
Introduction to quantum computation:

Grover's algorithm

Lecture Notes for Quantum Computing

Lecturer: Dorit Aharonov

Scribe: Uri Barkay and Omer Levy

April 23-May 1, 2001

Summary of the sixth week of semester 2 (23.4.2001 - 1.5.2001)

Abstract

We learn about Grover's algorithm with provable quadratic im-
provement: �nd an element in a database of N entries using

p
N

queries. We show the lower bound by BBBV, which shows that


(
p
(N)) queries are required to solve the Grover problem, i.e. to

distinguish between an oracle with one item for which f(i) = 1 and

an oracle with no such items. We de�ne the density matrix of a general

quantum system. We will then give Ambainis's lower bound on quan-

tum speed up, which is based on quantum intuition, and shows that

quadratic improvement is the best possible for Grover's case. This

lower bound uses density matrices.

1 Grover's Algorithm (1995)

1.1 Introduction

Assume we are given a database, and we would like to extract some informa-
tion from the database, for example search for a phone number in a phone
book which is sorted by names. This problem is classically solvable in O(N)
time, where N is the size of the database. We show here a quantum algorithm
to solve the problem in O(

p
N) time.

1



1.2 Oracle database

Assume we are searching for ! in our database. Then we de�ne the oracle
f!(i) as follows: f!(i) = 1 if i = !, otherwise f!(i) = 0.

We de�ne the oracle transformation U! as the transformation jii 7�!
(�1)f!(i)jii. This transformation may be accomplished by using an ordinary

oracle call for jiij�i 7�! jiij�� f(!)i, where � = j0i�j1ip
2

If we apply U! on
P jii, the result is ipping amplitude of j!i:
U! :

X
i

jii 7�! (
X
i6=!

jii)� j!i

We would like to start with a uniform superposition of all possible i0s,

j�i = 1p
N

X
i

jii

and slowly increase the amplitude of the item for which the oracle is 1. Then,
when we measure, we will get a large amplitude for !.

The idea of the algorithm is as follows. After one call to the oracle U!,
the amplitude of w is ipped. For a given state

j�i =
X

aijii
we de�ne the average of the state as

< a >=
1

N

X
i

ai:

Note that after applying the oracle on the state j�i the average almost has
not changed, it is very close to 1=

p
N . The amplitudes of all the states except

! are very close to the average. The only state which is pretty far from the
average is !. If we could invert all amplitudes in j�i about the average
of j�i, then the amplitudes of most items will hardly change, except the
amplitude of ! which would increase signi�cantly: it would become about
3=
p
N instead of 1=

p
N as it was in the beginning. Now assume we could

repeat this process again and again (call the oracle and apply inversion about
the average). If at all times, the amplitude of ! grows by order of 1=

p
N ,

then after O(
p
N) iterations the amplitude of ! would be constant, and if

we measure the state we will have constant probability to see it. We proceed
by �rst constructing an operator which inverts about the mean.

2



1.3 Inversion about average

De�ne

j�i =
N�1X
i=0

jii

We claim that a transformation which transfers jai 7�! j�i, and j�i 7�!
�j�i8� ? � is indeed an inversion about the mean.

Write this transformation in a basis of j�i and orthonormal vectors to it.
The transformation is:0

BB@
1 0

�1
: : :
0 �1

1
CCA =

0
BB@

2
0

: : :
0

1
CCA� I

We note that 0
BB@

2
0

: : :
0

1
CCA = 2j�ih�j

So we de�ne
U� = 2j�ih�j � I

We now check that U� is indeed inversion about the mean for an arbitrary
j i. Let

j i =
X

aijii; < a >=

P
ai

N
:

Then
U�j i = 2j�ih�jj i � j i

h�j i = 1p
N
(
X
i

hij)(
X
j

ajjji) = 1p
N

X
ai =

p
N < a >

U�j i = 2j�i
p
N < a > �j i = 2

P jiip
N

p
N < a > �

X
aijii =

X
i

(< a > +(< a > �ai))jii

If we compare this to

j i =
X
i

aijii =
X
i

< a > +(ai� < a >)jii

3



we see that the di�erence of each amplitude from the average indeed ipped
sign, so U� is the inversion we were looking for.

1.4 Probability proof

We claim that if we start with state j�i, and apply U�U! O(
p
N) times and

then measure, then the probability of getting j!i is larger than 1
2
.

Note that U! is inversion about j!?i, and U� is inversion about j�i.
Denote the angle between j!?i and j�i as �. Inverting twice in a two dimen-
sional space, �rst around one vector and than around the other, is actually
a rotation in the two dimensional space by twice the angle between the two
vectors. Hence, applying U�U! is actually rotation by an angle of 2�.

We approximate �: sin� = cos(�
2
� �) = h�j!i = 1p

N
. Assuming N is

large enough, we can resolve � � sin� = 1p
N
.

We are starting with the vector jj�ii, which is almost orthogonal to jjwii;
The actual angle between them is approximately �=2� 1=

p
N . Therefore, in

order to reach j!i we need to rotate by 2� �=2
2�

= �
4�
� �

4

p
N times. Since we

made some approximations (eg. the number of times should be an integer...)
we will not reach the actual state jjwii but a state very close to it. When
we measure, we will get w with very high probability.

1.5 Multiple Solutions

Suppose we are searching for one of r di�erent solutions in our database.
That is, j!i is a superposition of r di�erent solutions. Then � � h!j�i =p

r
N
. By repeating the above process �

4

p
N times we rotate the space by

2� �
4

p
N =

p
r�
2
. For r = 4, this is exactly �; This means that we reach a

vector which is almost aligned with the initial vector j�ii, except it is in
opposite direction. Its projection on jjwii would be exponentially small, and
the probability to measure ! is close to 0. It seems that we need to know r
in order to know how many iterations are required to reach !...

Solution 1: View the algorithm as solving an NP problem: f(i)=1 if i is
a solution. So we solved an NP problem in

p
Npolylog(N) time. We may

now use a classical reduction to reduce the problem to an NP problem with
a single solution, and then apply the quantum algorithm.

Solution 2: (sketch) We do not know r, but the probability to measure
a solution (which is one of the components in !) is periodic in the number

4



of iterations, and the period is a function of r. We can �nd r by �nding the
period of the probability, in an approach similar to the one taken in Shor's
algorithm. We will not describe this here.

1.6 Calculating the transformation U�

How do we calculate the transformation U� we used above? (Inversion about
j�i)

Inversion about j0i: The transformation U : j0i 7�! j0i; j1i 7�! �j1i
is a simple transformation on a single qubit.

Inversion about j00:::0i: De�ne the transformation U0 as follows: use a
classical algorithm to achieve j0ij00:::0i 7�! j0ij00:::0i; j0ijii 7�! j1ijii8jii 6=
j00:::0i (examine the second register). Then apply the transformation U on
the �rst qubit to get j00:::0i in the second register if we started with j00:::0i,
and �jiii if we started with jii 6= j00:::0i

Inversion about �: De�ne the transformation U� as follows: �rst apply
Fourier Transform to transform j�i to j00:::0i. Then apply U0 to inverse
about j00:::0i. Apply Fourier transform again to achieve inversion about �.

1.7 Using Grover's Algorithm

Example: �nding minimum. Let f : 0; 1n 7�! 0; 1n be a binary function,
and we search for an i such that f(i) is minimal. We use binary search to
search the minimum: De�ne g1(i) = 1 if f(i) < 2n�1, g(i) = 0 otherwise.
Apply Grover's algorithm to get an estimate for the �rst bit of the solution
(determine if the minimum is above or under 2n�1), and continue.

2 Lower bounds on oracle model

Grover's algorithm gives us a general method of solving NP-complete prob-
lems in O(

p
2n) time: we could use our oracle for testing potential solutions

for the problem (of course this can be done eÆciently) and then use Grover's
algorithm for searching all 2n possible solutions. For this reason, it is only
natural to ask whether the quadratic speedup to the database search problem
achieved by this algorithm may be further improved, so as to help solving
NP-complete problems. The answer is unfortunately no, as we will prove in
this section. We will show a 
(

p
N) lower bound for the number of calls

5



to the oracle that any algorithm must make for computing a closely related
problem, Or(Oracle) (e.g. for determining whether a certain formula is sat-
is�able or not).

The idea behind the proof is that if the number of calls to the oracle is
too small, then there must be a certain input variable x, which is not queried
enough to determine its value; we may change this value and still get the
same output from the algorithm, so it cannot possibly compute Or(Oracle)
correctly.

Any algorithm that solves Or(Oracle) can be divided into a chain of
operators:

UTOUT�1:::OU1OU0j0i
where each O is a call to the oracle and the Uis are unitary transformations
not involving calls to the oracle. We denote by j�ti the state before the t'th
call to the oracle (j�ti = Ut�1O:::U0j0i). We also denote by qx(�t) the sum
of square amplitudes of con�gurations which are querying the oracle on x
during this call. We refer to qx(�t) as the query magnitude of x in j�ti.

Since the sum of query magnitudes for each �t is 1,
PT

t=1

P
x qx(�t) =PT

t=1 1 = T , we have that there exists x such that

TX
t=1

qx(�t) � T

N

Let us consider two oracles: O such that O(y) � 0 for all y, and O0 such that
O0(y) = Æxy. If our algorithm is to successfully distinguish between O and
O', then we must be able to tell j�T i from j�0T i up to a constant probability,
which means (as we have proved in exercise 1) that their di�erence must be
greater than a constant, say 1

2
:

1

2
< kj�T i � j�0T ik = kUTO:::OU0j0i � UTO

0:::O0U0j0ik:

We want to bound the di�erence between the case in which we always
apply O and the case in which we always apply O0. To do this, we write this
di�erence as a telescopic sum of di�erences, between the following states.
De�ne

j�T ii = UTO:::OUiO
0::O0U0j0i

to be the state in which we apply O0 in the �rst i calls to the oracle, and we
apply O from then on. Clearly, j�T i0 = j�T i and j�T iT = j�0T i,

6



kj�T i � j�0T ik = k
TX
t=1

(j�T it � j�0T it�1)k �
TX
t=1

kj�T it � j�0T it�1k:

Thus, we gradually move from applying O to applying O0, and the di�er-
ence between two subsequent states is only in one call to the oracle. If we
let Et = j�T it � j�T it�1 we get that the above sum isX

i

kEtk:

Let us try to estimate Et. We have two algorithms, which are the same
up to the t'th query. Both are in the state j�0ti before the t0th query. Then
in the t'th query, one calls O and the other calls O'. The call to O doesn't
change the state, while the call to O' ips the sign of all con�gurations in
j�0ti which are querying x. The vector which is the di�erence between the
states after these two queries, Et, is thus exactly twice the projection of the
state on all the con�gurations which query x. We know that the norm of this
projection is

p
qx(�t), so kEik = 2

p
qx(�t), or kEik2 = 4qx(�t). We have:

X
i

kEik � 1 �
sX

i

kEik2 �
X
i

12 �
s
4
X
x

qx(�t) �
p
T �

r
4T 2

N
=

2Tp
N

where we have used Cauchy-Schwarz for the �rst inequality. Since we know
that

P
t kEtk must be larger than half, we have T = 
(

p
N).

What does this tell us about NP and quantum computation? We have
shown that one cannot expect to solve NP-complete problems through the
general Oracle model. This does not mean that we will never be able to
solve NP-complete problems quantumly, but that if anyone were ever to
solve them, they would be using a certain \insight" for the speci�c problem
at hand. Such an insight about the structure of NP complete problems seems
very far from us right now.

Next we wish to prove this lower bound again with di�erent arguments,
but �rst we must introduce the important concept of density matrices.

3 Density matrices

The model we have been using so far for quantum computation restricted
our attention to systems with pure states (states which can be described by

7



a unit vector in a Hilbert space of dimension 2n). In general, however, a
quantum system is not in a pure state. This may be attributed to the fact
that we have only partial knowledge about the system (e.g. after performing
a measurement of some of the qubits) or that the system is not isolated from
the rest of the universe. We say that the system is in a mixed state, and
assign with the system a probability distribution, or mixture of pure states,
denoted by fp�; j�ig. This means that the system is with probability p� in
the pure state j�i. As an alternative description, We now wish to introduce
the notion of density matrices, invented by Von Neumann in 1927, which
facilitates the treatment of such systems.

Given a pure state j�i, we de�ne its density matrix as

�� = j�ih�j

or equivalently, if j�i =Pi cijii,

(��)ij = CiC
�
j :

Given a mixed state, with probability distribution fp�; j�ig, we de�ne its
density matrix as:

�� =
X

p�j�ih�j
Is this representation of mixed states by density matrices unique? The answer
is no, as we may notice from the next two single-qubit systems. First, consider
the mixed state

Prj0i = 1

2
; P rj1i = 1

2

Whose density matrix is:

� =
1

2

�
1 0
0 0

�
+

1

2

�
0 0
0 1

�
=

�
1
2

0
0 1

2

�
:

Now consider the mixed state

Pr
j0i+ j1ip

2
=

1

2
; P r

j0i � j1ip
2

=
1

2

Let us write down its density matrix:

� =
1

2

�
1
2

1
2

1
2

1
2

�
+

1

2

�
1
2

�1
2

�1
2

1
2

�
=

�
1
2

0
0 1

2

�
:

8



At �rst glance, it seems as though we've lost information with this new
notation: two di�erent states have the same representation. However, it
turns out that these states are not really that di�erent. From the practical
viewpoint of measurement, they are actually completely equivalent! We will
now prove that generally, two states whose density matrices are the same,
cannot be distinguished by measurement in any basis. Suppose we have a
mixed state fp�; j�ig, and that we wish to measure it in the basis fj�kig.
The probability of measuring the basis state j�ki is given by

Pr(�k) =
X

P�jh�j�kij2 =
X

P�h�kj�ih�j�ki = h�kj(
X
�

P�j�ih�j)j�ki = h�kj�j�ki

The probability is dependent only of �. This shows that there is no loss of
information in the representation by density matrices.

3.1 Properties of the density matrix

1. trace(�) = 1.
Proof: As the diagonal elements of � are simply the probabilities of
measuring the corresponding basis states, their sum is obviously 1.

2. � is hermitian: � = �y:
Proof: This follows directly from the de�nition of the density matrix of
a pure state, and the fact that a sum of hermitian matrices is hermitian.

3. The eigenvalues of � are nonnegative.
Proof: Let j�i be an eigenvector of �, then Pr(�) = h�j�j�i = ��j�j2.
Therefore �� � 0.

3.2 Reduced density matrices

An important property of the density matrix model is that any subset of
the qubits can be described within the model. Suppose we have two sets
of qubits, A and B, whose state is described completely by the vector j i.
Suppose also that we aren't interested in the state of any of the qubits in
B, and we wish to describe the state of the bits in A alone. This process
is referred to as \tracing out" the bits in B. The general idea behind the
process is averaging over all possible states in B.

9



Before we start our calculations, let us note that operations on A's qubits
and operations on B's qubits commute. We have already shown this in week
2. Now, denote

j i =
X
i;j

�ijjiiAjjiB

then the corresponding density matrix for j i would be

� = j ih j =
X
i;j;i0;j0

�ij�i0j0jiijjihi0jhj 0j

How can we describe the state of A's qubits? It is a mixed state, whose
pure states correspond to the possible outcomes of measurement for B's
qubits. For each basis state jji of B, we use the \extended inner product"
hjj i =Pi �ijjii to describe the state of A conditioned that jji was measured
on B. The state of A is thus a mixture of these vectors (normalized), where
the probability of each state is the probability of measuring the corresponding
jjiB:

fPr(j); j hjj ip
Pr(j)

g

>From which we get the reduced density matrix �jA:

�jA =
X
j

Pr(j) � hjj ih jji
Pr(j)

=
X
j

hjj ih jji =
X
j

hjj�jji

Note that hjj�jji is simply the j'th block on the main diagonal of �, so �jA
can be viewed as \folding" � to A's dimensions.

Example. Consider the EPR-pair j00i+j11ip
2

. Its density matrix is given
by:

� =

0
BB@

1
2

0 0 1
2

0 0 0 0
0 0 0 0
1
2

0 0 1
2

1
CCA

Tracing out the second qubit, we have:

�jA =

�
1
2

0
0 1

2

�

This agrees with our previous result, regarding the density matrix of a
qubit which is j0i with 50% percent probability and j1i with 50% percent.

10



Consider now the vector
P

i j iiAjiiB. Suppose we wish to trace out A.
We have:

� =
X
i;j

j iiAjiiBhjjBh jjB

Suppose fjkig is a basis for A, then from our previous results, we can compute
the reduced density matrix �jB:

�jB =
X
k

hkj
 X

i;j

j iiAjiiBhjjBh jjB
!
jki =

=
X
i;j;k

hkj iijiiBhjjBh jjki =
X
i;j;k

jiiBhjjBh jjkihkj ii

=
X
i;j

jiiBhjjBh jj
 X

k

jkihkj
!
j ii =

X
i;j

jiihjjh jj ii

in the last equality, (
P

k jkihkj) is the identity matrix.
The probability of measuring jii is (�jB)ii. If we measure � in the standard

basis, the o�-diagonal elements will vanish as we will have a superposition of
classical outcomes. These elements determine the amount of \quantumness"
of the system; the higher their amplitudes, the more the qubits are entangled.
We will use this property in our next proof.

4 Ambainis's Lower Bound for Grover's Al-

gorithm

4.1 Introduction

We now apply Grover's algorithm on a superposition of oracles. We begin
with a full density matrix (all elements are non-zero), and we show that
during the algorithm the entanglement of the di�erent oracles exceeds. By
the end of the algorithm, the density matrix is diagonal, thus we reach full
entanglement. We use this property to show that Grover's algorithm requires
at least O(

p
N) oracle calls.

11



4.2 Calculating the density matrices

We de�ne the i0th oracle as follows: f(i) = 1; f(j) = 0 for i 6= j. We de�ne
the unitary matrix O as the transformation matrix jxi 7�! (�1)f(x)jxi. O0

is the transformation which receives as input jxi 
 jii and applies the i0th
oracle on jxi.

Now assume that Grover's algorithm was achieved by a series of unitary
transformations, UT :::U1OU0, starting with a j0:::0i input (The algorithm
workspace). We replace each Ui with Ui 
 I and each occurrence of O with
O0, now starting with a j0:::0i 
 jii input (We add an Oracle workspace).
The result will be some state in the form j ii 
 jii 
 jii. >From linearity,
if we now start with a superposition

P jii of all possible i0s in the Oracle
workspace, the algorithm will produceX

i

j ii 
 jii 
 jii

Assume our database's size is N. Our initial state is j0:::0i
jii, so the density
matrix, reduced to the oracle workspace, is

�0 =

0
BB@

1
N

::: 1
N

: ::: :
: ::: :
1
N

::: 1
N

1
CCA

At the end of the algorithm, if the algorithm 'works properly', the density
matrix reduced to the oracle workspace is

�T =

0
BB@

1
N

::: 0
: ::: :
: ::: :
0 ::: 1

N

1
CCA =

1

N
I

4.3 Error estimate

Let f(i) be the function which is computed by the algorithm on the i'th oracle,
in our case f(i)=i.

Lemma: Let the starting state be a superposition of the oracles,
P
�ijii.

Assume that the algorithm computes f with error probability � �. If f(i) 6=
f(j), then j�T (i; j)j � 2

p
�
p
1� �j�ijj�jj

12



Proof: At the end of the algorithm, the general state is j i =P�ij iijii.
(�jO)(i; j) = �i�

�
jh jj ii

j�T (i; j)j = j�ijj�jjjh jj iij
Since f(i) 6= f(j), there is a di�erentiating bit b, assume the bit b to be

j0i in f(i), j1i in f(j). Then there exist some �1; �2 � � such that:
j ii =

p
1� �1j�ij0i+p

�1j�ij1i (the probability to measure 0 in the bit
b in f(i)).

j ji =
p
1� �2jij1i+p

�2jÆij0i (the probability to measure 0 in the bit
b in f(j)).

Therefore h jj ii =
p
1� �1

p
�2 +

p
1� �2

p
�1 � 2

p
1� �

p
�

4.4 Proof of the lower bound

Let
Sk =

X
i6=j

j�(k)i;j j

Then S0 = N � 1, ST � 2
p
�
p
1� �(N � 1). We will show that for every k,

Sk�1 � Sk � 2
p
N � 1, which will prove the lower bound of T = O(

p
N).

By the triangular inequality we get:

Sk�1 � Sk =
X
i6=j

j�(ij)k�1j �
X
i6=j

j�(ij)k j �
X
i6=j

j�(ij)k�1 � �
(ij)
k j

We now write the state as a combination of the algorithm's base states, rather
than the oracle's:

 k�1 =
X
i;z

p
Pi;zji; ziA 
 j i;ziO

And then
�k�1 =

X
i;z

Pi;zj i;zih i;zj

Sk�1 � Sk �
X
i6=j

X
l;z

Plzj�lzk�1(ij)� �lzk (ij)j =
X
l;z

Plz

X
i6=j

j�lzk�1(ij)� �lzk (ij)j

We notice that the probability factor Plz is independent on k, since the
oracle only changes the bit's phase when i = j

We conclude that it is enough to bound the last expression for �xed l; z.

13



We claim that: X
i6=j

j�lzk�1(ij)� �lzk (ij)j � 4
p
N � 1:

We write:
j�l;zi =

X
j

�l;z;jjji:

We know that the density matrix of the oracle does not change by the unitary
operator on the algorithm's register. hence, the density matric �kl;z is achieved
by applying the oracle on j�l;z, and so

�kl;z = j�0l;zih�0l;zj

where
j�l;zi =

X
j

�0l;z;jjji

Once l; z are �xed, �0l;z;j is di�erent from �l;z;j only if l = j since only the lth
oracle applies a minus sign on l. In the density matrix language, the density
matrices are di�erent only on the l'th column and row. The change is always
a phase ip, therefore the distance between the matrices is the sum of the
distance on the l0th row and the l0th column. For the l0th column, the sum
of the absolute values of the di�erences isX

j

2j�lzj��lzjj = 2j��lzjj
X
j

j�lzjj

but j��lzjj � 1, and
P

j j�lzjj �
p
N � 1

qP
j j�l;z;jj2 by the Cauchy-Schwartz

inequality. Since
P

j j�l;z;jj2 � 1 we have proved that the sum over the

column is less than 2
p
N � 1. The same argument works for the row, which

proves the above inequality.

14


