
SPECTRAL GRAPH THEORY

Matrix representation of a graph :

- Adjacency matrix ofgraph G- CV ,
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Can matrix -theoretic notions help shed light

on the graph & its properties structure
?

Representation can be a powerful last food

on an object, especially from
a computational

point of view

representation
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( Recall FFT algo
: coefficient

Spectral graph theory : Eigenvalues of matrix

encode valuable info aboutthe graph .

- Useful for structural analysis

- Algorithmically powerful , since speaker

of matrices can be computed efficient

( Full course on spectral Graph Theory

offered regularly by Prof . Gary Miller

including this semester )



Interludeoneigenvaluesa-aaenx.in:* :X :*;"
(Note : Adj matrix of an undirected gh is

symmetric.

Doth HEIR is said to be an eigenvalue of

a nxn
matrix M if FIE IR
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Standardize : Let A be an nxn

real

symmetric matrix

① Then A has n real eigenvalues
( including repetitions)
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② There exist n eigenvectors Vi ;Vz . .
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CHI Eigenvectors corresponding to diff

eigenvalues are orthogonal .
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Vj . Vi
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→ orthogonal

Gd : Every vector re CR
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can be written as

VI AV , tlzvzt . .
. t an Vn

(as a linear combination of vis 7 .

Lemmy :
Matrix A has eigenvalues dp.dz . -H
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Then I , = max x'
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ok back to graph theory !
Eigenvalues of adj malnx A ⇒

Infor about

Bifid: a. amend ⇒ * 57k£
.

Thai LetG is connected . Then In = - X ,
off

G is bipartite .
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d- regular graph ÷ a graph where all
vertex degrees =D .

All cycles
,

are 2-regula {⇒
3-Ekiti: Graph ,

O 0

Feet . ' for a d-regular graph, largest eigenvalue

of A adj . matrix equals d .

PI: Auf
l l

1)
→
each row has exactly d L 's

Hat. q ; ,
⇒ ads::c:
( t ,
> d)

Let x be eigenvector with eisewahe
,

Let u be set xlu) max .

coordinate of x
x = (- I 2 I§
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theorem: For a d-regular graph . whose adj . matrix

has eigenvab DA ,
> 123 . . Ha

,

G is connected if and only if bed .

Prot :① G is not connected ⇒ bed .
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Y y (a) = I wi u c-T

Hedges 0 otherwise .

between

Both x & y are eigenvectors with

eigenvalue d
. plus they are 1in .

Inder

Gn fact orthogonal,

so there are at least 2 eigenvalues
equal to d . ⇒ as > d

⇒ ↳=D

② Yazd ⇒ G is disconnected

(ay
vector,

is on eigenvector with eisval =D .
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Suppose G is connected
.

We'll prove
all entries of I

' have to be

equal , which
contradicts Excel so

UEV

Let xcv) be max . value in vector E?

( x = muff
Nu ) ) .

d- xH= CA E) Cvl = Excused.xH
CWNV

Only way equality holds is y xlwkx H

for all nbrs w of V

a.g⇐[⇐ Continuity this argument,
because we assured

G to

be connected , we
eventually

reach every vertex at V,
and show xlukxht .

#
More generally, there are t connected

component

Cijgwfargrap
" ⇐ t eigenvalues equal

to d .

There are
easier ways to check connectivity

of course ,
but this spectral



perspective allows one to define more

quantitative aspects of connectivity .

↳ is much smaller hand
G is very well

No bottlenecks← coyec④
✓

ran exgggndning

Hey few edges cross
two

big halves of grad

If dared Is there a sparge?
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edgy
second eigenvector k

cross
corresponding to 22 .
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Spectre partitioning algorithm
"

- very popular heuristic
-

very useful
in divided
conquer algol .


