Linear Programming

$$
\begin{aligned}
& \quad L P \text { program : } \\
& x=\left(x_{1}, \ldots x_{n}\right) \in \mathbb{R}^{n} \\
& K \subseteq \mathbb{R}^{n}-v_{\text {egion }} \text { b }
\end{aligned}\left\{\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \geqslant b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \geqslant b_{2} \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n} \geqslant b_{m}
\end{array}\right.\right.
$$ all x satisfying this system

Inesudity defines subspice Equalily is a hyprorplane Look at inters of haf-speas K-polyfope
Is K enty?

Instead of $" \geqslant n$
Can use "!"

$$
a_{i} \cdot x \leq b_{i} \Leftrightarrow-a_{i} \cdot x \geqslant-b_{i}
$$

$$
"=" \quad a_{i} \cdot x=b_{i} \Leftrightarrow\left\{\begin{array}{l}
a_{i} \cdot x \geqslant b_{i} \\
a_{i} \cdot x \leqslant b_{i}
\end{array}\right.
$$

$$
\begin{aligned}
& \begin{array}{c}
\frac{\text { Is Kemty? }}{a_{11} x_{14} \ldots+a_{1 n} x_{n}=a_{1}^{\top} x=a_{1} \cdot x} \begin{array}{l}
a_{1}=\left(\begin{array}{c}
a_{11} \\
a_{12} \\
\vdots \\
a_{14}
\end{array}\right)
\end{array}
\end{array} \\
& K=\left\{\begin{array}{c}
a_{1} \cdot x \geqslant b_{1} \\
\vdots \\
a_{n} \cdot x \geqslant b_{n}
\end{array}\right. \\
& k=\{A x \geqslant b\} \backslash_{L P} \\
& \left.\begin{array}{c}
a_{2} \\
a_{n} \\
\vdots \\
a_{n}
\end{array}\right) \quad b=\left(\begin{array}{c}
b_{r} \\
b_{n} \\
\vdots \\
b_{n}
\end{array}\right)
\end{aligned}
$$

Canuof use ">"
LP questions:

1) Decision prehlem: is $K \neq \varnothing$?
2) Search problem: find $x \in K$

$$
\begin{aligned}
& \text { a } \quad x \in R \\
& (\text { if } k \neq \varnothing)
\end{aligned}
$$

3) Optimization:
max C. x
owed $x \in K$

LP Decision problem
a) if $K \neq \varnothing$: output $x \in K$
b) if $K=\varnothing$: ocipat "proof"

Theorem LP problem can be solved in polynomial time
Khacmyan '79| (Ellipsoid method)
What we consider a proof?

$$
\begin{aligned}
& \quad \lambda_{1} \cdot\left(a_{1} \cdot x \geqslant b_{1}\right) \\
& +\lambda_{2} \cdot\left(a_{2} \cdot x \geqslant b_{2}\right) \\
& \vdots \\
& \vdots \\
& +\quad \lambda_{n}\left(a_{m^{\circ}} x \geqslant b_{n}\right)
\end{aligned}
$$

Sum up wiesuolities
scaled by $\lambda_{1}, \lambda_{2} \ldots, \lambda_{m} \geqslant 0$

$$
d \cdot x \geqslant f
$$

Suppose $\quad d=(0,0 \ldots, 0) \quad f=1$

$$
0 \cdot x_{1}+0 \cdot x_{2}+0 \cdot x_{n} \geqslant 1
$$

$$
0 \geqslant 1 \text { - contradiction }
$$

So if such $\underbrace{\lambda_{1}, \ldots, \lambda_{h}}_{\text {"proof" }}$ exist $\Rightarrow K=\varnothing$
Theorem If $K>\varnothing \Rightarrow$ Such $\lambda_{1, \ldots}, \lambda_{m} \geqslant 0$
Farkas Lemma exist.
(LP Duality)

$$
(\epsilon)
$$

So $\lambda_{1}, \ldots \lambda_{m}$ is a proof of $k=\varnothing$

$$
\begin{gathered}
\lambda_{1}\left(a_{1} \cdot x\right)+\lambda_{2}\left(a_{z} \cdot x\right)+\ldots+\lambda_{m}\left(a_{m} \cdot x\right) \geqslant \\
\left.\begin{array}{c}
\lambda_{1}\left(b_{1}+\lambda_{2} b_{2} \ldots+r_{m} b_{m}\right. \\
a_{1} \\
a_{2} \\
a_{m}
\end{array}\right) \quad \text { If this inequality is equiv to } \\
0 \geqslant 1 \\
\lambda^{\top} A=0 \quad \lambda^{\top} b=1
\end{gathered}
$$

Coef before x_{1} in sum of ing.

$$
\begin{array}{ll}
\lambda_{1} \cdot a_{11}+\lambda_{2} \cdot a_{21}+\lambda_{3} \cdot a_{31} \ldots+\lambda_{m} \cdot a_{m 1} & =0 \\
\lambda_{2} \cdot a_{12}+\ldots & +\lambda_{m} \cdot a_{m 2}
\end{array}=0
$$

$$
\begin{aligned}
& \left(\begin{array}{lll}
\lambda_{1} & \lambda_{2} & \ldots
\end{array} \lambda_{m}\left(\begin{array}{lll}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{21} & \vdots \\
a_{m 1} & \vdots
\end{array}\right)=0\right. \\
& \text { Parkas Lemma: } \quad k_{d}=\left\{\begin{array}{l}
\lambda^{\top} A=0 \\
\lambda^{\top} b=1 \\
\lambda \geqslant 0
\end{array}\right\} \\
& k=\emptyset \Leftrightarrow k_{d \neq \emptyset}
\end{aligned}
$$

LP algorithm oat put
a) $x \in \mathbb{Q}^{n}$
b) $\lambda \in \mathbb{Q}^{m}$
$\langle x\rangle$ - bit size of object x
For LD K, has bit -size cK
Theorem
a) if $k \neq \emptyset \Rightarrow \exists x \in K, x \in Q^{n}$

$$
(x\rangle=\operatorname{poly}(\langle k\rangle)
$$

b) if $K=\varnothing \Rightarrow \rightarrow \lambda_{1}$

$$
\lambda_{n} \in Q
$$

$$
(\lambda\rangle=p \operatorname{leg}(\langle k s)
$$

Suppose we proved a)
for G), if $K=\varnothing \Rightarrow K_{d} \neq \varnothing$

$$
\left\langle k_{d}\right\rangle \approx\langle k\rangle
$$

by part a) \Rightarrow

$$
\exists \lambda \in K d \quad \text { sst. } \quad(\lambda)=p \partial l y\left(\left\langle k_{d} s\right)\right.
$$

-his proves 6)
Pf idea of part a)
Claim
$K \neq \emptyset " \Rightarrow$ Feasible vertex of K
(1)

vertex is unique solution to
n linearly independent equalities from K (which is in k)
Have Gaussian Elimination to solve system of n equalities works in poly-time. (non-trivial)
\Rightarrow Solution is poly-size ur.t input
\Rightarrow vertex has size poly ($\langle k s$)
(*) not always Work around:

$$
\text { Add }-B \leq x_{i} \leqslant B
$$

If B is large enough then this bessit chatige answer to $\angle P$ (if K is ϕ^{3})

$$
\begin{gathered}
K^{\prime}=K \cup\left\{-b \leq x_{i} \leq B\right\} \quad K^{\prime}=\varnothing \Leftrightarrow K=\varnothing \\
\langle B\rangle=\operatorname{poly}(c k\rangle)
\end{gathered}
$$

LP Optimization problem
$\max c \cdot x$

$$
\text { over } x \in K
$$

How to reduce Optimization to Decision
Have Oracle for Decision, use it to find
max.

$$
c \cdot x=\text { cons }
$$

Claim If $k \notin \emptyset \Rightarrow c \cdot x$ is maximized at a vertex of K unless max $=\infty$

$$
\begin{aligned}
& \max :=\max c \cdot x \\
& x \in K
\end{aligned}
$$

How can detect if max is ∞ ?
(a) max is ∞
(b) max is not ∞
is achieved at some vertex x^{*} of K

$$
\begin{gathered}
\Rightarrow c \cdot x^{*} \text { has size } \quad \backslash \text { has size }(\langle k\rangle) \\
\Rightarrow \text { Big lg enough }(\langle k\rangle) \\
\quad F \quad \text { s, } t \\
\quad c \cdot x^{*} \leq F \quad \forall x^{*} \\
\Rightarrow \max \leq F
\end{gathered}
$$

If query the Oracle $K \cup\{c \cdot x \geqslant F+1\}$ determine which of @or (b) holds.

$$
-F \leq \max \leq F
$$

we can ask for any t is may? (by asking Ora ale $K \cup\{c \cdot x \geqslant t\}$)

Binary search: in 1 ifleation we halve length of the interval
start from $2 F$
in k iterations:

$$
L_{k} \leq \max \leq u_{k}
$$

$$
\varepsilon=\left(u_{k}-l_{k}\right)=2 F \cdot 2^{-k}
$$

take $k=\operatorname{poly}(F, \log 1 / \varepsilon)$

$$
\operatorname{poly}(\langle k\rangle, \log 1 \varepsilon)
$$

brings us ε-close to max.
This is poly-time algorithm for
LP Optimization.
(using Oracle for Decision problem)

