
CS 294-2 Quadratic speedup for unstructured search - Grover’s Al-
gorithm 2/28/07
Spring 2007 Lecture 11

0.0.1 Unstructured Search

Here’s the problem: You are given a boolean functionf : {1, . . . ,N} → {0,1}, and are promised that for exactly one
a ∈ {1, . . . ,N}, f (a) = 1. Think of this as a table of sizeN, where exactly one element has value 1, and all the others
are 0. Since we assumef can be computed classically in polynomial time, we can also compute it in superposition:

∑
x

αx
∣

∣x
〉∣

∣0
〉

→ ∑
x

αx
∣

∣x
〉∣

∣ f (x)
〉

As we saw before, we can use circuit forf to put information aboutf (x) in the phase by effecting the transformation:

∑
x

αx
∣

∣x
〉

→ ∑
x

αx(−1) f (x)
∣

∣x
〉

Here is another way of creating this phase state:

∑
x

αx
∣

∣x
〉

(
∣

∣0
〉

−
∣

∣1
〉

√
2

)

7→ ∑
x

αx

(
∣

∣x
〉∣

∣ f (x)
〉

−
∣

∣x
〉∣

∣ f (x)
〉

√
2

)

= ∑
x

αx
∣

∣x
〉

(
∣

∣ f (x)
〉

−
∣

∣ f (x)
〉

√
2

)

= ∑
x

αx
∣

∣x
〉

(−1) f (x)

(
∣

∣0
〉

−
∣

∣1
〉

√
2

)

Now, we might as well assumef is a black box or oracle. All we need to do is design an algorithm that finds
a : f (a) = 1.

0.0.2 Grover’s algorithm
Grover’s algorithm findsa in O(

√
N) steps. Consider theN dimensional Hilbert space spanned by

∣

∣1
〉

, . . . ,
∣

∣N
〉

. We
wish to find

∣

∣a
〉

. There is a state that we can create:
∣

∣u
〉

= ∑x
1√
N

∣

∣x
〉

. Consider the two dimensional subspace spanned

by
∣

∣a
〉

and
∣

∣u
〉

. Let
∣

∣e
〉

be the state orthogonal to
∣

∣a
〉

in this subspace. Letθ be the angle between
∣

∣u
〉

and
∣

∣e
〉

. Then
sin θ = 1/

√
N and thereforeθ ≈ 1/

√
N. See Figure?? for an illustration of these vectors.

∣

∣a
〉

is the target, so we want to increaseθ . But how?

One way to rotate a vector is to make two reflections. In particular, we can rotate a vector
∣

∣v
〉

by 2θ by reflecting
about

∣

∣e
〉

and then reflecting about
∣

∣u
〉

. This transformation is also illustrated in Figure??.

Each step of our algorithm is a rotation by 2θ (we discuss the implementation below). This means that we need π/2
2θ

iterations for the algorithm to complete. Now, what’sθ?

CS 294-2, Spring 2007, Lecture 11 0-1

(apts.)

(ψ0pts.) = 1√
N ∑N

x=1 (x pts.)

(e pts.)

2θ

θ
φ

θ +φ

(v pts.)

(v’ pts.)

Figure 0.1: To rotate
∣

∣v
〉

by 2θ to
∣

∣v′
〉

, we reflect around
∣

∣e
〉

and then reflect around
∣

∣ψ0
〉

.

〈ψ0|a〉 = cos(π/2−θ) = sin(θ) =
1√
N

Since sinθ ≈ θ , we know thatθ ≈ 1√
N

. Thus, we needO(
√

N) iterations for the algorithm to complete. In the end,

we get very close to
∣

∣a
〉

, and then with high probability, a measurement of the state yieldsa.

How do you implement the two reflections?

1. Reflection about
∣

∣e
〉

is easy. We can reflect about the hyperplane orthogonal to
∣

∣a
〉

by flipping the phase of the
component in the direction of

∣

∣a
〉

; i.e. carry out the transformation

∑
x

αx
∣

∣x
〉

→ ∑
x

αx(−1) f (x)
∣

∣x
〉

2. For the reflection about
∣

∣u
〉

, we will actually reflect about
∣

∣u
〉

in theN dimensional space as follows: apply the
Hadamard transformH⊗n to transform

∣

∣u
〉

to
∣

∣0n
〉

. Now apply a phase flip if the register contents are anything
other than

∣

∣0n
〉

. And apply the Hadamard transform to switch back from the Hadamard basis.

0.0.3 Another approach

Let’s look at the search algorithm differently, with all superpositions. The rotation about
∣

∣u
〉

, D, is an ”inversion
about the mean”:

(a) ForN = 2n, D can be decomposed and rewritten as:

CS 294-2, Spring 2007, Lecture 11 0-2

D = HN











−1 0 · · · 0
0 1 · · · 0
...

...
.. .

...
0 0 · · · 1











HN

= HN





















−2 0 · · · 0
0 0 · · · 0
...

...
.. .

...
0 0 · · · 0











+ I











HN

= HN











−2 0 · · · 0
0 0 · · · 0
...

...
.. .

...
0 0 · · · 0











HN + I

=











−2/N −2/N · · · −2/N
−2/N −2/N · · · −2/N

...
...

. . .
...

−2/N −2/N · · · −2/N











+ I

=











−2/N +1 −2/N · · · −2/N
−2/N −2/N +1 · · · −2/N

...
...

. . .
...

−2/N −2/N · · · −2/N +1











Observe thatD is expressed as the product of three unitary matrices (two Hadamard matrices separated
by a conditional phase shift matrix). Therefore,D is also unitary. Regarding the implementation, both the
Hadamard and the conditional phase shift transforms can be efficiently realized withinO(n) gates.

(b) ConsiderD operating on a vector
∣

∣α
〉

to generate another vector
∣

∣β
〉

:

D

















α1
...

αi
...

αN

















=

















β1
...

βi
...

βN

















If we let µ be the mean amplitude, then the expression 2µ −αi describes a reflection ofαi about the mean.
Thus, the amplitude ofβi = − 2

N ∑ j α j + αi = −2µ + αi can be considered an “inversion about the mean”
with respect toαi.

The quantum search algorithm iteratively improves the probability of measuring a solution. Here’s how:

(a) Start state is
∣

∣ψ0
〉

= ∑x
1√
N

∣

∣x
〉

(b) Invert the phase of
∣

∣a
〉

using f

(c) Then invert about the mean usingD

(d) Repeat steps 2 and 3O(
√

N) times, so in each iterationαa increases by2√
N

CS 294-2, Spring 2007, Lecture 11 0-3

αi

i
k

αi

i

αi

i
k

k

(a)

(b)

(c)

µ

µ

µ

Figure 0.2: The first three steps of Grover’s algorithm. We start with a uniform superposition of all basis vectors in
(a). In (b), we have used the functionf to invert the phase ofαk. After running the diffusion operatorD, we amplify
αk while decreasing all other amplitudes.

CS 294-2, Spring 2007, Lecture 11 0-4

This process is illustrated in Figure??.

Suppose we just want to finda with probability 1
2. Until this point, the rest of the basis vectors will have

amplitude at least 1√
2N

. In each iteration of the algorithm,αa increases by at least2√
2N

=
√

2
N . Eventually,

αa = 1√
2
. The number of iterations to get to thisαa is≤

√
N.

0.0.4 More applications
Grover’s algorithm is often called a “database” search algorithm. This misnomer has been the cause of a lot of
confusion, since essential that the algorithm be able to query in superposition....

But there are a number of applications of unstructured search:

(a) Find the minimum inO(
√

N) steps. Exercise.

(b) Approximately count elements, or generate random ones.

(c) O(N1/3) algorithm for the collision problem....

(d) Speed up the test for matrix multiplication. In this problem we are given three matrices,A, B, andC,
and are told that the product of the first two equals the third.We wish to verify that this is indeed true.
An efficient (randomized) way of doing this is picking a random arrayr, and checking to see whether
Cr = ABr = A(Br). Classically, we can do the check inO(n2) time, but using a similar approach to
Grover’s algorithm we can speed it up toO(n1.75) time.

CS 294-2, Spring 2007, Lecture 11 0-5

