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| Why Quantum Computation?

* Quantum computers are the only model of computation thedpesthe limitations on computation
imposed by the extended Church-Turing thesis. These ttiegrbmitations will soon have practical
consequences as Moore’s Law (the doubling every eighteeth®i@n transistor density on chips and
the resulting increase in computer speed) is expected igaddeor so to run into inherent (classical)
physical limits such as transistors scaling down to the gizdementary particles.

» Quantum computers would have a profound effect on conldsdsed cryptography, via the poly-
nomial time quantum algorithms for factoring and discreigsl Understanding how to meet these
threats by designing quantum resistant cryptosystems oednrting to quantum cryptography is a
major challenge.

» Quantum computation has brought about a renaissance @xémeination of the foundations of quan-
tum mechanics: highlighting phenomena such as entangteamehthe resulting exponential power
inherent in quantum physics, and showing that quantum-eooecting codes may be used to bring
stability into the seemingly inherently unstable quantuarla

« Lastly, the study of quantum computation has helped broade deepen our insights into complexity
theory (and tools such as Fourier analysis and informatienrty), and in a few cases helped resolve
open questions in classical complexity theory.

2 Basic Quantum Mechanics

The basic formalism of quantum mechanics is very simpleydhounderstanding and interpreting the re-
sults is much more challenging. There are three basic plesi enshrined in the three basic postulates of
guantum mechanics:

» The superpostion principle: this axiom tells us what tlagesof a quantum system looks like.

* An addendum to this axiom tells us given two subsystems t¥ieaallowable states of the composte
system are.

» The measurement principle: this axiom governs how mudrinétion about the state we can access.

» Unitary evolution: this axiom governs how the state of thamfum system evolves in time.

2.1 The superposition principle

Consider a system witk distinguishable states. For example, the electron in an at@ht be either in its
ground state or one &— 1 excited states, each of progressively higher energy. Aassical system, we
might use the state of this system to store a number betwend K-al. The superposition principle says
that if a quantum system is allowed to be any one of numberfigrdnt states then it can also be placed in a
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linear superposition of these states with complex coefftsieThus the quantum state of tkstate system
above is described by a sequencek@bmplex numbersr,...,ax-1 € €. aj is said to be the (complex)
amplitude with which the system is in stage We will require that the amplitudes are normalized so that
jlaj|? = 1. Itis natural to write the state of the system dstimensional vector:

(0(s]
ax

Ok—1

The normalization on the complex amplitudes means that tite f the system is a unit vector inka
dimensional complex vector space — called a Hilbert space.

In quantum mechanics it is customary to use the Dirac’s kigtiom to write vectors. As we shall see later,
this is a particularly useful notation in the context of quen computation. In the ket notation, the above

state is written as:
k-1

W) :J;)ai|j>

1 0
0 0

Here|0) = | . | and|k—1) = [ . |. The Dirac notation has the advantage that the it labels aisesb
0 1

vectors explicitly. This is very convenient because thatioh expresses both that the state of the quantum
system is a vector, while at the same time it represents a au(rbsuperposition) describing the physical
guantity of interest (energy level, spin, polarizatiorg)etn the context of quantum computation and quan-
tum information it is data (O or 1) to be processed. '{t@ , |1> seees |K— 1>} basis is called the standard
basis.

2.2 Measurement Principle

This linear superpositio:{‘u,U} = z‘j(;é aj \J> is part of the private world of the electron. For us to know the
electron’s state, we must make a measurement. Mea#uwmm the standard basis yielgsvith probability

jaj %

One important aspect of the measurement process is thtri #he state of the quantum system: the effect
of the measurement is that the new state is exactly the oetairthe measurement. l.e., if the outcome
of the measurement ig then following the measurement, the qubit is in sqajt)e This implies that you
cannot collect any additional information about the amplésa; by repeating the measurement. This
property forms the basis of quantum cryptography where tesgmnce of an eavesdropper necessarily alters
the quantum state being transmitted.

Intuitively, a measurement provides the only way of reaghirio the Hilbert space to probe the quantum
state vector. In general this is done by selecting an ortimabbasis|ey) ,..., |&-_1) . The outcome of the
measurement i#aej> (or j) with probability equal to the square of the length of thejgetion of the state
vectory on \ej>. A consequence of performing the measurement is that thestater vector i$ej>. Thus
measurement may be regarded as a probabilistic rule foeqinog the state vector onto one of the vectors
of the orthonormal measurement basis.
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2.3 Qubits

The basic entity of quantum information is a qubit (pronathécue-bit”), or a quantum bit. This corre-
sponds to a 2-state quantum system, and its state can benaagta unit (column) VeCtC(I'g) €€ In
Dirac notation, this may be written as:

@) =al0) +B|1) a,fe? and |afP+|BfP=1

This linear superpositiow> = a\0> +[3\1> is part of the private world of the electron. For us to know
the electron’s state, we must make a measurement. Measyringn the {|0), |1) } basis yields 0 with

probability || %, and 1 with probability 3| 2.

As we noted above, the measurement process alters the sthgequbit: the outcome of the measurement
is a single classical bit of information, and the effect & theasurement is that the new state is exactly the
outcome of the measurement. l.e., if the outcome of the meamnt of ) = a|0) + B|1) yields 0, then
following the measurement, the qubit is in st@. This implies that you cannot collect any additional
information aboutr, B by repeating the measurement.

More generally, we may choose any orthogonal b@bi$, |W> and measure the qubit in it. To do this, we
rewrite our state in that basip) = a’|v) + B’|w). The outcome is with probability |’ 2 and|w) with

probability | 3’| %. If the outcome of the measurement ) yields |v), then as before, the the qubit is then
in state|v).

2.3.1 Measurement examplel.

Q: We measuréy) = a|0) +B|1) inthe|v),|v) basis, wherg¢v) =a|0) +b|1). What is the probability
of measuringv) ?

[+) =Z0) +11))
7
//QN\ ‘1,) :cos0}0> +sin9‘l>
s ]
45 //
™~ 2
R 2
s =) =0y — )
Figure 1:

A: First let's do the simpler case=b= =, so|v) = 75(|0) +[1)) = +),

vh) =50 =) =[-).
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See Figurll. We expresg) inthe|+),|— ) basis:
) = alo)+p[L)
= a5 +) +-D+BH() )
(1) + 2= >)

Therefore the probability of measuriig- ) is |%(a + B)|? = |a + BJ?/2. The probability of measuring
| — ) is o+ B|?/2. We will do the general case iiLEZB.2.

2.3.2 Measurement examplell.

The notation(v| (“bra v") denotes a row vector, the conjugate-transposg)obr V). For example{0| =
(10)and(1| = (o 1). More generally,

+

Wl=(5)"=(ap)=a(0]+B(] .

The Dirac notation can be handy. For example, let
‘V1> :a1|0> +b1|1>, |V2> :a2\0> +b2‘1> .

Then(vi|vz) (shorthand for(vi| |v2)) is a matrix product of the % 2 matrix {vi| and the 2x 1 matrix
|v2), or just a scalar:

(va|v2) = (@ bn) (52) = ade + by, .

(vi|v2) = (2| v1) is an inner product. Note thgD|0) = (1|1) = 1 and(0|1) = (1|0) = 0. Thus the
above equation could have been expanded,

(vi|v2) = (2(0] +b1(1]) (20| 0) +bol1))
= z?la2<0| 0> + a_lb2<011> + 61a3<1\ 0> + 51b2<l‘ l>
=aay-1+aihy-0+braz-0+biby-1
=qay+ Elbg .

In this notation,a = (0| ¢), B = (1| ). The normalization conditiotar|? + 8|2 = 1 is

= |a]®+|B|*=aa + BB

= (@]0){0]y) + (Y[ 1)(1| w)
= (@] ([0)(0] +[1)(1])|w)
=(yly) .

The last equality above follows sing@) (0| = ($3), |1)(1] = (39), s0[0)(0| + |1)(1] is the 2x 2 identity
matrix. (This trick is important enough to have its own nathe,“resolution of the identity.”)

In the next lecture, we will introduce tensor product spaedwere the advantages of this notation increase.
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With the new notation, it is simple to solve the general céesi® question asked It 82.3.1. Recall =
al0) + b|1) and choosév') = b|0) — a]1). Indeed,(v|v+) = ab—ba = 0.

(W) + v ) )

= (MO} + V) (vH10) + BV (VI + V) (v 1)
(a(v[0) + BUVL)IV) + (a (v*[0) + BUH1) V)

(

¥)

aa-+Bb)) + (ab-+ Ba)vt) .
The probability of measuringy) in a measurement in thev* basis is therefore

|(M)|? = |aa+ Bb]? .

3 Two qubits:

Now let us examine the case of two qubits. Consider the twairelles in two hydrogen atoms:
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Since each electron can be in either of the ground or excited, classically the two electrons are in one of
four states — 00, 01, 10, or 11 — and represent 2 bits of cllgsiormation. Quantum mechanically, they
are in a superposition of those four states:

|L/J> = 000‘00> + 001‘01> + 010‘10> + 011‘11> ,

wherey;|aij|? = 1. Again, this is just Dirac notation for the unit vectordf:

Qoo
Qo1
aio
a1

whereaijj €4, 5 |aij|*> = 1.
M easurement:

If the two electrons (qubits) are in stdt¢> and we measure them, then the probability that the first qubit
is in statei, and the second qubit is in statés P(i, j) = |aij 2. Following the measurement, the state of the
two qubits is|y’) = |ij). What happens if we measure just the first qubit? What is thlatility that the
first qubit is 0? In that case, the outcome is the same as if @erfgasured both qubits: Pist bit = 0} =

|aroo| 2+ | 01| 2. The new state of the two qubit system now consists of thasesten the superposition that
are consistent with the outcome of the measurement — butatized to be a unit vector:

o) = Cfoo|oo> —|—C¥01|01>

®)
\/ 10t00]® + 0] ®
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Tensor products (informal):

Suppose the first qubit is in the stdim) = a1|0) + B1|1) and the second qubit is in the staty) =
02|0) + B2|1) . How do we describe the joint state of the two qubits?

) = oy ©le)
= a102|00) + 0132|01) + B102|10) + B1B2|11) .

We have simply multiplied together the amplitudes|@f; and|0), to determine the amplitude ¢®0);2,
and so on. The two qubits are not entangled with each othemaadurements of the two qubits will be
distrbuted independently.

Given a general state of two qubits can we say what the staaobf of the individual qubits is? The answer

is usually no. For a random state of two qubits is entangled earinot be decomposed into state of each
of two qubits. In next section we will study the Bell stated)ieh are maximally entangled states of two

qubits.

Example:
State1(|00) —[01) + [10) — [11)) can be decomposed intg;(|0) +[1))5(|0) —[1)), but for state

%(\0@ + \11}) there is no such decomposition - the states of the two qubitsat independent but
entangled/correlated.

4 EPR Paradox:

In 1935, Einstein, Podolsky and Rosen (EPR) wrote a papear t@antum mechanics be complete?” [Phys.
Rev. 47, 777, Available online via PROLAt t p: // prol a. aps. org/ abstract/ PR/ v4//1 10/ p/771]

For example, consider coin-flipping. We can model coin-fligpas a random process giving heads 50% of
the time, and tails 50% of the time. This model is perfectldictive, but incomplete. With a more accurate

experimental setup, we could determine precisely the rahgstial parameters for which the coin ends up

heads, and the range for which it ends up tails.

For Bell stat%(|00> + |11> ), when you measure first qubit, the second qubit is determiHedvever, if
two qubits are far apart, then the second qubit must have Hateamined state in some time interval before
measurement, since the speed of light is finite. Moreoverttbids in any basis. This appears analogous to
the coin flipping example. EPR therefore suggested that tises more complete theory where “God does
not throw dice.”

What would such a theory look like? Here is the most extravaffamework. . . When the entangled state
is created, the two particles each make up a (very long!ofisll possible experiments that they might be
subjected to, and decide how they will behave under eachestqpriment. When the two particles separate
and can no longer communicate, they consult their respelisits to coordinate their actions.

But in 1964, almost three decades later, Bell showed thatepties of EPR states were not merely fodder
for a philosophical discussion, but had verifiable conseqges: local hidden variables are not the answer.

h Bell's Inequahty

Bell's inequality states: There does not exist any locatlbidvariable theory consistent with these outcomes
of quantum physics.
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Consider the following communication protocol in the cleasworld: Alice (A) and Bob B) are two

parties who share a common striBgThey receive independent, random s Xg, and try to output bits
a, b respectively, such tha¢a A Xg = a® b. (The notatiorx A y takes the AND of two binary variablesand

y, i.e.,is one ix=y =1 and zero otherwisx®y = x+y mod 2, the XOR.)

In the quantum mechanical analogue of this protofoind B share the EPR pai%(\OO} +[11)). As
before, they receive bitsa, Xg, and try to output bitg, b respectively, such thaa A Xg = a® b.

If the odd behavior of the Bell state can be explained usingestiidden variable theory, then for any
protocol in the quantum world there should be a correspandiassical protocol that achieves the same
results.

However, Alice and Bob’s best protocol for the classicatl@flen variable) game, as you will prove in the
homework, is to outpua = 0 andb = 0, respectively. Thea® b =0, so as long as the inputXa, Xg) #
(1,1), they are successfultddb = 0= Xa A Xg. If Xa = Xg =1, then they fail. Therefore they are successful
with probability exactly 34.

We will show that the quantum mechanical system can do befpecifically, if Alice and Bob share an
EPR pair, we will describe a protocol for which the probapiPr{Xa A Xg = a® b} is greater than 3/4, and
is aboutcos?11/8 = 0.85.

Here is the protocol:

if Xa =0, then Alice measures in thert/16 basis.

if Xa =1, then Alice measures in thetgl6 basis.

if Xg = 0, then Bob measures in thg’16 basis.

if Xg =1, then Bob measures in the371/16 basis.

Now an easy calculation shows that in each of the four cXges Xg = 0, etc, the success probability is

cos? 11/8. This is because in the three cases whgreg = 0, Alice and Bob measure in bases that differ by
/pi/8. In the last case they measure in bases that differh8 3but in this case they must output different
bits.
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