
Notes on Communication Complexity

Anil Ada

Random variables are denoted with boldface letters, not necessarily capital. If x is
a random variable and µ a distribution, x ⇠ µ means that x is distributed according
to µ. The notation E [·] and Pr [·] is used for expectation and probability respectively.
When the random variable(s) and the distribution(s) are clear from the context, the
expectations and the probabilities do not have any subscripts, e.g. E [f(x)]. If the
distribution is clear but we would like to explicitly point out the random variables, we
put the random variables as subscript, e.g. Ex [f(x)]. We also sometimes choose to make
the distribution explicit in this notation, e.g. Ex⇠µ [f(x)]. The uniform distribution is
always denoted by U and the underlying set will always be clear from the context.

1 2 Player Deterministic Model

The most basic and fundamental model in communication complexity is the 2 player
deterministic model (introduced in [Yao79]). The setting is as follows. We have a
function F : X ⇥ Y ! Z and two players Alice and Bob. In these notes, we’ll assume
that X = Y = {0, 1}n and Z = {1,�1}. Alice gets x 2 X and Bob gets y 2 Y . They
want to collaboratively compute F (x, y) by communicating with each other. Their
communication consists of bits that are being transferred from one player to the other.
They carry out this communication according to a protocol that they have agreed
upon beforehand. More precisely, the protocol tells each player:

1. Whose turn it is to send a bit; the protocol determines this purely based on the
communicated bits thus far, and we assume without loss of generality that Alice
sends the first bit.

2. What bit to send; the protocol determines this based on the communicated bits
thus far as well as the input of the player sending the bit.

The protocol also determines when communication stops and the value of the output
based on the whole transcript of the communicated bits (which implies both players
know the output at the end). The resource of interest is the number of communicated
bits, or in other words, the length of the transcript. The goal is to compute the
function with the shortest transcript possible. It is worth explicitly noting that we put
no restriction on the computational capacities of Alice and Bob, and the sole interest
is in the number of bits needed to communicate in order to compute the function.

1

Let P denote a protocol that correctly computes a function F . Denote by ⇧P (x, y)
the transcript of protocol P for the input (x, y) (i.e. the sequence of communicated
bits). The cost of P is

cost(P)
def
= max

(x,y)2X⇥Y
|⇧P (x, y)|.

The deterministic communication complexity of F , denoted D(F), is the cost of
the most e�cient protocol that computes F correctly. That is,

D(F)
def
= min

protocol P that computes F
cost(P).

Unless explicitly stated otherwise (for example, we will do so in Chapter ??), we
deal with the standard setting of X = Y = {0, 1}n and Z = {1,�1}, and we are
interested in how fast D(F) grows as a function of n. Observe that every function can
be trivially computed with n + 1 bits of communication: Alice sends x to Bob, Bob
computes F (x, y) and sends the result back to Alice. Hence for any F :

0  D(F)  n+ 1.

In view of this, protocols of cost at most poly-log(n) are considered to be e�cient and
protocols of larger cost are deemed ine�cient. As an example of an e�cient protocol,
suppose we want to determine if the majority of the bits in x and y is 1, i.e. is
|x| + |y| � n? This function can be computed using dlog ne + 1 bits since Bob can
compute the output if Alice sends him |x|. A canonical example of a hard function
is the equality function which evaluates to �1 if and only if x = y. Intuitively one
expects that for Alice and Bob to be sure that x = y, or detect a di↵erence, they
would have to compare xi and yi for all i 2 [n]. That is, our intuition tells us that
D(EQUALITY) � n. But is this correct, and if it is, how do we formally prove it?

In order to prove lower bounds on communication complexity, we need to have a
combinatorial understanding of what protocols do. To this end, we first observe that
a protocol can be conveniently described with a binary tree as follows (see Figure 1).
Each node v of the tree is labelled with the letter A or B (indicating whether the node
belongs to Alice or Bob) and a function fv. This function is of the form fv : X ! {0, 1}
if the label is A or it is of the form fv : Y ! {0, 1} if the label is B, and it determines
what bit the corresponding player communicates. Let us trace the behaviour of the
protocol to understand the meaning of this tree. As always, Alice gets x and Bob gets
y. First, without loss of generality, the root r is always labelled A, which means that
Alice is the first to communicate a bit. Then the protocol determines what bit Alice
will send by evaluating fr(x), i.e. Alice sends Bob fr(x). If fr(x) is 0, we move to
the left child of the root and if fr(x) = 1 we move to the right child. Without loss of
generality let’s assume we are at the right child, which we denote by v. If v is labelled
with A, then it is again Alice’s turn to speak. If it is labelled B, it is Bob’s turn. And
as before, the function fv tells the player what bit to send. In this fashion we make
our way down the tree until we reach a leaf node. Leaf nodes are special and they
determine the output of the protocol.

2

Figure 1: A binary tree representing a protocol. Each node is labelled with A or B to
indicate whose turn it is to speak. A function associated with a node tells the player
what to send. Depending on whether 0 or 1 is sent, we move to the left or the right child
of the node. The leaf nodes are indicated with double lines. The functions associated
with them determine the output of the protocol.

3

Observe that every protocol can be described with such a tree and this tree de-
scription is entirely consistent with the description we provided in the beginning. In
particular, whose turn it is to speak is determined based only on the communicated
bits thus far and what a player sends is determined by the communicated bits as well
as the input of the player. Obviously the cost of the protocol is the height of the tree.

With this point of view, we will be able to gain a very good understanding of what
a protocol does when computing a function F . First we represent F by a |X | ⇥ |Y|
matrix MF where the rows are labelled with x 2 X , columns are labelled with y 2 Y ,
and MF [x, y] = F (x, y). A submatrix S ⇥ T where S ✓ X and T ✓ Y is called a
rectangle. The rectangle is said to be monochromatic if MF restricted to S ⇥ T
has the same value on all of its entries. We will now see that a protocol of cost c that
computes F partitions1 MF into at most 2c monochromatic rectangles. In fact, this is
the most important property of a protocol and all lower bound techniques will be based
on this observation.

Proposition 1.1. Let P be a protocol that computes F : X ⇥Y ! Z with at most c bits
of communication. Then P induces a partition of MF into at most 2c monochromatic
rectangles.

To see why this is the case, let’s trace once again the behaviour of the protocol down
the associated tree. We start at the root which is labelled with A. The root corresponds
to the whole matrix X ⇥Y . The function fr is boolean and therefore partitions X into
two sets X0 and X1: for all x 2 X0 Alice sends 0 to Bob, and for all x 2 X1 she sends
1. Therefore the left child of r corresponds to the rectangle X0 ⇥ Y and the right child
corresponds to X1⇥Y . In some sense, if we go to the left child, we eliminate (disregard)
the inputs X1 ⇥ Y and our new matrix is X0 ⇥ Y (this is where the input (x, y) lives).
If we go to the right child, we eliminate X0 ⇥ Y and our new matrix is X1 ⇥ Y . Note
that X0 ⇥ Y and X1 ⇥ Y are disjoint. This process inductively continues, so for each
node of the tree, there corresponds a rectangle. If a node is the descendent of another,
the rectangle of the descendent will be a subset of the other. Otherwise the rectangles
are disjoint. Once we reach a monochromatic rectangle, there is no need to partition
it further since we can safely declare F (x, y) as the value of this rectangle. Hence each
leaf node corresponds to a monochromatic rectangle. Suppose the height of the tree is
c, i.e. the protocol has cost c. Then there are at most 2c leaves. Thus, the protocol
partitions MF into at most 2c monochromatic rectangles.

It is instructive to see a di↵erent proof of the above fact. The following gives an
alternative definition of a rectangle.

Proposition 1.2. A set R ✓ X ⇥Y is a rectangle if and only if for all (x, y), (x0
, y

0) 2
R, we have (x, y0) 2 R.

An important observation is that if a protocol produces the same transcript for
(x, y) and (x0

, y
0), i.e. ⇧(x, y) = ⇧(x0

, y
0), then ⇧(x, y) = ⇧(x0

, y
0) = ⇧(x, y0). This

1The word partition here is important. The rectangles are mutually disjoint and together cover the
whole matrix MF .

4

implies that all the inputs that produce a particular transcript form a rectangle. There
are at most 2c di↵erent transcripts and therefore we have at most 2c monochromatic
rectangles that partition MF .

Proposition 1.1 immediately suggests a lower bound strategy: to show a function
F has high communication complexity, show that no matter how you partition MF

into monochromatic rectangles, you need many rectangles. Let’s denote by C
D(F) the

minimum number of rectangles in any monochromatic disjoint cover of MF . The lower
bound strategy can be restated as follows.

Corollary 1.3.
D(F) �

⌃
logCD(F)

⌥
.

With this tool, it is now easy to show D(EQUALITY) � n + 1. The matrix
corresponding to the equality function is basically the identity matrix: the diagonal
elements are �1 and the o↵-diagonal elements are 1. Observe that no monochromatic
rectangle can contain more than one �1 since if a rectangle contains the entries (a, a)
and (b, b), then it also has to contain (a, b), which corresponds to a 1 entry. This means
that we need at least 2n rectangles to cover the diagonal elements, plus we need at
least one rectangle to cover the 1’s in the matrix. So in total we need at least 1 + 2n

rectangles and hence D(EQUALITY) � dlog(1 + 2n)e = n+ 1.
Although every protocol that computes F induces a partition of MF into monochro-

matic rectangles, simple examples show that the converse is not true. So if some
monochromatic partitions do not correspond to any protocol, how tight is Corollary
1.3? The next theorem states that the gap is not very large.

Theorem 1.4.
D(F)  O(log2 CD(F)).

Let’s reiterate that Proposition 1.1 and Corollary 1.3 are the basis for all lower bound
techniques in communication complexity, including the randomized model which we will
discuss in the next section. In most cases it is not easy to exactly determine CD(F) so
all the various lower bound techniques try to find a suitable lower bound for CD(F). For
instance one might try to upper bound the size of the largest monochromatic rectangle
in MF . If all monochromatic rectangles are small, then we can conclude that we need
many rectangles to partition MF . A more interesting lower bound technique uses the
rank of MF .

Proposition 1.5.
D(F) � log rankMF .

Proof. Suppose a protocol P of cost c computes F and denote by S1 ⇥ T1, . . . ,St ⇥ Tt

the t monochromatic rectangles that the protocol induces (t  2c). For each of these
rectangles Si ⇥ Ti, define the |X |⇥ |Y| matrix MSi⇥Ti by

MSi⇥Ti [x, y] =

⇢
MF [x, y] if (x, y) 2 Si ⇥ Ti

0 otherwise

5

These matrices are like the indicator matrices of the rectangles. Obviously we have
MF =

Pt
i=1 MSi⇥Ti . By the subadditivity of the rank, we have rankMF 

Pt
i=1 rankMSi⇥Ti .

Since each MSi⇥Ti has rank at most 1, we conclude that rankMF is at most t  2c, i.e.
c � log rankMF .

Arguably the most famous open problem in communication complexity is whether
the rank lower bound is close to being tight.

Conjecture 1.6 (Log Rank Conjecture [LS88]). There is some universal constant k
such that

D(F)  O(logk rankMF).

Needless to say there are other lower bound techniques and each has its own advan-
tages depending on the particular function we are dealing with.

One of the well-studied restrictions of the deterministic model is called the simul-
taneous model. Here, the players are not allowed to interact with each other. Upon
receiving their inputs, the players send a message to an external referee. The referee,
who does not see the players’ inputs, determines the output based on these messages.
The cost is the number of bits sent to the referee and we denote by D||(F) the deter-
ministic simultaneous communication complexity of F .

2 Randomized Model

The previous section introduced the most basic communication complexity model. In
this section we will introduce the randomized model which has a variety of interesting
applications.

A natural way to extend the deterministic model to utilize randomness is to allow
each player to privately flip coins and make decisions based on the outcomes of those
coin flips. Normally, we have to allow some probability of error in computing the
function correctly. To make this more concrete, let’s say that Alice has access to a
random binary string rA and Bob has access to a random binary string rB. Then a
randomized protocol computes F with ✏ error if

8(x, y) 2 X ⇥ Y , Pr [F (x, y) 6= P (x, y)]  ✏,

where P (x, y) denotes the output of the protocol and the probability is over the random
choices of rA and rB. The cost of a randomized protocol is the maximum number of bits
communicated, where the maximum is over all inputs and random strings. It is worth
making it clear that the random strings being used by the players do not count towards
the cost at all. We denote by R✏

pri(F) the randomized communication complexity
of F with ✏-error, i.e. the cost of the most e�cient randomized protocol that computes
F with ✏-error (the subscript ‘pri’ will be clarified shortly). We are mainly interested
in the case where ✏ < 1/2 is some constant. The particular choice of the constant does

6

