SPECTRAL GRAPH THEORY
Matrix representation of a graph:

- Adjacency matrix of graph $G=(V, E)$
$A \in\{0,1\}^{V \times V}$.

$$
\begin{aligned}
& A(u, v)= \text { if }\{u, v\} \\
& \in E \\
& 0 \text { otherwise }
\end{aligned}
$$

Can matrix-theoretic notions help shed light on the graph of its properies/structure? Representation can be a powerful las/ to od on an object, especially from a computational point of view
(Recall FFT alpo: coefficient $\left.\Leftrightarrow \begin{array}{c}\text { evaluation } \\ \text { representation }\end{array}\right)$
Spectral graph theory: Eigenvalues of matrix encode valuable info abowit the graph.

- Useful for structural analysis
- Algonthmically powerful, since spectra
of matrices can be computed efficiency
(Full course on spectral Graph Theory offered regularly by Prof. Gary Milter including this semester)

Interlude on eigenvalues
$A=$ real symmetric $n \times n$ matrix

$$
A(i, j)=A(j, i)
$$

(Note: Adj matrix of an undirected oh is symmetry)
Defn $\lambda_{i} \in \mathbb{R}$ is said to be an eigenvalue of a $n \times n$ matrix M if $\exists \vec{x} \in R^{n}$,

Standard Fact: Let A be an nan real symmetric matrix
(1) Then A has n real eigenvalues (including repetition). $\lambda_{1} \geqslant \lambda_{2} \geqslant \lambda_{3} \geqslant \ldots \geqslant \lambda_{n}$
(2) There exalt n eigenvector $v_{1}, v_{2} \ldots, v_{n}$ sit $A v_{i}=\lambda_{i} v_{i}$ for $i=1,2 \ldots n$, and
(i) The vectors $\left\{v_{i}\right\}$ span \mathbb{R}^{n}
(ai) Eigenvectors corresponding to diff eigenvalues are orthogond.

Pforf $\lambda_{i} \neq \lambda_{j}$

$$
A v_{i}=\lambda v_{i}
$$

$$
x \cdot y=\sum_{i=1}^{\infty} x_{i} \cdot y_{i}
$$

$$
A v_{j}=\lambda_{j} v_{j}
$$

$$
x, y \in \mathbb{R}^{n}
$$

$$
\begin{aligned}
v_{j} \cdot A v_{i} & =v_{j} \cdot\left(\lambda_{i} v_{i}\right)=\lambda_{i}\left(v_{j} \cdot v_{i}\right) \\
v_{j} \cdot A v_{i} & =v_{j}^{\top} A v_{i}
\end{aligned}=\left(A v_{j}^{\top} v_{i} .\right.
$$

$$
\Rightarrow \lambda_{i}\left(v_{j} \cdot v_{i}\right)=\lambda_{j}\left(v_{j} \cdot v_{i}\right)
$$

$$
\Rightarrow \quad v_{j} \cdot v_{i}=0 \Longrightarrow v_{j} \& \begin{aligned}
& v_{i} \text { are } \\
& \text { orthogono }
\end{aligned}
$$ orthogonal

Cor: Every vector $v \in \mathbb{R}^{n}$ can be written as

$$
v \equiv \alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n}
$$

(as a linear combination of $v_{\text {is }}$?.
Lemma: Matrix it has eigenvalue $\lambda_{1} \geqslant \lambda_{2} \cdots \lambda_{1}$
Then $\lambda_{1}=\max _{x \neq 0} \frac{x^{\top} A x}{x^{\top} x} \rightarrow \begin{gathered}\text { (Rayleigh } \\ \text { coetficier) }\end{gathered}$ (coefficient)

Pf. Take $x=v_{1}, \quad \underbrace{x \in \mathbb{V}} v_{1}^{\top} A v_{1}=\lambda_{1}\left(v_{1}^{\top} v_{1}\right)$
u $v_{1}^{\top}\left(\lambda_{1} v_{1}\right)=\lambda_{1}\left(v_{1}^{\top} v_{1}\right)$
To prove max $\leq \lambda$, take any ter,

$$
x=\sum \alpha_{i} v_{i} \quad \frac{x^{\top} A x}{x^{\top} A}=\frac{\sum \alpha_{i}^{2} \lambda_{i}}{\sum \alpha_{i}^{2}} \leq \lambda_{1}
$$

ot back to graph theory!
(iss skipped) Eigenvalues of adj matrix $A \Rightarrow$ inform about graph G properioa
Thm: G is connected $\Rightarrow \lambda_{2}<\lambda_{1}$
The Led G is connected. Than $\lambda_{n}=-\lambda_{1}$ of G is bipartite.
Examples of graph crectra:
$\begin{array}{ll}\text { K } & \lambda_{1}=n-1 \\ \text { (complete graph on } n \text { varices) } & \lambda_{2}=\lambda_{3}=\cdots=\lambda_{n}=-1\end{array}$

$$
(4,-1,-1,-1,-1)
$$

Cycles:

$$
2,-1,-1 \quad\left(\begin{array}{l}
\lambda_{1}=2 \\
\lambda_{2}=-1 \\
\lambda_{3}=-1
\end{array}\right)
$$

$$
2,0,0,-2
$$

$$
2, \frac{\sqrt{5}-1}{2}, \frac{\sqrt{5}-1}{2}, \frac{-\sqrt{5}-1}{2}, \frac{\sqrt{5}-1}{2}
$$

$$
2,1,1,-1,-1,-2
$$

Paths

$$
1,-1 \quad A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

$$
\sqrt{2}, 0,-\sqrt{2}
$$

$\sqrt{3}, 1,0,-1,-\sqrt{3}$
d-regular graph: = a graph where all vertex degrees $=d$.
AEL cues are 2 -regular

3-regular of (Peterson graph)

Fact: For a d-regular graph, largest eigenvalue of th adj. matrix equals d.
Pf. $A(111) \rightarrow$ each row has exactly d i's
$\Rightarrow d$ is an eigenvalue

$$
\left(\lambda_{1} \geq d\right)
$$

Let x be eigenvector with eigenvalue
Let u be st $x(u)$ max. coordinate of x

Theorem: For a d-regular graph ${ }_{\wedge}$ whose adj-matix has eigenvals $d=\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{1}$,
G is connected if and only if $\lambda_{2}<d$.
Prof: (i) G is not connected $\Rightarrow r_{2}=d$.

$$
\begin{array}{ll}
x(u)=1 & \text { if } u \in J \\
0 & \text { otherwise } \\
y(u)=1 & \text { is } u \in T
\end{array}
$$

O othenvix.
Both x \& y are eigenvectors with eigenvalue d. Plus they are lin. index (intact orthogmal)
so there ore at least 2 egenvalues equal to d.

$$
\Rightarrow \quad \lambda_{2} \geqslant d
$$

(2) $\lambda_{2}=d \Rightarrow G$ is disconnected $\overrightarrow{1}$ is on eigenvector with eigval $=d$. Call (s vector)

$$
\lambda_{2}=d \Rightarrow
$$

$$
\exists \vec{x} \in\left(R^{n}\right.
$$

$$
(\vec{x}=\overrightarrow{0})
$$

$$
\begin{aligned}
& \vec{x}-\overrightarrow{1}=0 \\
& \left(\Rightarrow \sum_{u \in v} x(u)=0\right)
\end{aligned}
$$

St $\quad A \vec{x}=d \vec{x} \quad \vec{x}=\ell x(u)\rangle u \in V$
Suppose G is connected.
Well prove all entire of \vec{x} dave to be equal, which contradicts $\sum_{u \in V} x(u)=0$
Let $x(v)$ be max. value in vedor \vec{x}.

$$
\begin{gathered}
\left(x(v)=\max _{u \in V} x(u)\right) \\
d \cdot x(v)=(A \vec{x})(v)=\sum_{(w \sim v} x(w) \leq d x(v)
\end{gathered}
$$

Only way equality holds is if $x(w)=x(v)$ for all nbs ω of v
 reach every vertex $u \in V$, and show $x(u)=x(v)$. 0
\qquad (in a $\begin{gathered}\text { rejuar graph }\end{gathered}$) \Leftrightarrow eigenvalues equal to d.

There are easier ways to check connectivity of court, but this spectral
perspective allows ope to defoe more quantitative aspects of connectivity.
λ_{2} is much sonaller than $\stackrel{?}{\Rightarrow} G$ is very well compacted?
pro bottleneds
is an expanding

very few edges cross two
big halves of grad
"Sparse cut"
If $\lambda_{2} \approx d \xlongequal{\rightleftharpoons}$ Is there a spare. cut?

Yes! Further such a cut can che found using the second eigenvector V_{2} correpondin to λ_{2}.
coss
 graph)

