CS 252, Lecture 4: Kolmogorov Complexity

Nicolas Resch

February 6, 2020

1 Introduction & Motivation

The goal of Kolmogorov (or Kolmogorov-Chaitin or descriptive) complexity is to develop a measure of the
complexity or “randomness” of an object. We would furthermore like this measure to be intrinsic to the
object in question. For concreteness, the objects we consider will be strings over a fixed alphabet, but this
is no real loss of generality. Thus, just as computability /complexity theory aims to quantify the complexity
of languages (i.e., sets of strings), Kolmogorov complexity aims to quantify the complexity of individual
strings.

Consider the following strings:

A = 4444444444
B = 2718281828
C = 1756475382

Which string is the most random? From the point-of-view of probability, if every 10 digit string has the
same likelihood of being sampled, the strings are all “equally” random: each is sampled with probability
10710,

However, intuitively, string A appears to be very simple, in the sense that it has a short description:
it is simply the digit 4 repeated 10 times. Strings B and C, on the other hand, appear to be much more
complicated; one might even be tempted to say that they appear “random”. However, B actually also has
a fairly simple description: it is the first 10 digits in the decimal expansion of Euler’s number! C, on the
other hand, is indeed the result of randomly sampling a 10 digit number.

This discussion suggests that the Kolmogorov complexity of a string should be somehow linked to the
length of its shortest description. Even with this intuition in mind, coming up with a meaningful definition
is quite subtle. For example, consider the so-called Richard-Berry paradox: we describe a natural number
as “the least natural number that cannot be described in less then twenty words”. If this number exists,
then we have just described it with thirteen words, a contradiction to its definition. On the other hand, if
such a number does not exist, that means that every number can be described in fewer than twenty words,
which is equally absurd!

Thus, we need to be very careful about what we consider to be a valid description. Moreover, we
would like the definition to be “fair” in the sense that it doesn’t artificially favor certain objects with short

descriptions. With these motivations and caveats in mind, let us begin to develop the theory of Kolmogorov
complexity.

2 Formal Theory

2.1 Description Methods

Abstractly, a description method is just a partial function f : ¥* — ¥* (with ¥ = {0, 1}, say) mapping
descriptions to objects. The complexity of string x under description method f is

Cy(r) := min{|p| : f(p) = =} .

While this is a good start, we promised a measure of a string’s complexity that depends only on =.
However, C(x) clearly depends on f! For this reason, Cy(x) could arbitarily favor certain strings with
short descriptions. As an example, define f(0) = 011101110111000110011 and f(lz) = = for all other
strings . Under this description method, C';(011101110111000110011) = 1 whereas C¢(z) = 1 + || for
all other strings x. To remedy this, we will need to settle upon a universal description method.

2.2 Universal Description Method

Our goal is to pick a description method that is the “best” in the sense that it gives the minimum description
length to all strings. The following definition formalizes this.

Definition 1 (Minorization). A partial function f : {0,1}* — {0,1}* minorizes a partial function g :
{0,1}* — {0, 1}* if there exists a constant ¢ such that for all strings z,

Ci(z) < Cy(z) +c.
That is, there is at most a constant overhead in describing a string x with f versus describing x with g.

We would now like to choose a minimal universal description method U which minorizes every other
potential description method, and then define a string’s complexity to be CU(x)E]

A priori, it is not clear that such a U should exist... And in fact, if we desire U to minorize every
partial function g, then it does not! Here’s a quick sketch of the justification: pick an infinite sequence of
strings x1, xg,... with p1,pa,... such that Cy(x;) = |p;| for all i and such that |p;| is increasing. Pick a
subsequence pj,, pj,, ... such that [p;,| > 2|p;| for every ¢, and define g as follows: g(p;) = f(pj,) for all i,
and g agrees with f everywhere else. Now, observe that

Cy(zj,) < Ipil <lIpsl/2 = Cul(zj,)/2 .

Thus, for infinitely many strings z, Cy(2) < Cy(2)/2, so U does not minorize g.

'Note that such a minimal U need not be unique, as two partial functions can minorize each other. But for the theory of
Kolmogorov complexity, any such minimal U will suffice.

To remedy this, we restrict the class of valid description methods so that such a universal description
method can emerge. The class of description methods will be all partial recursive functions, which are the
set of partial functions for which there exists a Turing machine M which, on input p for which f(p) is
defined, halts with f(p) written on the output tape. (Note that if f(p) is not defined, then we make no
promises about M’s behavior: in fact, it could be that M never terminates!)

Theorem 2. There exists a partial recursive function U that minorizes every partial recursive function.

Remark. Before diving into the proof, we make a brief comment about encoding pairs of strings. One can
encode the pair (z,y) with 2|z| + |y| + 2 bits: repeat each bit of = twice, add the string 01 as a sentinel,
and then write the string y. This is not the most efficient method of encoding pairs of strings, but for our
purposes this will suffice.

Proof. The description method U uses the Universal Turing machine. On input (M, w) (where we view M
as the description of a TM and w as an input), U simulates M on input w and then outputs whatever M
outputs (assuming it halts). We have

Cy(z) = min{|(M,w)| : TM M halts on input w and outputs z} .

We now demonstrate that U minorizes every other partial recursive function. Given any such function g,
let M be a TM that computes it. Let x be any string, and let p be a shortest string such that M (p) = z, i.e.,
M halts on input p with x on its output tape. Clearly, U({(M,p)) = x, and moreover [(M,p)| = car + |p|,
where cp; = 2|(M)| 4 2: importantly, cjy, is independent of p. The proof is therefore concluded by noting

Cu(z) <[(M,p)| < ear + |pl = e + Cy(x) - O

Using this function U, we can finally define the Kolmogorov complexity.

Definition 3 (Kolmogorov Complexity). The Kolmogorov complezity of a string x is
K(z) := Cy(z) = min{|(M,w)| : TM M halts on input w and outputs z} .

We can use this function K (x) to formally define what it means for a string to be “random”.
Definition 4 (Incompressible strings). A string z is incompressible or Kolmogorov random if K (z) > |x|.

Note that there exist incompressible strings of every length: there are 2™ binary strings of length n but
only 2 — 1 binary strings of length strictly less than n.
2.3 Examples

1. The string 0™ has Kolmogorov complexity logn + O(1): we just need to specify n and a program
which, on input n, outputs 0”.

2. The first n (binary) digits of e also has Kolmogorov complexity logn 4+ O(1), really for the same
reason as above (use any program for approximating e via, say, its Taylor series).

3. Every string has K(z) < |z| + O(1). (Justify!)

4. Do there exist strings x of length n with Kolmogorov complexity, say, /n? Yes! Take some y €
{0,1}V™ with K(y) > v/n. Then, we claim that z = 50"~ V™ has Kolmogorov complexity /n + ©(1).
If it were too much shorter than /n, then we could describe y by describing 2 and then removing
the last n — y/n 0’s. On the other hand, here’s a short way to describe x: describe y and then add
an additional n — /n 0’s. This argument can be generalized to other (sublinear) complexities.

2.4 Undecidability of determining if a string is incompressible

First, we note that the set of strings that are mot incompressible is recursively enumerable: on input x,
consider all possible pairs (M, w) of length less than |x|, simulate M on w, and accept z iff some M outputs
x on input w. Nonetheless, we have:

Theorem 5. It is undecidable whether a string is incompressible.
Note that this implies the set of incompressible strings is not recursively enumerable.

Proof. We’ll provide two proofs. The first is very slick, while the second provides a reduction from the
Halting Problem.

1. Assume for a contradiction we have a program P which can decide if a string is incompressible.
Consider the program P’ which, on input n, runs P on all strings of length n in lexicographical order
and, as soon as P says that a string is incompressible, output that string. This gives a description
of the lexicographically first incompressible string of length n of length (P, (n))| = logn + O(1),
contradicting the fact that its Kolmogorov complexity is at least n.

2. Let H = {(M) : TM M halts on input 0}, and as before assume we have a program P which decides
whether a given string is incompressible. We can use P to decide whether (M) € H as follows. Let
n = [(M)|, and use P to decide for each y of length 2n whether or not it is incompressible. For each
y that is compressible, find some program P, that prints it out for which |[(P,)| < 2n. Let t, be the
number of steps P, requires to print out y, and let ¢ = max, ¢,. Then, run M on input 0 for ¢ steps:
if it halts, output “(M) € H; otherwise, output “(M) ¢ H”.

Why does this work? It is clear that M does not halt on 0 then the above program will correctly say
“(M) ¢ H”. The only potential problem is that maybe M does halt on 0, but takes more than ¢ steps
to do so. So suppose for a contradiction that this is the case. Note that we can specify the running
time of M on input 0 using only n 4+ O(1) bits, as we can just provide (M) plus a program that
counts the number of steps. Thus, we can specify an upper bound t* on the running time of all the
P,’s using only n+ O(1) bits. In this way, we can specify the set of all compressible strings of length
2n using only n+2log(2n)+ O(1) bits: give a description of t* and the number 2n, and then describe
a program which simulates all programs of length less than 2n for at most ¢ steps, and then outputs
whatever the programs output. But then we can use this description of the set of all compressible

strings to describe the lexicographically first incompressible string using only n + 2log(2n) + O(1)
bits! This gives the desired contradiction, as for large enough n, 2n > n + 2log(2n) + O(1).

Thus, we have described a program that decides H, the Halting Problem. This is impossible, implying
that there can be no such program P deciding if a string is incompressible.

3 Application: Prime Numbers

Kolmogorov complexity can be used to prove the infinitude of primes.
Theorem 6 (Euclid c. 300 BC). There are infinitely many prime numbers.

Proof. Suppose not. Let p1,p2, ..., pr be a list of all the primes for some integer k. Let m € N be a natural
number whose encoding in binary is incompressible,ﬂ and let n = |logy m| + 1. Write m as a product of
primes: for some non-negative integers ey, ..., e,

e (& €
m:p11p22...pkk .

Note that we can describe m by providing (e1, es, ..., er). We claim that this is a short description of m,
contradicting the incompressibility of m. Note that each e; < logam < n, so it takes only log, n bits to
describe each e;. Hence, we can descibe (ey, ..., er) with at most (2k—1)logy n+2(k—1)+0(1) = O(logy n)
bits. (Note that k is constant, independent of n.) But, we assumed that K(m) > n. Assuming n is large
enough (which we may, as there are incompressible strings of every length), this is a contradiction. O

2As a minor comment, note that the encoding in binary of such an integer m must begin with a 1. Thus, we need an
incompressible string which begins with a 1. However, it cannot be the case that every compressible string of a given length
begins with a 0. Do you see why?

	Introduction & Motivation
	Formal Theory
	Description Methods
	Universal Description Method
	Examples
	Undecidability of determining if a string is incompressible

	Application: Prime Numbers

