notion of
computation realizable in the physical world 

can be simulated by a TM 
(or equivalently, by lambda calculus).



Outline

§ Syntax of Lambda Calculus
§ Calculating with Lambda Calculus
§ Uniqueness Theorems & Church-Rosser Property
§ How to implement recursion
§ Implementing built-in constants and functions



Calculus?
§ Calculus = just a bunch of rules for manipulating symbols

§ One can give meaning to the symbols (semantics), but 
that’s not part of the calculus (pure syntax)

§ Lambda calculus: rules for manipulating expressions of 
form <exp> ::= <constant> | <variable>| <exp> <exp> | λ <variable> . 
<exp>| (<exp>)

§ One can associate meanings to expressions in a way that 
corresponds to computations (functional programs)
ú We will motivate the calculus/syntax via the intended 

semantics



A functional program is an expression which 
is ‘executed’ by evaluating it.

For example:  (+ 4 5) 

+ is a function.  We write functions in prefix form.

Another example: (+ (* 5 6) (* 8 3))

Evaluation proceeds by choosing a reducible expression and 
reducing it.  (There may be more than one order.) 

(+ (* 5 6) (* 8 3)) ➞ (+ 30 (* 8 3)) ➞ (+ 30 24) ➞ 54 



Function Application and Currying

Function application is indicated by juxtaposition:  f  x

“The function f applied to the argument x”

What if we want a function of more than one argument?  
We could invent a notation f(x,y), but there’s an 
alternative.  To express the sum of 3 and 4 we write:

((+ 3) 4)

The expression (+ 3) denotes the function that adds 3 to its 
argument.   



Function Application and Currying (contd.)

So all functions take one argument.  So when we wrote (+ 3 
4) this is shorthand for ((+ 3) 4).  (The arguments are 
associated to the left.)

((f ((+ 4) 3)) (g x))   is identical to  f (+ 4 3) (g x)

This mechanism is known as currying (in honor of Haskell 
Curry).

Parentheses can be added for clarity.  E g:



Built-in Functions and Constants

§ We will start out with a version of the lambda calculus that has 
constants like 0, 1, 2… and functions such as + * =.   

§ We also include constants TRUE and FALSE, and logical 
functions AND, OR, NOT.

Also conditional expressions, with these reduction rules:

IF TRUE E1 E2➞ E1

IF FALSE E1 E2➞ E2

(Later we’ll see that the expressive power of our language is not 
enhanced by any of these, by showing how to `implement’ these.)



Writing Your Own Functions – Lambda Abstractions

A way to write expressions that denote functions.

Example:  (λx . + x 1)

λ means here comes a function
Then comes the parameter x
Then comes the .
Then comes the body + x 1
The function is ended by the ) (or end of string)

(λx . + x 1) is the increment function.

(λx . + x 1) 5 ➞ 6

(We’ll explain this more thoroughly later.)



Syntax Summary

<exp> ::= <constant> Built-in constants & functions
| <variable> Variable names, e.g. x, y, z…
| <exp> <exp> Application
| λ <variable> . <exp>    Lambda Abstractions
| (<exp>) Parens

Example:   λf.λn. IF (= n 0) 1 (* n (f (- n 1)))



Implied paranthesis in lambda expressions

Functions associate to the left: f g x stands for (f g) x

Lambdas associate to the right:
λx. x  3 stands for λx. (x  3), 

i.e., function which takes x and applies it to 3

Note (λx. x)  3 equals 3 (identity function applied to 3)

Eg: λx.λy. x y (λz. z y) when fully paranthesized is

λx.λy. ((x y) (λz. (z y)))

Sometimes abbreviate λx.λy by λxy. 



Bound and unbound variables

(λx. + x y) 4

Consider this lambda expression:

x is a bound variable, because it’s inside the body of the λx
expression.

y is an unbound or free variable, because it’s not in a λy
expression. 

In this expression  + x ((λx. + x 1) 4)   The first x is free, and the 
second one is bound.  In (+ x 1) , the x is free.



β-Reduction (aka λ expression evaluation)

(λx. + x 1) 4

Consider this lambda expression:

This juxtaposition of (λx. + x 1) with 4 means to apply the 
lambda abstraction (λx. + x 1) to the argument 4.  Here’s how 
we do it: 

The result of applying a lambda abstraction to an argument is an instance of the 
body of the lambda abstraction in which bound occurrences of the formal parameter 
in the body are replaced with copies of the argument.

I.e. we put the 4 in for the x in + x 1.  The result is + 4 1.

(λx. + x 1) 4 ➞β + 4 1



β-Reduction (some more examples)

(λx. + x x) 5  ➞ + 5 5  ➞ 10

(Note the currying – we peel off the arguments 4 then 5.)

(λx. (λx. + (- x 1))  x 3) 9 ➞ (λx. + (- x 1)) 9 3
➞ + ( - 9 1) 3
➞ 11  

(λx. 3) 5  ➞ 3

(λx. (λy. - y x)) 4 5 ➞ (λy. - y 4) 5  ➞ - 5 4 ➞ 1

(λf. f 3) (λx. + x 1) ➞ (λx. + x 1) 3  ➞ + 3 1 ➞ 4



β-Reduction (contd)

(λx. (λx. + (- x 1))  x  3) 9 ➞ (λx. + (- x 1) 3 ) 9
➞ + ( - 9 1) 3
➞ 11

In this last example we could have applied the reduction 
in a different order.

(λx. (λx. + (- x 1))  x 3) 9 ➞ (λx. + (- x 1)) 9 3
➞ + ( - 9 1) 3
➞ 11  



The other kinds of conversions

There are some other (less interesting) kinds of reductions that 
we shall not spend much time on.

α-conversion: (λx. + x x)  ➞α (λy. + y y)
(just renaming locally bound variables to avoid confusion)

δ-reductions: applying the built in functions

η-reductions: λf. λx f x ➞η λf. f 



β-Reduction (ordering)

So, to evaluate an expression we search for reductions, and make 
them.  When the process stops (there are no more reductions to 
apply), the expression is said to be in normal form.  This is the 
value of the original expression.

Wait… there are different orders in which to do the 
reductions.  Does the order matter?  If so, we have a 
problem.



β-Reduction (ordering)

Let D be this expression:  (λx. x x).  What is the value of this 
expression (D D)?

(D D) = (λx. x x) (λx. x x) ➞ (λx. x x) (λx. x x) ➞…  

It never terminates!

Now consider this expression: (λx. 3) (D D)

If we apply β-reduction to the leftmost part first, we get 3.  If we 
keep applying it to (D D) we go into an infinite loop.

Former is call-by-name (lazy evaluation)
Latter is call-by-value (eager evaluation)



On the ordering of reductions

Church-Rosser Theorem : No expression can be converted into 
two distinct normal forms.

(Modulo renaming .. I.e (λx. + x x) and (λy. + y y) the same.)

So if we just use normal order, we’re good.
We will stick with normal order from now on.

Church-Rosser Theorem 2: if E1 ➞* E2 and E2 is in normal 
form, then you can get to E2 by reducing in normal order.

Normal Order: do the leftmost outermost reduction first.

Note: evaluations for some ordering may not terminate,
but will never  terminate leading to a different normal form.



The Church-Rosser Property (sidebar)

Consider the following problem.  You’re given an undirected 
graph G.  You want to find a subgraph of G such that all vertices 
in it have degree at least 4 (with respect to the given subgraph).

Solution: Greed: Find any vertex with current degree < 4.  Delete 
it.  Repeat.

Exercise theorem: Any run of this algorithm will find the same 
solution, which is the unique optimal one.

Can you think of an algorithm to find the maximum such 
subgraph?



The Church-Rosser Property

This is an example of a reduction system with the Church-Rosser
Property.

Roughly speaking, a reduction system is where you have state 
and rules to change the state.  It stops when there are no more 
rules that apply.

A reduction system is Church-Rosser if no matter how you apply 
the rules, if it terminates, then you end up in the same state. 

This is the situation with lambda calculus reductions, as Church 
and Rosser proved.



Implementing  recursion in λ calculus

We claimed that lambda calculus was powerful.  
We’ve seen how to define expressions.  
But the language does not seem to support loops or recursive 
calls.  

All functions are anonymous.  There is no mechanism for 
naming a function, then calling it by its name.

But one can get around this problem.



Implementing recursion

Suppose we wanted to write a factorial function which takes a 
number n and computes n!   Here’s an attempt to get started: 

λn.if (= n 0) 1 (* n (f (- n 1)))

This does not work.  Because what is the unbound variable f ?  It 
would work if we could somehow make f be the very function 
above.



Implementing recursion

(λf.λn.if (= n 0) 1 (* n (f (- n 1))))

Idea:  To give us access to that function, how about passing it in 
as another parameter?

§ But we need to pass this function to itself (recursively).
§ So inner recursive call should be (f f (- n 1)).



Implementing recursion

FACT = (λf.λn.if (= n 0) 1 (* n (f f (- n 1))))

Now if we write

To give us access to a function itself, we pass it in as another 
parameter.

(FACT is just shorthand for that string of characters.)

FACT FACT 5

This will work, because the β-reduction substitutes FACT for f, 
resulting in a function call FACT FACT 4.  Etc.



Implementing recursion

FIB = λf.λn.if (= n 0) 0 (if (= n 1) 1 (+ (f f (- n 1)) (f f (- n 2))))

Another example.  The Fibonacci numbers

Now FIB FIB n computes the nth Fibonacci number.



A general method for recursion: the Y combinator

Y = λh.( λx. (h (x x))  λx. (h (x x)) )

There’s a systematic way to do this. We’ll just touch upon this, 
but you can see http://en.wikipedia.org/wiki/Fixed-point_combinator

Let H be the factorial function we attempted to use before:    

H = λf.λn.if (= n 0) 1 (* n (f (- n 1)))

Let Y be the following expression.

This is called a fixedpoint combinator because for any G: 

Y G = G (Y G)

Turns out Y H is the factorial function that we wanted.
Exercise: Check this!



Building in constants and functions

We wany to represent things, like for example, numbers and 
Booleans.  

All these can be defined using λ-abstractions.

We will see some examples next.



Examples of Simple Normal-Form Expressions

λx.λy.x             λx.λy.y           

Let’s look at the first one.  What does it do when applied?

If we call them TRUE and FALSE respectively, then we have 
replaced our IF construct.

(λx.λy.x) a b ➞ a

(λx.λy.y) a b ➞ b

IF FOO B1 B2 replaced by            FOO  B1 B2



TRUE = λx.λy.x             FALSE = λx.λy.y           

We’ll need the boolean operations, like AND, OR, NOT.  How 
would we do AND?

Essentially we use our IF-THEN-ELSE design.

AND A B = A B FALSE

AND A B = IF A then B else FALSE

Actually we can also write AND more simply as 

AND = λa.λb. a b FALSE = λa.λb. a b (λx.λy.y)  

AND = λa.λb. a b a

Easy exercise: Work out OR and NOT.



What about Numbers?

Look at these normal form expressions….

λf.λx x
λf.λx f x
λf.λx f (f x)
λf.λx f (f (f x))
λf.λx f (f (f (f x)))

To be useful as numbers we have to be able to test for zero, 
add, subtract, multiply, etc

0
1
2
3
4

These are called the Church numerals

n f x applies function f iteratively n times to x.



Testing a number for zero
λf.λx x
λf.λx f x
λf.λx f (f x)
λf.λx f (f (f x))
λf.λx f (f (f (f x)))

Let g = λx. FALSE.
Then for any numeral n

Therefore we have the function

0
1
2
3
4

n g TRUE = TRUE if and only if n=0

ISZERO  =  λn. n (λx. FALSE) TRUE 



Adding Numbers

If n and m are numbers, then “m+n” f x applies the function f 
m+n times to x.  How do we write such a function?

SUM = λm. λn. λf. λx. m f (n f x) 

Easy.  It’s m f (n f x), so just put that into lambda form:



Multiplying Numbers

What we’re going to do here is replace the function used by m 
with one which repeats f n times.  So we end up with f being 
applied m*n times.

So (m (n f)) is a function that takes one parameter and applies 
f m*n times to it.

(n f) is a function that takes one parameter and applies f  n 
times to it.

PROD m n = λf.λx. m (n f) x

PROD = λm.λn.λf.λx. m (n f) x 



Subtraction

How to compute predecessor? 
ú This is not so straightforward.
ú Can implement using “pairs”

SUBTRACT := λm. λn. n PRED m

To compute m-n, apply the predecessor function n times to m. 



Data Structures - Pairs

Let E, F be arbitrary normal form expressions.  
A pair (E,F) can be represented as the normal form lambda 
expression: λf. f E F

The function to construct a pair is then:

PAIR := λx.λy.λf. f x y

If p is a pair (E,F), i.e., λf. f E F then how do we get its parts?

Easy.  p TRUE gives us E,  and p FALSE gives us F.

FIRST := λp.p TRUE           SECOND := λp.p FALSE



Data Structures - Lists
Can turn our method of pairing arbitrary normal form expressions 
into building up lists.  
All we need is a way to mark the end of the list (NIL) and a way to 
tell if we’re at the end of the list (ISEMPTY).

NIL := λx.TRUE             ISEMPTY := λp.p (λx.λy.FALSE)

ISEMPTY NIL =  (λp.p (λx.λy.FALSE)) (λx.TRUE)
➞ (λx.TRUE) (λx.λy.FALSE) ➞ TRUE

ISEMPTY (PAIR E F) = (λp.p (λx.λy.FALSE)) (λf. f E F)
➞ (λf. f E F) (λx.λy.FALSE)
➞ (λx.λy.FALSE) E F ➞ FALSE  

Let’s see how this works:



Data Structures – Lists (contd)
So, for example, we can build the list [0,1,2] as follows:

PAIR 0 (PAIR 1 (PAIR 2 NIL))

λf.f (λf.λx.x) (λf.f (λf.λx. f x) (λf.f (λf.λx.f (f x)) (λx.λz.λy.z)))

Expanding our shorthand into pure lambda calculus, this is:

One could continue to develop more data structures.  But we’ll 
stop here.



Predecessor

Predecessor using pairs:

SUBTRACT := λm.λn.n PRED m

PRED := λn. FIRST (n NEXT (PAIR 0 0))

To compute m-n, apply the predecessor function n times to m. 

NEXT := λp. PAIR (SECOND p) (SUM 1 (SECOND p)) 



Theorem : The computing power of lambda calculus 
is the same as the Turing machine.

Lambda Calculus is cool!

Having built all the basic primitives one can prove
(though we won’t do it here):



0 0 0 0 1 1

finite control

• Read/write infinite tape: Lists
• Finite control: Numbers to keep track of state
• Processing:

• Way to make decisions (if)
• Way to keep going (loop)

Implementing a TM in Lambda Calculus:



§ Church-Turing thesis
§ Syntax of Lambda Calculus
§ Evaluating expressions
§ Uniqueness Theorems
§ How to implement recursion
§ Booleans
§ Numbers
§ Doing Arithmetic
§ Pairs & Lists

Recap


