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PREFACE to this edition

Notes on Optimizationwas published in 1971 as part of the Van Nostrand Reinhold Notes on Sys-
tem Sciences, edited by George L. Turin. Our aim was to publish short, accessible treatments of
graduate-level material in inexpensive books (the price of a book in the series was about five dol-
lars). The effort was successful for several years. Van Nostrand Reinhold was then purchased by a
conglomerate which cancelled Notes on System Sciences because it was not sufficiently profitable.
Books have since become expensive. However, the World Wide Web has again made it possible to
publish cheaply.

Notes on Optimizationhas been out of print for 20 years. However, several people have been
using it as a text or as a reference in a course. They have urged me to re-publish it. The idea of
making it freely available over the Web was attractive because it reaffirmed the original aim. The
only obstacle was to retype the manuscript in LaTex. I thank Kate Klohe for doing just that.

I would appreciate knowing if you find any mistakes in the book, or if you have suggestions for
(small) changes that would improve it.

Berkeley, California P.P. Varaiya
September, 1998
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PREFACE

TheseNoteswere developed for a ten-week course I have taught for the past three years to first-year
graduate students of the University of California at Berkeley. My objective has been to present,
in a compact and unified manner, themainconcepts and techniques of mathematical programming
and optimal control to students having diverse technical backgrounds. A reasonable knowledge of
advanced calculus (up to the Implicit Function Theorem), linear algebra (linear independence, basis,
matrix inverse), and linear differential equations (transition matrix, adjoint solution) is sufficient for
the reader to follow theNotes.

The treatment of the topics presented here is deep. Although the coverage is not encyclopedic,
an understanding of this material should enable the reader to follow much of the recent technical
literature on nonlinear programming, (deterministic) optimal control, and mathematical economics.
The examples and exercises given in the text form an integral part of theNotesand most readers will
need to attend to them before continuing further. To facilitate the use of theseNotesas a textbook,
I have incurred the cost of some repetition in order to make almost all chapters self-contained.
However, Chapter V must be read before Chapter VI, and Chapter VII before Chapter VIII.

The selection of topics, as well as their presentation, has been influenced by many of my students
and colleagues, who have read and criticized earlier drafts. I would especially like to acknowledge
the help of Professors M. Athans, A. Cohen, C.A. Desoer, J-P. Jacob, E. Polak, and Mr. M. Ripper. I
also want to thank Mrs. Billie Vrtiak for her marvelous typing in spite of starting from a not terribly
legible handwritten manuscript. Finally, I want to thank Professor G.L. Turin for his encouraging
and patient editorship.

Berkeley, California P.P. Varaiya
November, 1971
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Chapter 1

INTRODUCTION

In this chapter, we present our model of the optimal decision-making problem, illustrate decision-
making situations by a few examples, and briefly introduce two more general models which we
cannot discuss further in theseNotes.

1.1 The Optimal Decision Problem

TheseNotesshow how to arrive at an optimal decision assuming that complete information is given.
The phrasecomplete information is givenmeans that the following requirements are met:

1. The set of all permissible decisions is known, and

2. The cost of each decision is known.

When these conditions are satisfied, the decisions can be ranked according to whether they incur
greater or lesser cost. Anoptimal decisionis then any decision which incurs the least cost among
the set of permissible decisions.

In order to model a decision-making situation in mathematical terms, certain further requirements
must be satisfied, namely,

1. The set of all decisions can be adequately represented as a subset of a vector space with each
vector representing a decision, and

2. The cost corresponding to these decisions is given by a real-valued function.

Some illustrations will help.
Example 1: The Pot Company (Potco) manufacturers a smoking blend called Acapulco Gold.

The blend is made up of tobacco and mary-john leaves. For legal reasons the fractionα of mary-
john in the mixture must satisfy0 < α < 1

2 . From extensive market research Potco has determined
their expected volume of sales as a function ofα and the selling pricep. Furthermore, tobacco can
be purchased at a fixed price, whereas the cost of mary-john is a function of the amount purchased.
If Potco wants to maximize its profits, how much mary-john and tobacco should it purchase, and
what pricep should it set?

Example 2: Tough University provides “quality” education to undergraduate and graduate stu-
dents. In an agreement signed with Tough’s undergraduates and graduates (TUGs), “quality” is

1



2 CHAPTER 1. INTRODUCTION

defined as follows: every year, eachu (undergraduate) must take eight courses, one of which is a
seminar and the rest of which are lecture courses, whereas eachg (graduate) must take two seminars
and five lecture courses. A seminar cannot have more than 20 students and a lecture course cannot
have more than 40 students. The University has a faculty of 1000. The Weary Old Radicals (WORs)
have a contract with the University which stipulates that every junior faculty member (there are 750
of these) shall be required to teach six lecture courses and two seminars each year, whereas every
senior faculty member (there are 250 of these) shall teach three lecture courses and three seminars
each year. The Regents of Touch rate Tough’s President atα points peru andβ points perg “pro-
cessed” by the University. Subject to the agreements with the TUGs and WORs how manyu’s and
g’s should the President admit to maximize his rating?

Example 3: (See Figure1.1.) An engineer is asked to construct a road (broken line) connection
point a to pointb. The current profile of the ground is given by the solid line. The only requirement
is that the final road should not have a slope exceeding 0.001. If it costs $c per cubic foot to excavate
or fill the ground, how should he design the road to meet the specifications at minimum cost?

Example 4: Mr. Shell is the manager of an economy which produces one output, wine. There
are two factors of production, capital and labor. IfK(t) andL(t) respectively are the capital stock
used and the labor employed at timet, then the rate of output of wineW (t) at time is given by the
production function

W (t) = F (K(t), L(t))

As Manager, Mr. Shell allocates some of the output rateW (t) to the consumption rateC(t), and
the remainderI(t) to investment in capital goods. (Obviously,W ,C, I, andK are being measured
in a common currency.) Thus,W (t) = C(t) + I(t) = (1 − s(t))W (t) wheres(t) = I(t)/W (t)

 

.

.

a

b

Figure 1.1: Admissable set of example.

∈ [0, 1] is the fraction of output which is saved and invested. Suppose that the capital stock decays
exponentially with time at a rateδ > 0, so that the net rate of growth of capital is given by the
following equation:

K̇(t) =
d

dt
K(t) (1.1)

= −δK(t) + s(t)W (t)
= −δK(t) + s(t)F (K(t), L(t)).

The labor force is growing at a constant birth rate ofβ > 0. Hence,
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L̇(t) = βL(t).
(1.2)

Suppose that the production functionF exhibits constant returns to scale,i.e., F (λK,λL) =
λF (K,L) for all λ > 0. If we define the relevant variable in terms of per capita of labor,w =
W/L, c = C/L, k = K/l, and if we letf(k) = F (k, l), then we see thatF (K,L)−LF (K/L, 1) =
Lf(k), whence the consumption per capita of labor becomesc(t) = (l− s(t))f(k(t)). Using these
definitions and equations (1.1) and (1.2) it is easy to see thatK(t) satisfies the differential equation
(1.3).

k̇(t) = s(t)f(k(t)) − µk(t)
(1.3)

whereµ = (δ+ β). The first term of the right-hand side in (3) is the increase in the capital-to-labor
ratio due to investment whereas the second terms is the decrease due to depreciation and increase in
the labor force.

Suppose there is a planning horizon timeT , and at time0 Mr. Shell starts with capital-to-labor
ratioko. If “welfare” over the planning period[0, T ] is identified with total consumption

∫ T
0 c(t)dt,

what should Mr. Shell’s savings policys(t), 0 ≤ t ≤ T , be so as to maximize welfare? What
savings policy maximizes welfare subject to the additional restriction that the capital-to-labor ratio
at timeT should be at leastkT? If future consumption is discounted at rateα > 0 and if time horizon
is∞, the welfare function becomes

∫ ∞
0 e−αt c(t)dt. What is the optimum policy corresponding to

this criterion?
These examples illustrate the kinds of decision-making problems which can be formulated math-

ematically so as to be amenable to solutions by the theory presented in theseNotes. We must always
remember that a mathematical formulation is inevitably an abstraction and the gain in precision may
have occurred at a great loss of realism. For instance, Example 2 is caricature (see also a faintly re-
lated but more more elaborate formulation in Bruno [1970]), whereas Example 4 is light-years away
from reality. In the latter case, the value of the mathematical exercise is greater the more insensitive
are the optimum savings policies with respect to the simplifying assumptions of the mathematical
model. (In connection with this example and related models see the critique by Koopmans [1967].)

In the examples above, the set of permissible decisions is represented by the set of all points
in some vector space which satisfy certain constraints. Thus, in the first example, a permissible
decision is any two-dimensional vector(α, p) satisfying the constraints0 < α < 1

2 and 0 <
p. In the second example, any vector(u, g) with u ≥ 0, g ≥ 0, constrained by the number
of faculty and the agreements with the TUGs and WORs is a permissible decision. In the last
example, a permissible decision is any real-valued functions(t), 0 ≤ t ≤ T , constrained by
0 ≤ s(t) ≤ 1. (It is of mathematical but not conceptual interest to note that in this case a decision
is represented by a vector in a function space which is infinite-dimensional.) More concisely then,
theseNotesare concerned with optimizing (i.e. maximizing or minimizing) a real-valued function
over a vector space subject to constraints. The constraints themselves are presented in terms of
functional inequalities or equalities.
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At this point, it is important to realize that the distinction between the function which is to be
optimized and the functions which describe the constraints, although convenient for presenting the
mathematical theory, may be quite artificial in practice. For instance, suppose we have to choose
the durations of various traffic lights in a section of a city so as to achieve optimum traffic flow.
Let us suppose that we know the transportation needs of all the people in this section. Before we
can begin to suggest a design, we need a criterion to determine what is meant by “optimum traffic
flow.” More abstractly, we need a criterion by which we can compare different decisions, which in
this case are different patterns of traffic-light durations. One way of doing this is to assign as cost to
each decision the total amount of time taken to make all the trips within this section. An alternative
and equally plausible goal may be to minimize the maximum waiting time (that is the total time
spent at stop lights) in each trip. Now it may happen that these two objective functions may be
inconsistent in the sense that they may give rise to different orderings of the permissible decisions.
Indeed, it may be the case that the optimum decision according to the first criterion may be lead to
very long waiting times for a few trips, so that this decision is far from optimum according to the
second criterion. We can then redefine the problem as minimizing the first cost function (total time
for trips) subject to the constraint that the waiting time for any trip is less than some reasonable
bound (say one minute). In this way, the second goal (minimum waiting time) has been modified
and reintroduced as a constraint. This interchangeability of goal and constraints also appears at a
deeper level in much of the mathematical theory. We will see that in most of the results the objective
function and the functions describing the constraints are treated in the same manner.

1.2 Some Other Models of Decision Problems

Our model of a single decision-maker with complete information can be generalized along two
very important directions. In the first place, the hypothesis of complete information can be relaxed
by allowing that decision-making occurs in an uncertain environment. In the second place, we
can replace the single decision-maker by a group of two or more agents whose collective decision
determines the outcome. Since we cannot study these more general models in theseNotes, we
merely point out here some situations where such models arise naturally and give some references.

1.2.1 Optimization under uncertainty.

A person wants to invest $1,000 in the stock market. He wants to maximize his capital gains, and
at the same time minimize the risk of losing his money. The two objectives are incompatible, since
the stock which is likely to have higher gains is also likely to involve greater risk. The situation
is different from our previous examples in that the outcome (future stock prices) is uncertain. It is
customary to model this uncertainty stochastically. Thus, the investor may assign probability 0.5 to
the event that the price of shares in Glamor company increases by $100, probability 0.25 that the
price is unchanged, and probability 0.25 that it drops by $100. A similar model is made for all the
other stocks that the investor is willing to consider, and a decision problem can be formulated as
follows. How should $1,000 be invested so as to maximize theexpected valueof the capital gains
subject to the constraint that the probability of losing more than $100 is less than 0.1?

As another example, consider the design of a controller for a chemical process where the decision
variable are temperature, input rates of various chemicals,etc. Usually there are impurities in the
chemicals and disturbances in the heating process which may be regarded as additional inputs of a
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random nature and modeled as stochastic processes. After this, just as in the case of the portfolio-
selection problem, we can formulate a decision problem in such a way as to take into account these
random disturbances.

If the uncertainties are modelled stochastically as in the example above, then in many cases
the techniques presented in theseNotescan be usefully applied to the resulting optimal decision
problem. To do justice to these decision-making situations, however, it is necessary to give great
attention to the various ways in which the uncertainties can be modelled mathematically. We also
need to worry about finding equivalent but simpler formulations. For instance, it is of great signif-
icance to know that, given appropriate conditions, an optimal decision problem under uncertainty
is equivalent to another optimal decision problem under complete information. (This result, known
as the Certainty-Equivalence principle in economics has been extended and baptized the Separation
Theorem in the control literature. See Wonham [1968].) Unfortunately, to be able to deal with
these models, we need a good background in Statistics and Probability Theory besides the material
presented in theseNotes. We can only refer the reader to the extensive literature on Statistical De-
cision Theory (Savage [1954], Blackwell and Girshick [1954]) and on Stochastic Optimal Control
(Meditch [1969], Kushner [1971]).

1.2.2 The case of more than one decision-maker.

Agent Alpha is chasing agent Beta. The place is a large circular field. Alpha is driving a fast, heavy
car which does not maneuver easily, whereas Beta is riding a motor scooter, slow but with good
maneuverability. What should Alpha do to get as close to Beta as possible? What should Beta
do to stay out of Alpha’s reach? This situation is fundamentally different from those discussed so
far. Here there are two decision-makers with opposing objectives. Each agent does not know what
the other is planning to do, yet the effectiveness of his decision depends crucially upon the other’s
decision, so that optimality cannot be defined as we did earlier. We need a new concept of rational
(optimal) decision-making. Situations such as these have been studied extensively and an elaborate
structure, known as the Theory of Games, exists which describes and prescribes behavior in these
situations. Although the practical impact of this theory is not great, it has proved to be among the
most fruitful sources of unifying analytical concepts in the social sciences, notably economics and
political science. The best single source for Game Theory is still Luce and Raiffa [1957], whereas
the mathematical content of the theory is concisely displayed in Owen [1968]. The control theorist
will probably be most interested in Isaacs [1965], and Blaquiere,et al., [1969].

The difficulty caused by the lack of knowledge of the actions of the other decision-making agents
arises even if all the agents have the same objective, since a particular decision taken by our agent
may be better or worse than another decision depending upon the (unknown) decisions taken by the
other agents. It is of crucial importance to invent schemes to coordinate the actions of the individual
decision-makers in a consistent manner. Although problems involving many decision-makers are
present in any system of large size, the number of results available is pitifully small. (See Mesarovic,
et al., [1970] and Marschak and Radner [1971].) In the author’s opinion, these problems represent
one of the most important and challenging areas of research in decision theory.
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Chapter 2

OPTIMIZATION OVER AN OPEN
SET

In this chapter we study in detail the first example of Chapter 1. We first establish some notation
which will be in force throughout theseNotes. Then we study our example. This will generalize
to a canonical problem, the properties of whose solution are stated as a theorem. Some additional
properties are mentioned in the last section.

2.1 Notation

2.1.1

All vectors arecolumnvectors, with two consistent exceptions mentioned in 2.1.3 and 2.1.5 below
and some other minor and convenient exceptions in the text. Prime denotes transpose so that if
x ∈ Rn thenx′ is the row vectorx′ = (x1, . . . , xn), andx = (x1, . . . , xn)′. Vectors are normally
denoted by lower case letters, theith component of a vectorx ∈ Rn is denotedxi, and different
vectors denoted by the same symbol are distinguished by superscripts as inxj andxk. 0 denotes
both the zero vector and the real number zero, but no confusion will result.

Thus if x = (x1, . . . , xn)′ andy = (y1, . . . , yn)′ thenx′y = x1y1 + . . . + xnyn as in ordinary
matrix multiplication. Ifx ∈ Rn we define|x| = +

√
x′x.

2.1.2

If x = (x1, . . . , xn)′ andy = (y1, . . . , yn)′ thenx ≥ y meansxi ≥ yi, i = 1, . . . , n. In particular if
x ∈ Rn, thenx ≥ 0, if xi ≥ 0, i = 1, . . . , n.

2.1.3

Matrices are normally denoted by capital letters. IfA is anm × n matrix, thenAj denotes thejth
column of A, andAi denotes theith row of A. Note thatAi is a row vector. Aji denotes the entry
of A in the ith row andjth column; this entry is sometimes also denoted by the lower case letter
aij , and then we also writeA = {aij}. I denotes the identity matrix; its size will be clear from the
context. If confusion is likely, we writeIn to denote then× n identity matrix.

7



8 CHAPTER 2. OPTIMIZATION OVER AN OPEN SET

2.1.4

If f : Rn → Rm is a function, itsith component is writtenfi, i = 1, . . . ,m. Note thatfi : Rn → R.
Sometimes we describe a function by specifying a rule to calculatef(x) for everyx. In this case
we writef : x 7→ f(x). For example, ifA is anm× n matrix, we can writeF : x 7→ Ax to denote
the functionf : Rn → Rm whose value at a pointx ∈ Rn isAx.

2.1.5

If f : Rn 7→ R is a differentiable function, the derivative off atx̂ is therow vector((∂f/∂x1)(x̂), . . . , (∂f/∂xn)(x̂)).
This derivative is denoted by(∂f/∂x)(x̂) or fx(x̂) or ∂f/∂x|x=x̂ or fx|x=x̂, and if the argument̂x
is clear from the context it may be dropped. Thecolumnvector(fx(x̂))′ is also denoted∇xf(x̂),
and is called thegradient of f at x̂. If f : (x, y) 7→ f(x, y) is a differentiable function from
Rn×Rm intoR, the partial derivative off with respect tox at the point(x̂, ŷ) is then-dimensional
row vectorfx(x̂, ŷ) = (∂f/∂x)(x̂, ŷ) = ((∂f/∂x1)(x̂, ŷ), . . . , (∂f/∂xn)(x̂, ŷ)), and similarly
fy(x̂, ŷ) = (∂f/∂y)(x̂, ŷ) = ((∂f/∂y1)(x̂, ŷ), . . . , (∂f/∂ym)(x̂, ŷ)). Finally, if f : Rn → Rm is
a differentiable function with componentsf1, . . . , fm, then its derivative at̂x is them× n matrix

∂f

∂x
(x̂) = fxx̂ =



f1x(x̂)

...
fmx(x̂)




=




∂f1
∂x1

(x̂)
...

∂fm

∂x1
(x̂)

. . .

. . .

∂f1
∂xn

(x̂)
...

∂fm

∂xn
(x̂)




2.1.6

If f : Rn → R is twice differentiable, its second derivative atx̂ is then×nmatrix(∂2f/∂x∂x)(x̂) =
fxx(x̂) where(fxx(x̂))

j
i = (∂2f/∂xj∂xi)(x̂). Thus, in terms of the notation in Section 2.1.5 above,

fxx(x̂) = (∂/∂x)(fx)′(x̂).

2.2 Example

We consider in detail the first example of Chapter 1. Define the following variables and functions:

α = fraction of mary-john in proposed mixture,

p = sale price per pound of mixture,

v = total amount of mixture produced,

f(α, p) = expected sales volume (as determined by market research) of mixture as a function of(α, p).
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Since it is not profitable to produce more than can be sold we must have:

v = f(α, p),
m = amount (in pounds) of mary-john purchased, and

t = amount (in pounds) of tobacco purchased.

Evidently,

m = αv,and

t = (l − α)v.

Let

P1(m) = purchase price ofm pounds of mary-john, and

P2 = purchase price per pound of tobacco.

Then the total cost as a function ofα, p is

C(α, p) = P1(αf(α, p)) + P2(1 − α)f(α, p).

The revenue is

R(α, p) = pf(α, p),

so that the net profit is

N(α, p) = R(α, p) − C(α, p).

The set of admissible decisions isΩ, whereΩ = {(α, p)|0 < α < 1
2 , 0 < p < ∞}. Formally, we

have the the following decision problem:

Maximize
subject to

N(α, p),
(α, p) ∈ Ω.

Suppose that(α∗, p∗) is an optimal decision,i.e.,

(α∗, p∗) ∈ Ω
N(α∗, p∗) ≥ N(α, p)

and
for all (α, p) ∈ Ω.

(2.1)

We are going to establish some properties of(a∗, p∗). First of all we note thatΩ is anopensubset
of R2. Hence there exitsε > 0 such that

(α, p) ∈ Ω whenever |(α, p) − (α∗, p∗)| < ε (2.2)

In turn (2.2) implies that for every vectorh = (h1, h2)′ in R2 there existsη > 0 (η of course
depends onh) such that

((α∗, p∗) + δ(h1, h2)) ∈ Ω for 0 ≤ δ ≤ η (2.3)
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|

. 

(α∗, p∗) + δ(h1, h2)
ε

α

1
2

Ω

δh
h

p

(a∗, p∗)

Figure 2.1: Admissable set of example.

Combining (2.3) with (2.1) we obtain (2.4):

N(α∗, p∗) ≥ N(α∗ + δh1, p
∗ + δh2) for 0 ≤ δ ≤ η (2.4)

Now we assume that the functionN is differentiableso that by Taylor’s theorem

N(α∗ + δh1, p
∗ + δh2) =

N(α∗, p∗)
+δ[∂N∂α (δ∗, p∗)h1 + ∂N

∂p (α∗, p∗)h2]
+o(δ),

(2.5)

where

oδ
δ → 0 as δ → 0. (2.6)

Substitution of (2.5) into (2.4) yields

0 ≥ δ[∂N∂α (α∗, p∗)h1 + ∂N
∂p (α∗, p∗)h2] + o(δ).

Dividing by δ > 0 gives

0 ≥ [∂N∂α (α∗, p∗)h1 + ∂N
∂p (α∗, p∗)h2] + o(δ)

δ . (2.7)

Letting δ approach zero in (2.7), and using (2.6) we get

0 ≥ [∂N∂α (α∗, p∗)h1 + ∂N
∂p (α∗, p∗)h2]. (2.8)

Thus, using the facts thatN is differentiable,(α∗, p∗) is optimal, andδ is open, we have concluded
that the inequality (2.9) holds foreveryvectorh ∈ R2. Clearly this is possible only if

∂N
∂α (α∗, p∗) = 0, ∂N

∂p (α∗, p∗) = 0. (2.9)

Before evaluating the usefulness of property (2.8), let us prove a direct generalization.
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2.3 The Main Result and its Consequences

2.3.1 Theorem

.
Let Ω be an open subset ofRn. Letf : Rn → R be a differentiable function. Letx∗ be an optimal

solution of the following decision-making problem:

Maximize
subject to

f(x)
x ∈ Ω.

(2.10)

Then

∂f
∂x(x∗) = 0. (2.11)

Proof: Sincex∗ ∈ Ω andΩ is open, there existsε > 0 such that

x ∈ Ω whenever|x− x∗| < ε. (2.12)

In turn, (2.12) implies that for every vectorh ∈ Rn there exitsη > 0 (η depending onh) such that

(x∗ + δh) ∈ Ω whenever 0 ≤ δ ≤ η. (2.13)

Sincex∗ is optimal, we must then have

f(x∗) ≥ f(x∗ + δh) whenever 0 ≤ δ ≤ η. (2.14)

Sincef is differentiable, by Taylor’s theorem we have

f(x∗ + δh) = f(x∗) + ∂f
∂x (x∗)δh + o(δ), (2.15)

where

o(δ)
δ → 0 as δ → 0 (2.16)

Substitution of (2.15) into (2.14) yields

0 ≥ δ ∂f∂x(x∗)h+ o(δ)

and dividing byδ > 0 gives

0 ≥ ∂f
∂x(x∗)h+ o(δ)

δ
(2.17)

Letting δ approach zero in (2.17) and taking (2.16) into account, we see that

0 ≥ ∂f
∂x (x∗)h, (2.18)

Since the inequality (2.18) must hold for everyh ∈ Rn, we must have

0 = ∂f
∂x (x∗),

and the theorem is proved. ♦
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Table 2.1
Does there exist At how many points
an optimal deci- in Ω is 2.2.2 Further

Case sion for 2.2.1? satisfied? Consequences

1 Yes Exactly one point, x∗ is the
sayx∗ unique optimal

2 Yes More than one point
3 No None
4 No Exactly one point
5 No More than one point

2.3.2 Consequences.

Let us evaluate the usefulness of (2.11) and its special case (2.18). Equation (2.11) gives usn
equations which must be satisfied at any optimal decisionx∗ = (x∗1, . . . , x

∗
n)

′.
These are

∂f
∂x1

(x∗) = 0, ∂f
∂x2

(x∗) = 0, . . . , ∂f
∂xn

(x∗) = 0 (2.19)

Thus, every optimal decision must be a solution of thesen simultaneous equations ofn variables, so
that the search for an optimal decision fromΩ is reduced to searching among the solutions of (2.19).
In practice this may be a very difficult problem since these may be nonlinear equations and it may
be necessary to use a digital computer. However, in theseNoteswe shall not be overly concerned
with numerical solution techniques (but see 2.4.6 below).

The theorem may also have conceptual significance. We return to the example and recall the
N = R − C. Suppose thatR andC are differentiable, in which case (2.18) implies that at every
optimal decision(α∗, p∗)

∂R
∂α (α∗, p∗) = ∂C

∂α (α∗, p∗), ∂R
∂p (α∗, p∗) = ∂C

∂p (α∗, p∗),

or, in the language of economic analysis, marginal revenue = marginal cost. We have obtained an
important economic insight.

2.4 Remarks and Extensions

2.4.1 A warning.

Equation (2.11) is only anecessarycondition forx∗ to be optimal. There may exist decisionsx̃ ∈ Ω
such thatfx(x̃) = 0 but x̃ is not optimal. More generally, any one of the five cases in Table 2.1 may
occur. The diagrams in Figure 2.1 illustrate these cases. In each caseΩ = (−1, 1).

Note that in the last three figures there is no optimal decision since the limit points -1 and +1 are
not in the set of permissible decisionsΩ = (−1, 1). In summary, the theorem does not give us any
clues concerning theexistenceof an optimal decision, and it does not give ussufficientconditions
either.
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Case 1 Case 2 Case 3

Case 5Case 4
-1 1 -1 1

-111-1 -1 1

Figure 2.2: Illustration of 4.1.

2.4.2 Existence.

If the set of permissible decisionsΩ is a closed and bounded subset ofRn, and iff is continuous,
then it follows by the Weierstrass Theorem that there exists an optimal decision. But ifΩ is closed
we cannot assert that the derivative off vanishes at the optimum. Indeed, in the third figure above,
if Ω = [−1, 1], then +1 is the optimal decision but the derivative is positive at that point.

2.4.3 Local optimum.

We say thatx∗ ∈ Ω is a locally optimal decision if there existsε > 0 such thatf(x∗) ≥ f(x)
wheneverx ∈ Ω and |x∗ − x| ≤ ε. It is easy to see that the theorem holds(i.e., 2.11)for local
optima also.

2.4.4 Second-order conditions.

Supposef is twice-differentiable and letx∗ ∈ Ω be optimal or even locally optimal. Thenfx(x∗) =
0, and by Taylor’s theorem

f(x∗ + δh) = f(x∗) + 1
2δ

2h′fxx(x∗)h+ o(δ2), (2.20)

whereo(δ
2)

δ2
→ 0 asδ → 0. Now for δ > 0 sufficiently smallf(x∗ + δh) ≤ f(x∗), so that dividing

by δ2 > 0 yields

0 ≥ 1
2h

′fxx(x∗)h+ o(δ2)
δ2

and lettingδ approach zero we conclude thath′fxx(x∗)h ≤ 0 for all h ∈ Rn. This means that
fxx(x∗) is a negative semi-definite matrix. Thus, if we have a twice differentiable objective function,
we get an additional necessary condition.

2.4.5 Sufficiency for local optimal.

Suppose atx∗ ∈ Ω, fx(x∗) = 0 andfxx is strictly negative definite. But then from the expansion
(2.20) we can conclude thatx∗ is a local optimum.
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2.4.6 A numerical procedure.

At any pointx̃ ∈ Ω the gradient5xf(x̃) is a direction along whichf(x) increases,i.e.,f(x̃+ ε5x

f(x̃)) > f(x̃) for all ε > 0 sufficiently small. This observation suggests the following scheme for
finding a pointx∗ ∈ Ω which satisfies 2.11. We can formalize the scheme as an algorithm.

Step 1. Pickx0 ∈ Ω. Seti = 0. Go to Step 2.
Step 2. Calculate5xf(xi). If 5xf(xi) = 0, stop.

Otherwise letxi+1 = xi + di 5x f(xi) and go
to Step 3.

Step 3. Seti = i+ 1 and return to Step 2.

The step sizedi can be selected in many ways. For instance, one choice is to takedi to be an
optimal decision for the following problem:

Max{f(xi + d5x f(xi))|d > 0, (xi + d5x f(xi)) ∈ Ω}.

This requires a one-dimensional search. Another choice is to letdi = di−1 if f(xi + di−1 5x

f(xi)) > f(xi); otherwise letdi = 1/k di−1 wherek is the smallest positive integer such that
f(xi + 1/k di−1 5x f(xi)) > f(xi). To start the process we letd−1 > 0 be arbitrary.

Exercise: Let f be continuous differentiable. Let{di} be produced by either of these choices and
let
{xi} be the resulting sequence. Then

1. f(xi+1) > f(xi) if xi+1 6= xi, i

2. if x∗ ∈ Ω is a limit point of the sequence{xi}, fx(x∗) = 0.

For other numerical procedures the reader is referred to Zangwill [1969] or Polak [1971].



Chapter 3

OPTIMIZATION OVER SETS
DEFINED BY EQUALITY
CONSTRAINTS

We first study a simple example and examine the properties of an optimal decision. This will
generalize to a canonical problem, and the properties of its optimal decisions are stated in the form
of a theorem. Additional properties are summarized in Section 3 and a numerical scheme is applied
to determine the optimal design of resistive networks.

3.1 Example

We want to find the rectangle of maximum area inscribed in an ellipse defined by

f1(x, y) = x2

a2 + y2

b2 = α. (3.1)

The problem can be formalized as follows (see Figure 3.1):

Maximize
subject to

f0(x, y)
(x, y) ∈ Ω

= 4xy
= {(x, y)|f1(x, y) = α}. (3.2)

The main difference between problem (3.2) and the decisions studied in the last chapter is that
the set of permissible decisionsΩ is not an open set. Hence, if(x∗, y∗) is an optimal decision we
cannotassert thatf0(x∗, y∗) ≥ f0(x, y) for all (x, y) in an open set containing(x∗, y∗). Returning
to problem (3.2), suppose(x∗, y∗) is an optimal decision. Clearly then eitherx∗ 6= 0 or y∗ 6= 0. Let
us supposey∗ 6= 0. Then from figure 3.1 it is evident that there exist (i)ε > 0, (ii) an open setV
containing(x∗, y∗), and (iii) a differentiable functiong : (x∗ − ε, x∗ + ε) → V such that

f1(x, y) = α and (x, y) ∈ V iff fy = g(x).1 (3.3)

In particular this implies thaty∗ = g(x∗), and thatf1(x, g(x)) = α whenever|x− x∗| < ε. Since

1Note thaty∗ 6= 0 impliesf1y(x∗, Y ∗) 6= 0, so that this assertion follows from the Implicit Function Theorem. The
assertion is false ify∗ = 0. In the present case let0 < ε ≤ a − x∗ andg(x) = +b[α − (x/a)2]1/2.

15
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)( |

-y∗
g(x)

Tangent plane to
Ω at (x∗, y∗)

(f1x, f1y)

V

ε

x∗ x
Ω

Figure 3.1: Illustration of example.

(x∗, y∗) = (x∗, g(x∗)) is optimum for (3.2), it follows thatx∗ is an optimal solution for (3.4):

Maximize
subject to

f̂0(x) = f0(x, g(x))
|x− x∗| < ε.

(3.4)

But the constraint set in (3.4) is an open set (inR1) and the objective function̂f0 is differentiable,
so that by Theorem 2.3.1,̂f0x(x∗) = 0, which we can also express as

f0x(x∗, y∗) + f0y(x∗, y∗)gx(x∗) = 0 (3.5)

Using the fact thatf1(x, g(x)) ≡ α for |x− x∗| < ε, we see that

f1x(x∗, y∗) + f1y(x∗, y∗)gx(x∗) = 0,

and sincef1y(x∗, y∗) 6= 0 we can evaluategx(x∗),

gx(x∗) = −f−1
1y f1x(x∗, y∗),

and substitute in (3.5) to obtain the condition (3.6):

f0x − f0yf
−1
1y f1x = 0 at (x∗, y∗). (3.6)

Thus an optimal decision(x∗, y∗) must satisfy the two equationsf1(x∗, y∗) = α and (3.6). Solving
these yields

x∗ = +
−(α/2)1/2a , y∗ = +

−(α/2)1/2b.
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Evidently there are two optimal decisions,(x∗, y∗) = +
−(α/2)1/2(a, b), and the maximum area is

m(α) = 2αab. (3.7)

The condition (3.6) can be interpreted differently. Define

λ∗ = f0yf
−1
1y (x∗, y∗). (3.8)

Then (3.6) and (3.8) can be rewritten as (3.9):

(f0x, f0y) = λ∗(f1x, f1y) at (x∗, y∗) (3.9)

In terms of the gradients off0, f1, (3.9) is equivalent to

5f0(x∗, y∗) = [5f1(x∗, y∗)]λ∗, (3.10)

which means that at an optimal decision the gradient of the objective functionf0 is normal to the
plane tangent to the constraint setΩ.

Finally we note that

λ∗ = ∂m
∂α . (3.11)

wherem(α) = maximum area.

3.2 General Case

3.2.1 Theorem.

Let fi : Rn → R, i = 0, 1, . . . ,m (m < n), be continuously differentiable functions and letx∗ be
an optimal decision of problem (3.12):

Maximize
subject to

f0(x)
fi(x) = αi, i = 1, . . . ,m.

(3.12)

Suppose that atx∗ the derivativesfix(x∗), i = 1, . . . ,m, arelinearly independent. Then there exists
a vectorλ∗ = (λ∗1, . . . , λ∗m)′ such that

f0x(x∗) = λ∗1f1x(x∗) + . . . + λ∗mfmx(x∗) (3.13)

Furthermore, letm(α1, . . . , αm) be the maximum value of (3.12) as a function ofα = (α1, . . . , αm)′.
Let x∗(α) be an optimal decision for (3.12). Ifx∗(α) is adifferentiablefunction ofα thenm(α) is
a differentiable function ofα, and

(λ∗)′ = ∂m
∂α (3.14)

Proof. Sincefix(x∗), i = 1, . . . ,m, are linearly independent, then by re-labeling the coordinates of
x if necessary, we can assume that them×mmatrix [(∂fi/∂xj)(x∗)], 1 ≤ i, j ≤ m, is nonsingular.
By the Implicit Function Theorem (see Fleming [1965]) it follows that there exist (i)ε > 0, (ii) an
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open setV in Rn containingx∗, and (iii) a differentiable functiong : U → Rm, whereU =
[(xm+1, . . . , xn)]| |xm+` − x∗m+`| < ε, ` = 1, . . . , n−m], such that

fi(x1, . . . , xn) = αi, 1 ≤ i ≤ m, and (x1, . . . , xn) ∈ V

iff

xj = gj(xm+1, . . . , xn), 1 ≤ j ≤ m, and (xm+1, . . . , xn) ∈ U (3.15)

(see Figure 3.2).
In particular this implies thatx∗j = gj(x∗m+1, . . . , x

∗
n), 1 ≤ j ≤ m, and

fi(g(xm+1, . . . , xn), xm+1, . . . , xn) = αi , i = 1, . . . ,m. (3.16)

For convenience, let us definew = (x1, . . . , xm)′, u = (xm+1, . . . , xn)′ andf = (f1, . . . , fm)′.
Then, sincex∗ = (w∗, u∗) = (g(u∗), u∗) is optimal for (3.12), it follows thatu∗ is an optimal
decision for (3.17):

Maximize
subject to

f̂0(u) = f0(g(u), u)
u ∈ U.

(3.17)

But U is an open subset ofRn−m and f̂0 is a differentiable function onU (sincef0 and g are
differentiable), so that by Theorem 2.3.1 ,f̂0u(u∗) = 0, which we can also express using the chain
rule for derivatives as

f̂0u(u∗) = f0w(x∗)gu(u∗) + f0u(x∗) = 0. (3.18)

Differentiating (3.16) with respect tou = (xm+1, . . . , xn)′, we see that

fw(x∗)gu(u∗) + fu(x∗) = 0,

and since them×m matrix fw(x∗) is nonsingular we can evaluategu(u∗),

gu(u∗) = −[fw(x∗)]−1fu(x∗),

and substitute in (3.18) to obtain the condition

−f0wf
−1
w fu + f0u = 0 at x∗ = (w∗, u∗). (3.19)

Next, define the m-dimensional column vectorλ∗ by

(λ∗)′ = f0wf
−1
w |x∗. (3.20)

Then (3.19) and (3.20) can be written as (3.21):

(f0w(x∗), f0u(x∗)) = (λ∗)′(fw(x∗), fu(x∗)). (3.21)

Sincex = (w, u), this is the same as

f0x(x∗) = (λ∗)′fx(x∗) = λ∗1f1x(x∗) + . . .+ λ∗mfmx(x∗),
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x1, . . . , xm

x∗ V

xm+1

(xm+1, . . . , xn)
(x∗m+1, . . . , x

∗
n)

2ε

U

xn

Ω =
{x|f i(x) = αi}
i = 1, . . . ,m

(x∗1, . . . , x
∗
m)

g(xm+1, . . . , xn)

Figure 3.2: Illustration of theorem.

which is equation (3.13).
To prove (3.14), we varyα in a neighborhood of a fixed value, sayα. We definew∗(α) =

(x∗1(α), . . . , x∗m(α))′ andu∗(α) = (x∗m+1(α), . . . , x∗(α))′. By hypothesis,fw is nonsingular at
x∗(α). Sincef(x) andx∗(α) are continuously differentiable by hypothesis, it follows thatfw is
nonsingular atx∗(α) in a neighborhood ofα, sayN . We have the equation

f(w∗(α), u∗(α)) = α, (3.22)

−f0wf
−1
w fu + f0u = 0 at (w∗(α), u∗(α)), (3.23)

for α ∈ N . Also,m(α) = f0(x∗(α)), so that

mα = f0ww
∗
α + f0uu

∗
α (3.24)

Differentiating (3.22) with respect toα gives

fww
∗
α + fuu

∗
α = I,

so that

w∗
α + f−1

w fuu
∗
α = f−1

w ,
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and multiplying on the left byf0w gives

f0ww
∗
α + f0wf

−1
w fuu

∗
α = f0wf

−1
w .

Using (3.23), this equation can be rewritten as

f0ww
∗
α + f0uu

∗
α = f0wf

−1
w . (3.25)

In (3.25), if we substitute from (3.20) and (3.24), we obtain (3.14) and the theorem is proved.♦

3.2.2 Geometric interpretation.

The equality constraints of the problem in 3.12 define an−m dimensional surface

Ω = {x|fi(x) = αi, i = 1, . . . ,m}.

The hypothesis of linear independence of{fix(x∗)|1 ≤ i ≤ m} guarantees that the tangent plane
throughΩ atx∗ is described by

{h|fix(x∗)h = 0 , i = 1, . . . ,m}, (3.26)

so that the set of (column vectors orthogonal to this tangent surface is

{λ1 5x f1(x∗) + . . . + λm 5x fm(x∗)|λi ∈ R, i = 1, . . . ,m}.

Condition (3.13) is therefore equivalent to saying that at an optimal decisionx∗, the gradient of the
objective function5xf0(x∗) is normal to the tangent surface (3.12).

3.2.3 Algebraic interpretation.

Let us again definew = (x1, . . . , xm)′ andu = (xm+1, . . . , xn)′. Suppose thatfw(x̃) is nonsin-
gular at some point̃x = (w̃, ũ) in Ω which is not necessarily optimal. Then the Implicit Function
Theorem enables us to solve, in a neighborhood ofx̃, them equationsf(w, u) = α. u can then vary
arbitrarily in a neighborhood of̃u. As u varies,w must change according tow = g(u) (in order to
maintainf(w, u) = α), and the objective function changes according tof̂0(u) = f0(g(u), u). The
derivative off̂0 at ũ is

f̂0u(ũ) = f0wgu + f0ux̃ = −λ̃′fu(x̃) + f0u(x̃),

where

λ̃′ = f0wf
−1
wx̃ , (3.27)

Therefore,the direction of steepest increase off̂0 at ũ is

5uf̂0(ũ) = −f ′u(x̃)λ̃+ f ′Ou(x̃) , (3.28)

and if ũ is optimal,5uf̂0(ũ) = 0 which, together with (3.27) is equation (3.13). We shall use (3.27)
and (3.28) in the last section.
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3.3 Remarks and Extensions

3.3.1 The condition of linear independence.

The necessary condition (3.13) need not hold if the derivativesfix(x∗), 1 ≤ i ≤ m, are not linearly
independent. This can be checked in the following example

Minimize
subject to sin(x2

1 + x2
2)

π
2 (x2

1 + x2
2) = 1.

(3.29)

3.3.2 An alternative condition.

Keeping the notation of Theorem 3.2.1, define theLagrangian functionL : Rn+m → R by L :
(x, λ) 7→ f0(x) −

∑m
i=1 λifi(x). The following is a reformulation of 3.12, and its proof is left as

an exercise.
Let x∗ be optimal for (3.12), and suppose thatfix(x∗), 1 ≤ i ≤ m, are linearly independent.

Then there existsλ∗ ∈ Rm such that(x∗, λ∗) is astationary pointof L, i.e., Lx(x∗, λ∗) = 0 and
Lλ(x∗, λ∗) = 0.

3.3.3 Second-order conditions.

Since we can convert the problem (3.12) into a problem of maximizingf̂0 over an open set, all
the comments of Section 2.4 will apply to the functionf̂0. However, it is useful to translate these
remarks in terms of the original functionf0 and f . This is possible because the functiong is
uniquely specified by (3.16) in a neighborhood ofx∗. Furthermore, iff is twice differentiable, so
is g (see Fleming [1965]). It follows that if the functionsfi, 0 ≤ i ≤ m, are twice continuously
differentiable, then so iŝf0, and a necessary condition forx∗ to be optimal for (3.12) and (3.13) and
the condition that the(n −m) × (n −m) matrix f̂0uu(u∗) is negative semi-definite. Furthermore,
if this matrix is negative definite thenx∗ is a local optimum. the following exercise expresses
f f̂0uu(u∗) in terms of derivatives of the functionsfi.

Exercise: Show that

f̂0uu(u∗) = [g′u
...I]

[
Lww
Luw

Lwu
Luu

]
 gu
. . .
I




∣∣∣∣∣∣ (w∗, u∗)

where

gu(u∗) = −[fw(x∗)]−1fu(x∗), L(x) = f0(x) −
m∑
i=1

λ∗i fi(x).
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3.3.4 A numerical procedure.

We assume that the derivativesfix(x), 1 ≤ i ≤ m, are linearly independent for allx. Then the
following algorithm is a straightforward adaptation of the procedure in Section 2.4.6.

Step 1.Findx0 arbitrary so thatfi(x0) = αi, 1 ≤ i ≤ m. Setk = 0 and go to Step 2.
Step 2.Find a partitionx = (w, u)2 of the variables such thatfw(xk) is nonsingular. Calculateλk

by (λk)′ = f0wf
−1
w(xk), and5f̂k0 (uk) = −f ′u(xk)λk + f ′0u(xk). If 5f̂k0 (uk) = 0, stop. Otherwise

go to Step 3.
Step 3.Setũk = uk + dk 5 f̂k0 (uk). Find w̃k such thatfi(w̃k, ũk) = 0, 1 ≤ i ≤ m. Set
xk+1 = (w̃k, ũk), setk = k + 1, and return to Step 2.
Remarks.As before, the step sizesdk > 0 can be selected various ways. The practical applicability
of the algorithm depends upon two crucial factors: the ease with which we can find a partition
x = (w, u) so thatfw(xk) is nonsingular, thus enabling us to calculateλk; and the ease with which
we can findw̃k so thatf(w̃k, ũk) = α. In the next section we apply this algorithm to a practical
problem where these two steps can be carried out without too much difficulty.

3.3.5 Design of resistive networks.

Consider a networkN with n + 1 nodes andb branches. We choose one of the nodes as datum
and denote bye = (e1, . . . , en)′ the vector of node-to-datum voltages. Orient the network graph
and letv = (v1, . . . , vb)′ andj = (j1, . . . , jb)′ respectively, denote the vectors of branch voltages
and branch currents. LetA be then × b reduced incidence matrix of the network graph. Then the
Kirchhoff current and voltage laws respectively yield the equations

Aj = 0 and A′e = v (3.30)

Next we suppose that each branchk contains a (possibly nonlinear)resistive element with the form
shown in Figure 3.3, so that

jk − jsk = gk(vrk) = gk(vk − vsk), 1 ≤ k ≤ b, (3.31)

wherevrk is the voltage across the resistor. Herejsk, vsk are the source current and voltage in the
kth branch, andgk is the characteristic of the resistor. Using the obvious vector notationjs ∈ Rb,
vs ∈ Rb for the sources,vr ∈ Rb for the resistor voltages, andg = (g1, . . . , gb)′, we can rewrite
(3.30) as (3.31):

j − js = g(v − vs) = g(vr). (3.32)

Although (3.30) implies that the current(jk−jsk) through thekth resistor depends only on the
voltagevrk = (vk−vsk) across itself, no essential simplification is achieved. Hence, in (3.31) we
shall assume thatgk is a function ofvr. This allows us to include coupled resistors and voltage-
controlled current sources. Furthermore, let us suppose that there are` design parametersp =
(p1, . . . , p`)′ which are under our control, so that (3.31) is replaced by (3.32):

j − jx = g(vr, p) = g(v−vs, p). (3.33)

2This is just a notational convenience. Thew variable may consist of anym components ofx.
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Figure 3.3: Thekth branch.

If we combine (3.29) and (3.32) we obtain (3.33):

Ag(A′e− vs, p) = is, (3.34)

where we have definedis = Ajs . The network design problem can then be stated as findingp, vs, is
so as to minimize some specified functionf0(e, p, vs, is). Formally, we have the optimization prob-
lem (3.34):

Minimize
subject to

f0(e, p, vs, is)
Ag(A′e− vs, p) − is = 0.

(3.35)

We shall apply the algorithm 3.3.4 to this problem. To do this we make the following assumption.
Assumption:(a)f0 is differentiable. (b)g is differentiable and then×nmatrixA(∂g/∂v)(v, p)A′

is nonsingular for allv ∈ Rb, p ∈ R`. (c) The networkN described by (3.33) is determinatei.e.,
for every value of(p, vs, is) there is a uniquee = E(p, vs, is) satisfying (3.33).

In terms of the notation of 3.3.4, if we letx = (e, p, vs, is), then assumption (b) allows us to
identifyw = e, andu = (p, vs, is). Also letf(x) = f(e, p, vs, is) = Ag(A′e−vs, p)− is. Now the
crucial part in the algorithm is to obtainλk at some pointxk. To this end let̃x = (ẽ, p̃, ṽs, ĩs) be a
fixed point. Then the correspondingλ = λ̃ is given by (see (3.27))

λ̃′ = f0w(x̃)f−1
w (x̃) = f0e(x̃)f−1

e (x̃). (3.36)

From the definition off we have

fe(x̃) = AG(ṽr, p̃)A′,

whereṽr = A′ẽ − ṽs, andG(ṽr, p̃) = (∂g/∂vr)(ṽr, p̃). Therefore,λ̃ is the solution (unique by
assumption (b)) of the following linear equation:

AG′(ṽr, p̃)A′λ̃ = f ′0e(x̃). (3.37)

Now (3.36) has the following extremely interesting physical interpretation. If we compare (3.33)
with (3.36) we see immediately thatλ̃ is the node-to-datum response voltages of alinear network
N(ṽr, p̃) driven by the current sourcesf ′0e(x̃). Furthermore, this network has thesamegraph as
the original network (since they have the same incidence matrix); moreover, its branch admittance
matrix,G′(ṽr, p̃), is the transpose of the incremental branch admittance matrix (evaluated at(ṽr, p̃))
of the original networkN . For this reason,N(ṽr, p̃) is called theadjoint network(of N ) at (ṽr, p̃).
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Once we have obtained̃λ we can obtain5uf̂0(ũ) using (3.28). Elementary calculations yield
(3.37):

5uf̂0(ũ) =


 f̂ ′0p(ũ)
f̂ ′0vs

(ũ)
f̂ ′0is(ũ)


 =


 [∂g∂p(ṽr, p̃)]

′A′

G′(ṽr, p̃)A′

−I


 λ̃ +


 f ′0p(x̃)
f ′0vs

(x̃)
f ′0is(x̃)


 (3.38)

We can now state the algorithm.

Step 1.Selectu0 = (p0, v0
s , i

0
s) arbitrary. Solve (3.33) to obtaine0 = E(p0, v0

s , i
0
s). Let k = 0 and

go to Step 2.
Step 2.Calculatevkr = A′ek − vks . calculatef ′0e(xk). Calculate the node-to-datum responseλk of
the adjoint networkN(vkr , pk) driven by the current sourcef ′0e(xk). Calculate5uf̂0(uk) from
(3.37). If this gradient is zero, stop. Otherwise go to Step 3.
Step 3.Let uk+1 = (pk+1, vk+1

s , ik+1
s ) = uk − dk 5u f̂0(uk), wheredk > 0 is a predetermined

step size.3 Solve (3.33) to obtainek+1 = (Epk+1, vk+1
s , ik+1

s ). Setk = k+ 1 and return to Step 2.
Remark 1.Each iteration fromuk to uk+1 requires one linear network analysis step (the
computation ofλk in Step 2), and one nonlinear network analysis step (the computation ofek+1 in
step 3). This latter step may be very complex.
Remark 2.In practice we can control only some of the components ofvs andis, the rest being
fixed. The only change this requires in the algorithm is that in Step 3 we set
pk+1 = pk − dkf̂

′
0p(u

k) just as before, where asvk+1
sj = vksj − dk(∂f̂0/∂vsj)(uk) and

ik+1
sm = iksm − dk(∂f̂0/∂ism)(uk) with j andm ranging only over the controllable components and

the rest of the components equal to their specified values.
Remark 3.The interpretation ofλ as the response of the adjoint network has been exploited for
particular functionf0 in a series of papers (director and Rohrer [1969a], [1969b], [1969c]). Their
derivation of the adjoint network does not appear as transparent as the one given here. Although
we have used the incidence matrixA to obtain our network equation (3.33), one can use a more
general cutset matrix. Similarly, more general representations of the resistive elements may be
employed. In every case the “adjoint” network arises from a network interpretation of (3.27),

[fw(x̃)]′λ̃ = f0w(x̃),

with the transpose of the matrix giving rise to the adjective “adjoint.”
Exercise: [DC biasing of transistor circuits (see Dowell and Rohrer [1971]).] LetN be a transistor
circuit, and let (3.33) model the dc behavior of this circuit. Suppose thatis is fixed,vsj for j ∈ J
are variable, andvsj for j /∈ J are fixed. For each choice ofvsj , j ∈ J , we obtain the vectore and
hence the branch voltage vectorv = A′e. Some of the componentsvt, t ∈ T , will correspond to
bias voltages for the transistors in the network, and we wish to choosevsj, j ∈ J , so thatvt is as
close as possible to a desired bias voltagevdt , t ∈ T . If we choose nonnegative numbersαt, with
relative magnitudes reflecting the importance of the different transistors then we can formulate the
criterion

3Note the minus sign in the expressionuk − dk 5u f̂0(u
k). Remember we are minimizingf0, which is equivalent to

maximizing(−f0).
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f0(e) =
∑
t∈T

αt|vt−vdt |2.

(i) Specialize the algorithm above for this particular case.
(ii) How do the formulas change if the network equations are written using an arbitrary cutset matrix
instead of the incidence matrix?
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Chapter 4

OPTIMIZATION OVER SETS
DEFINED BY INEQUALITY
CONSTRAINTS: LINEAR
PROGRAMMING

In the first section we study in detail Example 2 of Chapter I, and then we define the general linear
programming problem. In the second section we present the duality theory for linear program-
ming and use it to obtain some sensitivity results. In Section 3 we present the Simplex algorithm
which is the main procedure used to solve linear programming problems. In section 4 we apply
the results of Sections 2 and 3 to study the linear programming theory of competitive economy.
Additional miscellaneous comments are collected in the last section. For a detailed and readily ac-
cessible treatment of the material presented in this chapter see the companion volume in this Series
(Sakarovitch [1971]).

4.1 The Linear Programming Problem

4.1.1 Example.

Recall Example 2 of Chapter I. Letg andu respectively be the number of graduate and undergradu-
ate students admitted. Then the number of seminars demanded per year is2g+u

20 , and the number of
lecture courses demanded per year is5g+7u

40 . On the supply side of our accounting, the faculty can
offer 2(750) + 3(250) = 2250 seminars and6(750) + 3(250) = 5250 lecture courses. Because of
his contractual agreements, the President must satisfy

2g+u
20 ≤ 2250 or 2g + u ≤ 45, 000

and

5g+7u
40 ≤ 5250 or 5g + 7u ≤ 210, 000 .

27
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Since negativeg or u is meaningless, there are also the constraintsg ≥ 0, u ≥ 0. Formally then the
President faces the following decision problem:

Maximize αg + βu
subject to 2g + u ≤ 45, 000

5g + 7u ≤ 210, 000
g ≥ 0, u ≥ 0 .

(4.1)

It is convenient to use a more general notation. So letx = (g, u)′, c = (α, β)′, b = (45000, 210000, 0, 0)′

and letA be the 4×2 matrix

A =




2
5

−1
0

1
7
0

−1


 .

Then (4.1) can be rewritten as (4.2)1

Maximizec′x
subject toAx ≤ b .

(4.2)

LetAi, 1 ≤ i ≤ 4, denote therowsofA. Then the setΩ of all vectorsxwhich satisfy the constraints
in (4.2) is given byΩ = {x|Aix ≤ bi, 1 ≤ i ≤ 4} and is the polygonOPQR in Figure 4.1.

For each choicex, the President receives the payoffc′x. Therefore, the surface of constant payoff
k say, is the hyperplaneπ(k) = {x|c′x = k}. These hyperplanes for different values ofk are
parallel to one another since they have the same normalc. Furthermore, ask increasesπ(k) moves
in the directionc. (Obviously we are assuming in this discussion thatc 6= 0.) Evidently an optimal
decision is any pointx∗ ∈ Ω which lies on a hyperplaneπ(k) which is farthest along the direction
c. We can rephrase this by saying thatx∗ ∈ Ω is an optimal decision if and only if the planeπ∗

throughx∗ does not intersect the interior ofΩ, and futhermore atx∗ the directionc points away
from Ω. From this condition we can immediately draw two very important conclusions: (i) at least
one of the vertices ofΩ is an optimal decision, and (ii)x∗ yields a higher payoff than all points
in the coneK∗ consisting of all rays starting atx∗ and passing throughΩ, sinceK∗ lies “below”
π∗. The first conclusion is the foundation of the powerful Simplex algorithm which we present in
Section 3. Here we pursue consequences of the second conclusion. For the situation depicted in
Figure 4.1 we can see thatx∗ = Q is an optimal decision and the coneK∗ is shown in Figure 4.2.
Now x∗ satisfiesAxx∗ = b1, A2x

∗ = b2, andA3x
∗ < b3, A4x

∗ < b4, so thatK∗ is given by

K∗ = {x∗ + h|A1h ≤ 0 , A2h ≤ 0} .

Sincec′x∗ ≥ c′y for all y ∈ K∗ we conclude that

c′h ≤ 0 for all h such thatA1h ≤ 0, A2h ≤ 0 . (4.3)

We pause to formulate the generalization of (4.3) as an exercise.

1Recall the notation introduced in 1.1.2, so thatx ≤ y meansxi ≤ yi for all i.
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,

-

-

-

-

-

-

-

-

-

-

x2

π(k) = {x|c′x = k}
π∗

Q = x∗

direction of
increasing
payoffk

{x|A2x = b2}

x1

{x|A1x = b1}
R

A4

OA3

A1 ⊥ QR

c ⊥ π∗

A2 ⊥ PQ

P

Figure 4.1:Ω = OPQR.

Exercise 1:LetAi, 1 ≤ i ≤ k, ben-dimensionalrow vectors. Letc ∈ Rn, and letbi, 1 ≤ i ≤ k,
be real numbers. Consider the problem

Maximizec′x
subject toAix ≤ bi, 1 ≤ i ≤ k .

For anyx satisfying the constraints, letI(x) ⊂ {1, . . . , n} be such thatAi(x) = bi, i ∈ I(x), Aix <
bi, i /∈ I(x). Supposex∗ satisfies the constraints. Show thatx∗ is optimal if an only if

c′h ≤ 0 for all h such thatAih ≤ 0 , i ∈ I(x∗).

Returning to our problem, it is clear that (4.3) is satisfied as long asc lies betweenA1 andA2.
Mathematically this means that (4.3) is satisfied if and only if there existλ∗1 ≥ 0, λ∗2 ≥ 0 such that
2

c′ = λ∗1, A1 + λ∗2A2. (4.4)

As c varies, the optimal decision will change. We can see from our analysis that the situation is as
follows (see Figure 4.1):

2Although this statement is intuitively obvious, its generalization ton dimensions is a deep theorem known as Farkas’
lemma (see Section 2).
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P

x∗ = Q

K∗

π∗

R

A4

O
A3

A2 c

A1

Figure 4.2:K∗ is the cone generated byΩ atx∗.

1. x∗ = Q is optimal iff c lies betweenA1 andA2 iff c′ = λ∗1A1 +λ∗2A2 for someλ∗1 ≥ 0, λ∗2 ≥
0,

2. x∗ ∈ QP is optimal iff c lies alongA2 iff c′ = λ∗2A2 for someλ∗2 ≥ 0,

3. x∗ = P is optimal iff c lies betweenA3 andA2 iff c′ = λ∗2A2 +λ∗3A3 for someλ∗2 ≥ 0, λ∗3 ≥
0, etc.

These statements can be made in a more elegant way as follows:

x∗ ∈ Ω is optimal iff there existsλ∗i ≥ 0 , 1 ≤ i ≤ 4, such that

(a) c′ =
4∑
i=1

λ∗i ai , (b) if Ai x
∗ < bi thenλ∗i = 0 . (4.5)

For purposes of application it is useful to separate those constraints which are of the formxi ≥ 0,
from the rest, and to reformulate (4.5) accordingly We leave this as an exercise.

Exercise 2:Show that (4.5) is equivalent to (4.6), below. (HereAi = (ai1, ai2).) x∗ ∈ Ω is optimal
iff there existλ∗1 ≥ 0 , λ∗2 ≥ 0 such that

(a) ci ≤ λ∗1a1i + λ∗2a2i, i = 1, 2,
(b) if aj1x∗1 + aj2x

∗
2 < bj thenx∗j = 0, j = 1, 2.

(c) if ci < λ∗1i + λ∗2a2i thenx∗i = 0, i = 1, 2.
(4.6)
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4.1.2 Problem formulation.

A linear programming problem (or LP in brief) is any decision problem of the form 4.7.

Maximizec1x1 + c2x2 + . . .+ cnxn
subject to
ailx1 + ai2x2 + . . .+ ainxn ≤ bi , l ≤ i ≤ k ,
ailx1 + . . . . . . . . .+ ainxn ≥ bi , k + 1 ≤ i ≤ ` ,
ailx1 + . . . . . . . . .+ ainxn = bi , `+ 1 ≤ i ≤ m ,

and

xj ≥ 0 , 1 ≤ j ≤ p ,
xj ≥ 0 , p+ 1 ≤ j ≤ q;
xj arbitary, q + 1 ≤ j ≤ n ,

(4.7)

where thecj, aij , bi are fixed real numbers.
There are two important special cases:

Case I:(4.7) is of the form (4.8):

Maximize
n∑
j=1

cjxj

subject to
n∑
j=1

aijxj ≤ bi ,

xj ≥ 0 ,

1 ≤ i ≤ m ,

1 ≤ j ≤ n

(4.8)

Case II:(4.7) is of the form (4.9):

Maximize
n∑
j=1

cjxj

subject to
n∑
j=1

aijxj = bi ,

xj ≥ 0 ,

1 ≤ i ≤ m ,

1 ≤ j ≤ n .

(4.9)

Although (4.7) appears to be more general than (4.8) and (4.9), such is not the case.

Proposition:Every LP of the form (4.7) can be transformed into an equivalent LP of the form (4.8).
Proof.
Step 1:Replace each inequality constraint

∑
aijxj ≥ bi by

∑
(−aij)xj ≤ (−bi).

Step 2:Replace each equality constraint
∑
aijxj = bi by two inequality constraints:∑

aijxj ≤ bi,
∑

(−aij)xj ≤ (−bi).
Step 3:Replace each variablexj which is constrainedxj ≤ 0 by a variableyj = −xj constrained
yj ≥ 0 and then replaceaijxj by (−aij)yj for everyi andcjxj by (−cj)yj.
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Step 4:Replace each variablexj which is not constrained in sign by a pair of variables
yj−zj = xj constrainedyj ≥ 0, zj ≥ 0 and then replaceaijxj by aijyj + (−aij)zj for everyi and
cjxj by cjyj + (−cj)zj . Evidently the resulting LP has the form (4.8) and is equivalent to the
original one. ♦
Proposition:Every LP of the form (4.7) can be transformed into an equivalent LP of the from (4.9)
Proof.
Step 1:Replace each inequality constraint

∑
aijxj ≤ bi by the equality constraint∑

aijxj + yi = bi whereyi is an additional variable constrainedyi ≥ 0.
Step 2:Replace each inequality constraint

∑
aijxj ≥ bi by the equality constraint∑

aijxj − yi = bi whereyi is an additional variable constrained byyi ≥ 0. (The new variables
added in these steps are calledslackvariables.)
Step 3, Step 4:Repeat these steps from the previous proposition. Evidently the new LP has the
form (4.9) and is equivalent to the original one. ♦

4.2 Qualitative Theory of Linear Programming

4.2.1 Main results.

We begin by quoting a fundamental result. For a proof the reader is referred to (Mangasarian
[1969]).
Farkas’ Lemma.LetAi, 1 ≤ i ≤ k, ben-dimensionalrow vectors. Letc ∈ Rn be a column vector.
The following statements are equivalent:
(i) for all x ∈ Rn, Aix ≤ 0 for 1 ≤ i ≤ k impliesc′x ≤ 0,

(ii) there existsλ1 ≥ 0, . . . , λk ≥ 0 such thatc′ =
k∑
i=1

λiAi.

An algebraic version of this result is sometimes more convenient.
Farkas’ Lemma (algebraic version).LetA be ak×nmatrix. Letc ∈ Rn. The following statements
are equivalent.
(i) for all x ∈ Rn, Ax ≤ 0 impliesc′x ≤ 0,
(ii) there existsλ ≥ 0, λ ∈ Rk, such thatA′λ = c.

Using this result it is possible to derive the main results following the intuitive reasoning of (4.1).
We leave this development as two exercises and follow a more elegant but less intuitive approach.

Exercise 1:With the same hypothesis and notation of Exercise 1 in 4.1, use the first version of
Farkas′ lemma to show that there existλ∗i ≥ 0 for i ∈ I(x∗) such that

∑
i∈I(x∗)

λ∗iAi = c′ .

Exercise 2:Let x∗ satisfy the constraints for problem (4.17). Use the previous exercise to show
thatx∗ is optimal iff there existλ∗1 ≥ 0, . . . , λ∗m ≥ 0 such that

(a) cj ≤
m∑
i=1

λ∗i aij , 1 ≤ j ≤ n

(b) if
n∑
j=1

aijx
∗
j < bi thenλ∗i = 0 , 1 ≤ i ≤ m (c) if

m∑
i=1

λ∗i aij > cj thenx∗j = 0 , 1 ≤ j ≤ m.

In the remaining discussion,c ∈ Rn, b ∈n are fixed vectors, andA = {aij} is a fixedm × n
matrix, whereasx ∈ Rn andλ ∈ Rm will be variable. Consider the pair of LPs (4.10) and (4.11)
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below. (4.10) is called theprimal problem and (4.11) is called thedual problem.

Maximize
subject to

c1x1 + . . .+ cnxn
ai1x1 + . . .+ainxn ≤ bi ,

xj ≥ 0 ,
1 ≤ i ≤ m
1 ≤ j ≤ n .

(4.10)

Maximize
subject to

λ1b1 + . . .+ λmbm
λ1a1j + . . .+λmamj ≥ cj ,

λi ≥ 0 ,
1 ≤ j ≤ n
1 ≤ i ≤ m .

(4.11)

Definition: Let Ωp = {x ∈ Rn|Ax ≤ b, x ≥ 0} be the set of all points satisfying the constraints
of the primal problem. Similarly letΩd = {λ ∈ Rm|λ′A ≥ c′, λ ≥ 0}. A point x ∈ Ωp(λ ∈ Ωd) is
said to be afeasible solutionor feasible decisionfor the primal (dual).

The next result is trivial.
Lemma 1:(Weak duality) Letx ∈ Ωp, λ ∈ Ωd. Then

c′x ≤ λ′Ax ≤ λ′b. (4.12)

Proof: x ≥ 0 andλ′A− c′ ≥ 0 implies (λ′A−c′)x ≥ 0 giving the first inequality.b−Ax ≥ 0 and
λ′ ≥ 0 impliesλ′(b−Ax) ≥ 0 giving the second inequality. ♦
Corollary 1: If x∗ ∈ Ω andλ∗ ∈ Ωd such thatc′x∗ = (λ∗)′b, thenx∗ is optimal for (4.10) andλ∗ is
optimal for (4.11).
Theorem 1:(Strong duality) SupposeΩp 6= φ andΩd 6= φ. Then there existsx∗ which is optimum
for (4.10) andλ∗ which is optimum for (4.11). Furthermore,c′x∗ = (λ∗)′b.
Proof: Because of the Corollary 1 it is enough to prove the last statement,i.e., we must show that
there existx ≥ 0, λ ≥ 0, such thatAx ≤ b,A′λ ≥ c andb′λ−c′x ≤ 0. By introducing slack
variablesy ∈ Rm, µ ∈ Rm, r ∈ R, this is equivalent to the existence ofx ≥ 0, y ≥ 0, λ ≥ 0, µ ≤
0, r ≤ 0 such that


 A Im

A′ −In
−c′ b′ 1






x

y

λ

µ

r


 =


 b

c

0




By the algebraic version of Farkas’ Lemma, this is possible only if

A′ξ − cθ ≤ 0 , ξ ≤ 0 ,
Aw = bθ ≤ 0 , −w ≤ 0 ,
θ ≤ 0

(4.13)

implies

b′ξ + c′w ≤ 0. (4.14)
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Case (i):Suppose(w, ξ, θ) satisfies (4.13) andθ < 0. Then(ξ/θ) ∈ Ωd, (w/−θ) ∈ Ωp, so that by
Lemma 1c′w/(−θ) ≤ b′ξ/θ, which is equivalent to (4.14) sinceθ < 0.
Case (ii): Suppose(w, ξ, θ) satisfies (4.13) andθ = 0, so that−A′ξ ≥ 0, −ξ ≥ 0,Aw ≤ 0, w ≥ 0.
By hypothesis, there existx ∈ Ωp, λ ∈ Ωd. Hence,−b′ξ = b′(−ξ) ≥ (Ax)′(−ξ) = x′(−A′ξ) ≥ 0,
andc′w ≤ (A′λ)′w = λ′(Aw) ≤ 0. So thatb′ξ + c′w ≤ 0. ♦

The existence part of the above result can be strengthened.

Theorem 2:(i) SupposeΩp 6= φ. Then there exists an optimum decision for the primal LP iff
Ωd 6= φ.
(ii) SupposeΩd 6= φ. Then there exists an optimum decision for the dual LP iffΩp 6= φ.
Proof Because of the symmetry of the primal and dual it is enough to prove only (i). The
sufficiency part of (i) follows from Theorem 1, so that only the necessity remains. Suppose, in
contradiction, thatΩd = φ. We will show that sup{c′x|x ∈ Ωp} = +∞. Now,Ωd = φ means
there does not existλ ≥ 0 such thatA′λ ≥ c. Equivalently, there does not existλ ≥ 0, µ ≤ 0 such
that

[
A′ |

| −In
]

 λ
−−−
µ


 =

[
c

]

By Farkas’ Lemma there existsw ∈ Rn such thatAw ≤ 0, −w ≤ 0, andc′w > 0. By hypothesis,
Ωp 6= φ, so there existsx ≥ 0 such thatAx ≤ b. but then for anyθ > 0, A(x + θw) ≤ b,
(x + θw) ≥ 0, so that(x + θw) ∈ Ωp. Also, c′(x + θw) = c′x + θc′w. Evidently then, sup
{c′x|x ∈ Ωp} = +∞ so that there is no optimal decision for the primal. ♦
Remark:In Theorem 2(i), the hypothesis thatΩp 6= φ is essential. Consider the following exercise.
Exercise 3:Exhibit a pair of primal and dual problems such thatneitherhas a feasible solution.
Theorem 3:(Optimality condition)x∗ ∈ Ωp is optimal if and only if there existsλ∗ ∈ Ωd such that

m∑
j=1

aijx
∗
j < bi impliesλ∗i = 0 ,

and
m∑
i=1

λ∗i aij < cj impliesx∗j = 0 .

(4.15)

((4.15) is known as the condition ofcomplementary slackness.)
Proof: First of all we note that forx∗ ∈ Ωp, λ∗ ∈ Ωd, (4.15) is equivalent to (4.16):

(λ∗)′(Ax∗ − b) = 0, and(A′λ∗ − c)′x∗ = 0 . (4.16)

Necessity.Supposex∗ ∈ Ωp is optimal. Then from Theorem 2,Ωd 6= φ, so that by Theorem 1
there existsλ∗ ∈ Ωd such thatc′x∗ = (λ∗)′b. By Lemma 1 we always have
c′x∗ ≤ (λ∗)′Ax∗ ≤ (λ∗)′b so that we must havec′x∗ = (λ∗)′Ax∗ = (λ∗)′b. But (4.16) is just an
equivalent rearrangement of these two equalities.
Sufficiency.Suppose (4.16) holds for somex∗ ∈ Ωp, λ∗ ∈ Ωd. The first equality in (4.16) yields
(λ∗)′b = (λ∗)′Ax∗ = (A′λ∗)′x∗, while the second yields(A′λ∗)′x∗ = c′x∗, so thatc′x∗ = (λ∗)′b.
By Corollary1, x∗ is optimal. ♦
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The conditionsx∗ ∈ Ωp, x∗ ∈ Ωd in Theorem 3 can be replaced by the weakerx∗ ≥ 0, λ∗ ≥ 0
provided we strengthen (4.15) as in the following result, whose proof is left as an exercise.

Theorem 4:(Saddle point)x∗ ≥ 0 is optimal for the primal if and only if there existsλ∗ ≥ 0 such
that

L(x, λ∗) ≤ L(x∗, λ∗) ≤ L(x∗, λ) for all x ≥ 0, and allλ ≥ 0, (4.17)

whereL: RnxRm → R is defined by

L(x, λ) = c′x− λ′(Ax− b) (4.18)

Exercise 4:Prove Theorem 4.
Remark.The functionL is called theLagrangian. A pair (x∗, λ∗) satisfying (4.17) is said to form
asaddle-pointof L over the set{x|x ∈ Rn, x ≥ 0} × {λ|λ ∈ Rm, λ ≥ 0}.

4.2.2 Results for problem (4.9).

It is possible to derive analogous results for LPs of the form (4.9). We state these results as exercises,
indicating how to use the results already obtained. We begin with a pair of LPs:

Maximize
subject to

c1x1 + . . .+ cnxn
ailx1 + . . .+ ainxn = bi ,

xj ≥ 0 ,
1 ≤ i ≤ m ,
1 ≤ j ≤ n .

(4.19)

Minimize
subject to

λ1b1 + . . .+ λmbm
λ1a1j + . . .+ λmamj ≥ cj , 1 ≤ j ≤ n .

(4.20)

Note that in (4.20) theλi are unrestricted in sign. Again (4.19) is called the primal and (4.20) the
dual. We letΩp,Ωd denote the set of allx, λ satisfying the constraints of (4.19), (4.20) respectively.

Exercise 5:Prove Theorems 1 and 2 withΩp andΩd interpreted as above. (Hint. Replace (4.19)
by the equivalent LP: maximizec′x, subject toAx ≤ b, (−A)x ≤ (−b), x ≥ 0. This is now of the
form (4.10). Apply Theorems 1 and 2.)
Exercise 6:Show thatx∗ ∈ Ωp is optimal iff there existsλ∗ ∈ Ωd such that

x∗j > 0 implies
m∑
i=1

λ∗i aij = cj .

Exercise 7:x∗ ≥ 0 is optimal iff there existsλ∗ ∈ Rm such that

L(x, λ∗) ≤ L(x∗, λ∗) ≤ L(x∗, λ) for all x ≥ 0, λ ∈ Rm .

whereL is defined in (4.18). (Note that, unlike (4.17),λ is not restricted in sign.)
Exercise 8:Formulate a dual for (4.7), and obtain the result analogous to Exercise 5.
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4.2.3 Sensitivity analysis.

We investigate how the maximum value of (4.10) or (4.19) changes as the vectorsb andc change.
The matrixAwill remain fixed. LetΩp andΩd be the sets of feasible solutions for the pair (4.10) and
(4.11)or for the pair (4.19) and (4.20). We writeΩp(b) andΩd(c) to denote the explicit dependence
on b andc respectively. LetB = {b ∈ Rm|Ωp(b) 6= φ} andC = {c ∈ Rn|Ωd(c) 6= φ}, and for
(b, c) ∈ B × C define

M(b, c) = max{c′x|x ∈ Ωp(b)} = min {λ′b|λ ∈ Ωd(c)} . (4.21)

For1 ≤ i ≤ m, ε ∈ R, b ∈ Rm denote

b(i, ε) = (b1, b2, . . . , bi−1, bi + ε, bi+1, . . . , bm)′ ,

and for1 ≤ j ≤ n, ε ∈ R, c ∈ Rn denote

c(j, ε) = (c1, c2, . . . , cj−1, cj + ε, cj+1, . . . , cn)′ .

We define in the usual way the right and left hand partial derivatives ofM at a point(b̂, ĉ) ∈ B×C
as follows:

∂M+

∂bi
(b̂, ĉ) = lim

ε→ 0
ε > 0

1
ε{M(b̂(i, ε), ĉ) −M(b̂, ĉ)} ,

∂M−
∂bi

(b̂, ĉ) = lim
ε→ 0
ε > 0

1
ε{M(b̂, ĉ) −M(b̂(i,−ε), ĉ)} ,

∂M+

∂cj
(b̂, ĉ) = lim

ε→ 0
ε > 0

1
ε{M(b̂, ĉ(j, ε)) −M(b̂, ĉ} ,

∂M−
∂cj

(b̂, ĉ) = lim
ε→ 0
ε > 0

1
ε{M(b̂, ĉ−M(b̂, ĉ(j,−ε))} ,

Let
◦
B,

◦
C denote the interiors ofB,C respectively.

Theorem 5:At each(b̂, ĉ) ∈ ◦
B × ◦

C, the partial derivatives given above exist. Furthermore, if
x̂ ∈ Ωp(b̂), λ̂ ∈ Ωd(ĉ) are optimal, then

∂M+

∂bi
(b̂, ĉ) ≤ λ̂i ≤ ∂M−

∂bi
(b̂, ĉ) , 1 ≤ i ≤ m , (4.22)
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∂M+

∂cj
(b̂, ĉ) ≥ x̂j ≥ ∂M−

∂cj
(b̂, ĉ) , 1 ≤ j ≤ n , (4.23)

Proof: We first show (4.22), (4.23) assuming that the partial derivatives exist. By strong duality
M(b̂, ĉ) = λ̂′b̂, and by weak dualityM(b̂(i, ε), ĉ) ≤ λ̂′b̂(i, ε), so that

1
ε{M(b̂(i, ε), ĉ) −M(b̂, ĉ)} ≤ 1

ε λ̂
′{b̂(i, ε) − b̂}λ̂i, for ε > 0,

1
ε{M(b̂, ĉ) −M(b̂(i,−ε), ĉ)} ≥ 1

ε λ̂
′{b̂− b̂(i,−ε)} = λ̂i, for ε > 0.

Taking limits asε→ 0, ε > 0, gives (4.22).
On the other hand,M(b̂, ĉ) = ĉ′x̂, andM(b̂, ĉ(j, ε)) ≥ (ĉ(j, ε))′x̂, so that

1
ε{M(b̂, ĉ(j, ε)) −M(b̂, ĉ)} ≥ 1

ε{ĉ(j, ε)′ − ĉ}′x̂ = x̂j , for ε > 0,
1
ε{M(b̂, ĉ) −M(b̂, ĉ(j,−ε))} ≤ 1

ε{ĉ− ĉ(j,−ε)}′x̂ = x̂j, for ε > 0,

which give (4.23) asε→ 0, ε > 0.
Finally, the existence of the right and left partial derivatives follows from Exercises 8, 9 below.♦
We recall some fundamental definitions from convex analysis.
Definition:X ⊂ Rn is said to beconvexif x, y ∈ X and0 ≤ θ ≤ 1 implies(θx+(1−θ)y) ∈ X.
Definition: LetX ⊂ Rn andf : X → R. (i) f is said to beconvexif X is convex, andx, y ∈ X,

0 ≤ θ ≤ 1 impliesf(θx+ (1 − θ)y) ≤ θf(x) + (1 − θ)f(y). (ii) f is said to beconcaveif −f is
convex,i.e., x, y ∈ X, 0 ≤ θ ≤ 1 impliesf(θx+ (1 − θ)y) ≥ θf(x) + (1 − θ)f(y).

Exercise 8:(a) Show thatΩp, Ωd, and the setsB ⊂ Rm, C ⊂ Rn defined above are convex sets.
(b) Show that for fixedc ∈ C,M(·, c) : B → R is concave and for fixedb ∈ B,M(b, ·) : C → R
is convex.
Exercise 9:LetX ⊂ Rn, andf : X → R be convex. Show that at each pointx̂ in the interior of
X, the left and right hand partial derivatives off exist. (Hint: First show that for
ε2 > ε1 > 0 > δ1 > δ2,(1/ε2){f(x̂(i, ε2)) − f(x̂)} ≥ (1/ε1){f(x̂(i, ε1)) − f(x̂))} ≥
(1/δ1){f(x̂(i, δ1))− f(x̂))} ≥ (1/δ2){f(x̂(i, δ2))− f(x̂)}. Then the result follows immediately.)
Remark 1:Clearly if (∂M/∂bi)(b̂) exists, then we have equality in (4.22), and then this result
compares with 3.14).
Remark 2:We can also show without difficulty thatM(·, c) andM(b, ·) are piecewise linear (more
accurately, linear plus constant) functions onB andC respectively. This is useful in some
computational problems.
Remark 3:The variables of the dual problem are called Lagrange variables or dual variables or
shadow-prices. The reason behind the last name will be clear in Section 4.

4.3 The Simplex Algorithm

4.3.1 Preliminaries

We now present the celebrated Simplex algorithm for finding an optimum solution to any LP of the
form (4.24):

Maximize
subject to

c1x1 + . . . + cnxn
ailx1 + . . .+ ainxn = bi ,

xj ≥ 0 ,
1 ≤ i ≤ m
1 ≤ j ≤ n .

(4.24)
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As mentioned in 4.1 the algorithm rests upon the observations that if an optimal exists, then at least
one vertex of the feasible setΩp is an optimal solution. SinceΩp has only finitely many vertices (see
Corollary 1 below), we only have to investigate a finite set. The practicability of this investigation
depends on the ease with which we can characterize the vertices ofΩp. This is done in Lemma 1.

In the following we letAj denote thejth columnof A, i.e.,Aj = (a1j , . . . , amj)′. We begin with
a precise definition of a vertex.

Definition: x ∈ Ωp is said to be avertexof Ωp if x = λy + (1 − λ)z, with y, z in Ωp and
0 < λ < 1, impliesx = y = z.
Definition: Forx ∈ Ωp, let I(x) = {j|xj > 0}.
Lemma 1:Let x ∈ Ωp. Thenx is a vertex ofΩp iff {Aj |j ∈ I(x)} is a linearly independent set.
Exercise 1:Prove Lemma 1.

Corollary 1: Ωp has at most
m∑
j=1

n!
(n − j)!

vertices.

Lemma 2:Let x∗ be an optimal decision of (4.24). Then there is a vertexz∗ of Ωp which is optimal.
Proof: If {Aj |j ∈ I(x∗)} is linearly independent, letz∗ = x∗ and we are done. Hence suppose
{Aj |j ∈ I(x∗)} is linearly dependent so that there existγj, not all zero, such that∑

j∈I(x∗)
γjA

j = 0 .

Forθ ∈ R definez(θ) ∈ Rn by

zj(θ) =
{
x∗j = θγj ,

x∗j = 0 ,
j ∈ I(x∗)
j 6∈ I(x∗) .

Az(θ) =
∑

j∈I(x∗)
zj(θ)Aj =

∑
j∈I(x∗)

x∗jA
j + θ

∑
j∈I(x∗)

γjA
j

= b+ θ · 0 = b .

Sincex∗j > 0 for j ∈ I(x∗), it follows thatz(θ) ≥ 0 when

|θ| ≤ min
{

x∗j
|γj |

∣∣ j ∈ I(x∗)
}

= θ∗ say.

Hencez(θ) ∈ Ωp whenever|θ| ≤ θ∗. Sincex∗ is optimal we must have

c′x∗ ≥ c′z(θ) = c′x∗ + θ
∑

j∈I(x∗)

cjyj for −∗θ ≤ θ ≤ θ∗ .

Sinceθ can take on positive and negative values, the inequality above can hold on if
∑

J∈I(x∗)

cjγj =

0, and thenc′x∗ = c′z(θ), so thatz(θ) is also an optimal solution for|θ| ≤ θ∗. But from the
definition ofz(θ) it is easy to see that we can pickθ0 with |θ0| = θ∗ such thatzj(θ0) = x∗j+θ0γj = 0
for at least onej = j0 in I(x∗). Then,

I(z(θ0)) ⊂ I(x∗) − {j0} .
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Again, if {Aj |j ∈ I(z(θ0))} is linearly independent, then we letz∗ = z(θ0) and we are done.
Otherwise we repeat the procedure above withz(θ0). Clearly, in a finite number of steps we will
find an optimal decisionz∗ which is also vertex. ♦

At this point we abandon the geometric term “vertex” and how to established LP terminology.
Definition: (i) z is said to be abasic feasible solutionif z ∈ Ωp, and{Aj |j ∈ I(z)} is linearly

independent. The setI(z) is then called thebasis at z, andxj, j ∈ I(z), are called thebasic
variables at z. xj, j 6∈ I(z) are called thenon-basic variables at z.

Definition: A basic feasible solutionz is said to benon-degenerateif I(z) hasm elements.
Notation: Let z be a non-degenerate basic feasible solution, and letj1 < j2 < . . . < jm

constituteI(z). LetD(z) denote them ×m non-singular matrixD(z) = [Aj1
...Aj2

... . . .
...Ajm], let

c(z) denote them-dimensional column vectorc(z) = (cj1 , . . . , cjm)′ and defineλ(z) by λ′(z) =
c′(z)[D(z)]−1. We callλ(z) theshadow-price vectoratz.

Lemma 3:Let z be a non-degenerate basic feasible solution. Thenz is optimal if and only if

λ′(z)A ≥ cj , for all , j 6∈ I(z) . (4.25)

Proof: By Exercise 6 of Section 2.2,z is optimal iff there existsλ such that

λ′Aj = cj , for , j ∈ I(z) , (4.26)

λ′Aj ≥ cj , for , j 6∈ I(z) , (4.27)

But sincez is non-degenerate, (4.26) holds iffλ = λ(z) and then (4.27) is the same as (4.25).♦

4.3.2 The Simplex Algorithm.

The algorithm is divided into two parts: In Phase I we determine ifΩp is empty or not, and if not,
we obtain a basic feasible solution. Phase II starts with a basic feasible solution and determines if
it is optimal or not, and if not obtains another basic feasible solution with a higher value. Iterating
on this procedure, in a finite number of steps, either we obtain an optimum solution or we discover
that no optimum exists,i.e., sup{c′x|x ∈ Ωp} = +∞. We shall discuss Phase II first.

We make the following simplifying assumption. We will comment on it later.

Assumption of non-degeneracy.Every basic feasible solution is non-degenerate.
Phase II:
Step 1.Let z0 be a basic feasible solution obtained from Phase I or by any other means. Setk = 0
and go to Step 2.
Step 2.Calculate[D(zk)]−1,c(zk), and the shadow-price vectorλ′(zk) = c′(zk)[D(zk)]−1. For
eachj 6∈ I(zk) calculatecj − λ′(zk)Aj . If all these numbers are≤ 0, stop, becausezk is optimal

by Lemma 3. Otherwise pick anŷj 6∈ I(zk) such thatcĵ − λ′(zk)Aĵ > 0 and go to Step 3.

Step 3.Let I(zk) consist ofj1 < j2 < . . . < jm. Compute the vector
γk = (γkj1 , . . . γ

k
jm)′ = [D(zk)]−1Aĵ . If γk ≤ 0, stop, because by Lemma 4 below, there is no

finite optimum. Otherwise go to Step 4.
Step 4.Computeθ = min {(zkj γkj )|j ∈ i(z), γkj > 0}. Evidently0 < θ <∞. Definezk+1 by
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zk+1
j =




zkj − θγkj
θ
zkj = 0

,
,
,

j ∈ I(z)
j = ĵ

j 6= ĵ andj 6∈ I(z) .
(4.28)

By Lemma 5 below,zk+1 is a basic feasible solution withc′zk+1 > c′zk. Setk = k + 1 and return
to Step 2.
Lemma 4:If γk ≤ 0, sup{c′x|x ∈ Ωp} = ∞.
Proof: Definez(θ) by

zj(θ) =




zj − θγkj
θ
zj = 0

,
,
,

j ∈ I(z)
j = ĵ
j 6∈ I(z) andj 6= ĵ .

(4.29)

First of all, sinceγk ≤ 0 it follows thatz(θ) ≥ 0 for θ ≥ 0. Next,Az(θ) = Az − θ
∑
j∈I(z)

γkjA
j +

θAĵ = Az by definition ofγk. Hence,z(θ) ∈ Ωp for θ ≥ 0. Finally,

c′z(θ) = c′z − θc′(zk)γk + θcĵ
= c′z + θ{cĵ − c′(zk)[D(zk)]−1Aĵ}
= c′z + θ{cĵ − λ′(zk)Aĵ}i .

(4.30)

But from step 2{cĵ − λ′(zk)Aĵ} > 0, so thatc′z(θ) → ∞ asθ → ∞. ♦

Lemma 5:zk+1 is a basic feasible solution andc′zk+1 > c′zk.
Proof: Let j̃ ∈ I(zk) be such thatγk

j̃
> 0 andzk

j̃
= θγk

j̃
. Then from (4.28) we see thatzk+1

j̃
= 0,

hence

I(zk+1) ⊂ (I(z) − {j̃})⋃{ĵ} , (4.31)

so that it is enough to prove thatAj̃ is independent of{Aj |j ∈ I(z), j 6= j̃}. But if this is not the
case, we must haveγk

j̃
= 0, giving a contradiction. Finally if we compare (4.28) and (4.29), we see

from (4.30) that

c′zk+1 − c′zk = θ{cĵ − γ′(zk)Aĵ} ,

which is positive from Step 2. ♦

Corollary 2: In a finite number of steps Phase II will obtain an optimal solution or will determine
that sup{c′x|x ∈ Ωp} = ∞.
Corollary 3: Suppose Phase II terminates at an optimal basic feasible solutionz∗. Thenγ(z∗) is an
optimal solution of the dual of (4.24).
Exercise 2:Prove Corollaries 2 and 3.
Remark 1:By the non-degeneracy assumption,I(zk+1) hasm elements, so that in (4.31) we must
have equality. We see then thatD(zk+1) is obtained fromD(zk) by replacing the columnAj by
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the columnAĵ . More precisely ifD(zk) = [Aj1
... . . .

...Aji−1
...Aj̃

...Aji+1
... . . .

...Ajm] and if

jk < ĵ < jk+1 thenD(zk+1) = [Aj1
... . . .

...Aji−1
...Aji+1

... . . .
...Ajk

...Aĵ
...Ajk+1

... . . .
...Ajm ]. LetE be the

matrixE = [Aj1
... . . .

...Aji−1
...Aĵ

...Aji+1
... . . .

...Ajm ]. Then[D(zk+1)]−1 = P E−1 where the matrixP

permutes the columns ofD(zk+1) such thatE = D(zk+1)P . Next, ifAĵ =
m∑
`=1

γj`A
j` , it is easy

to check thatE−1 = M [D(zk)]−1 where

M =




1
1 . ..

1

−γj1
γj̃

1
γj̃

−γjm
γj̃

1 .. . 1




↑
ith column

Then[D(zk+1)]−1 = PM [D(zk)]−1, so that these inverses can be easily computed.

Remark 2:The similarity between Step 2 of Phase II and Step 2 of the algorithm in 3.3.4 is
striking. The basic variables atzk correspond to the variableswk and non-basic variables
correspond touk. For eachj 6∈ I(zk) we can interpret the numbercj − λ′(zk)Aj to be the net
increase in the objective value per unit increase in thejth component ofzk. This net increase is due
to the direct increasecj minus the indirect decreaseλ′(zk)Aj due to the compensating changes in
the basic variables necessary to maintain feasibility. The analogous quantity in 3.3.4 is
(∂f0/∂uj)(xk) − (λk)′(∂f/∂uj)(xk).
Remark 3:By eliminating any dependent equations in (4.24) we can guarantee that the matrixA
has rankn. Hence at any degenerate basic feasible solutionzk we can always find̄I(zk) ⊃ I(zk)
such that̄I(zk) hasm elements and{Aj |j ∈ Ī(zk)} is a linearly independent set. We can apply
Phase II usinḡI(zk) instead ofI(zk). But then in Step 4 it may turn out thatθ = 0 so that
zk+1 = zk. The reason for this is that̄I(zk) is not unique, so that we have to try various
alternatives for̄I(zk) until we find one for whichθ > 0. In this way the non-degeneracy
assumption can be eliminated. For details see (Canon,et al., [1970]).

We now describe how to obtain an initial basic feasible solution.

Phase I:
Step I.by multiplying some of the equality constraints in (4.24) by−1 if necessary, we can assume
thatb ≥ 0. Replace the LP (4.24) by the LP (4.32) involving the variablesx andy:

Maximize −
m∑
i=1

yi

subject to ailx1 + . . .+ ainxn + yi = bi , 1 ≤ i ≤ m ,
xj ≥ 0 , yi ≥ 0 , 1 ≤ j ≤ n , 1 ≤ i ≤ m .

(4.32)
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Go to step 2.

Step 2.Note that(x0, y0) = (0, b) is a basic feasible solution of (4.32). Apply phase II to (4.32)
starting with this solution. Phase II must terminate in an optimum based feasible solution(x∗, y∗)

since the value of the objective function in (4.32) lies between−
m∑
i=1

bi and0. Go to Step 3.

Step 3.If y∗ = 0, x∗ is a basic feasible solution for (4.24). Ify∗ 6= 0, by Exercise 3 below, (4.24)
has no feasible solution.
Exercise 3:Show that (4.24) has a feasible solution iffy∗ = 0.

4.4 LP Theory of a Firm in a Competitive Economy

4.4.1 Activity analysis of the firm.

We think of a firm as a system which transforms input into outputs. There arem kinds of inputs
andk kinds of outputs. Inputs are usually classified into raw materials such as iron ore, crude oil,
or raw cotton; intermediate products such as steel, chemicals, or textiles; capital goods3 such as
machines of various kinds, or factory buildings, office equipment, or computers; finally various
kinds of labor services. The firm’s outputs themselves may be raw materials (if it is a mining
company) or intermediate products (if it is a steel mill) or capital goods (if it manufactures lathes)
or finished goods (if it makes shirts or bakes cookies) which go directly to the consumer. Labor is
not usually considered an output since slavery is not practiced; however, it may be considered an
output in a “closed,” dynamic Malthusian framework where the increase in labor is a function of the
output. (See the von Neumann model in (Nikaido [1968]), p. 141.)

Within the firm, this transformation can be conducted in different ways,i.e., different combina-
tions of inputs can be used to produce the same combination of outputs, since human labor can
do the same job as some machines and machines can replace other kinds of machines,etc. This
substitutability among inputsis a fundamental concept in economics. We formalize it by specifying
which transformation possibilities are available to the firm.

By an input vectorwe mean anym-dimensional vectorr = (r1, . . . , rm)′ with r ≥ 0, and by an
output vectorwe mean anyk-dimensional vectory = (y1, . . . , yk)′ with y ≥ 0. We now make three
basic assumptions about the firm.
(i) The transformation of inputs into outputs is organized into a finite number, sayn, of processes
or activities.
(ii) Each activity combines thek inputs in fixed proportions into them outputs infixed propor-
tions. Furthermore, each activity can be conducted at any non-negative intensity orlevel. Pre-
cisely, thejth activity is characterized completely by two vectorsAj = (a1j , a2j , . . . , amj)′ and
Bj = (bij , . . . , bkj)′ so that if it is conducted at a levelxj ≥ 0, then it combines (transforms) the
input vector(a1jxj, . . . , amjxj)′ = xjA

j into the output vector(b1jxj , . . . , bkjxj)′ = xjB
j. Let

A be them× n matrix [A1... . . .
...An] andB be thek × n matrixB = [B1... . . .

...Bn].

3It is more accurate to think of the services of capital goods rather than these goods themselves as inputs. It is these
services which are consumed in the transformation into outputs.
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(iii) If the firm conducts all the activities simultaneously with thejth activity at levelxj ≥ 0, 1 ≤ j ≤
n, then it transforms the input vectorx1A

1 + . . .+xnA
n into the output vectorx1B

1 + . . .+xnB
n.

With these assumptions we know all the transformations technically possible as soon as we spec-
ify the matricesA andB. Which of these possible transformations will actually take place depends
upon their relative profitability and availability of inputs. We study this next.

4.4.2 Short-term behavior.

In the short-term, the firm cannot change the amount available to it of some of the inputs such as
capital equipment, certain kinds of labor, and perhaps some raw materials. Let us suppose that these
inputs are1, 2, . . . , ` and they are available in the amountsr∗1, . . . , r∗` , whereas the supply of the
remaining inputs can be varied. We assume that the firm is operating in a competitive economy
which means that the unit pricesp = (p1, . . . , pk)′ of the outputs, andq = (q1, . . . , qm)′ of the
inputs is fixed. Then the manager of the firm, if he is maximizing the firm’s profits, faces the
following decision problem:

Maximize p′y −
m∑

j=`+1

qjrj

subject to y = Bx,
ai1x1 + . . .+ ainxn ≤ r∗i , 1 ≤ i ≤ ` ,
ai1x1 + . . .+ ainxn ≤ ri , `+ 1 ≤ i ≤ m ,
xj ≥ 0, 1 ≤ j ≤ n; ri ≥ 0 , `+ 1 ≤ i ≤ m .

(4.33)

The decision variables are the activity levelsx1, . . . , xn, and the short-term input suppliesr`+1, . . . , rm.
The coefficients ofB andA are the fixedtechnical coefficientsof the firm, ther∗i are the fixed short-
term supplies, whereas thepi, qj are prices determined by the whole economy, which the firm ac-
cepts as given. Under realistic conditions (4.33) has an optimal solution, say,x∗1, . . . , x∗n, r∗`+1, . . . , r

∗
m.

4.4.3 Long-term equilibrium behavior.

In the long run the supplies of the first` inputs are also variable and the firm can change these
supplies fromr∗1, . . . , r

∗
` by buying or selling these inputs at the market priceq1, . . . , q`. Whether

the firm will actually change these inputs will depend upon whether it is profitable to do so, and in
turn this depends upon the pricesp, q. We say that the prices(p∗, q∗) and a set of input supplies
r∗ = (r∗1, . . . , r∗m) are in (long-term)equilibrium if the firm has no profit incentive to changer∗

under the prices(p∗, q∗).
Theorem 1:p∗, q∗, r∗ are in equilibrium if and only ifq∗ is an optimal solution of (4.34):

Minimize (r∗)′q
subject toA′q ≥ B′p∗

q ≥ 0 .
(4.34)

Proof: Let c = B′p∗. By definition, p∗, q∗, r∗ are in equilibrium iff for all fixed∆ ∈ Rm,
M(∆) ≤M(0) whereM(∆) is the maximum value of the LP (4.35):

Maximizec′x− (q∗)′∆
subject toAx ≤ r∗ + ∆ ,

x ≥ 0 .
(4.35)
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For∆ = 0, (4.34) becomes the dual of (4.35) so that by the strong duality theorem,M(0) = (r∗)′q∗.
Hencep∗, q∗, r∗ are in equilibrium iff

c′x− (q∗)′∆ ≤M(0) = (r∗)′q∗ , (4.36)

wheneverx is feasible for (4.35). By weak duality ifx is feasible for (4.35) andq is feasible for
(4.34),

c′x− (q∗)′∆ ≤ q′(r∗ = ∆) − (q∗)′∆ , (4.37)

and, in particular, forq = q∗,

c′x− (q∗)′∆ ≤ (q∗)′(r∗ + ∆) − (q∗)′∆ = (q∗)′r∗ ♦
Remark 1: We have shown that(p∗, q∗, r∗ are in long-term equilibrium iffq∗ is an optimum

solution to the dual (namely (4.34)) of (4.38):

Maximizec′x
subject toAx ≤ r∗

x ≥ 0 .
(4.38)

This relation betweenp∗, q∗, r∗ has a very nice economic interpretation. Recall thatc = B′p∗, i.e.,
cj = p∗1b1j +p∗2b2j + . . .+p∗kbkj. Now bij is the amount of theith output produced by operating the
jth activity at a unit levelxj = 1. Hence,cj is the revenue per unit level operation of thejth activity
so thatc′x is the revenue when then activities are operated at levelsx. On the other hand if thejth
activity is operated at levelxj = 1, it uses an amountaij of the ith input. If theith input is valued at

a∗i , then the input cost of operating atxj = 1, is
m∑
i=1

qiaij, so that the input cost of operating then

activities at levelsx is (A′q∗)′ = (q∗)′Ax. Thus, ifx∗ is the optimum activity levels for (4.38) then
the output revenue isc′x∗ and the input cost is(q∗)′Ax∗. But from (4.16),(q∗)′(Ax∗ − r∗) = 0 so
that

c′x∗ = (q∗)′r∗ , (4.39)

i.e., at the optimum activity levels, in equilibrium, total revenues = total cost of input supplies. In
fact, we can say even more. From (4.15) we see that ifx=astj > 0 then

cj =
m∑
i=1

q∗i aij ,

i.e., at the optimum, the revenue of an activity operated at a positive level = input cost of that activity.
Also if

cj <

m∑
i=1

q∗i aij,

thenx∗j = 0, i.e., if the revenue of an activity is less than its input cost, then at the optimum it is
operated at zero level. Finally, again from (4.15), if an equilibrium the optimumith input supplyr∗i
is greater than the optimum demand for theith input,
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r∗i >
n∑
j=1

aijx
∗
j ,

thenq∗i = 0, i.e., the equilibrium price of an input which is in excess supply must be zero, in other
words it must be a free good.

Remark 2:Returning to the short-term decision problem (4.33), suppose that
(λ∗1, . . . , λ∗` , λ

∗
`+1, . . . , λ

∗
m) is an optimum solution of the dual of (4.33). Suppose that the market

prices of inputs1, . . . , ` areq1, . . . , q`. Let us denote byM(∆1, . . . ,∆`) the optimum value of
(4.33) when the amounts of the inputs in fixed supply arer∗1 + ∆1, . . . , r

∗
` + ∆`. Then if

(∂M/∂∆i)|∆=0 exists, we can see from (4.22) that it is always profitable to increase theith input
by buying some additional amount at priceqi if λ∗i > qi, and conversely it is profitable to sell some
of the ith input at priceqi if λ∗i < qi. Thusλ∗i can be interpreted as the firm’s internal valuation of
the ith input or the firm’simputed or shadow priceof the ith input. This interpretation has wide
applicability, which we mention briefly. Often engineering design problems can be formulated as
LPs of the form (4.10) or (4.19), where some of the coefficientsbi are design parameters. The
design procedure is to fix these parameters at some nominal valueb∗i , and carry out the
optimization problem. Suppose the resulting optimal dual variables areλ∗i . then we see (assuming
differentiability) that it is worth increasingb∗i if the unit cost of increasing this parameter is less
thanλ∗i , and it is worth decreasing this parameter if the reduction in total cost per unit decrease is
greater thanλ∗i .

4.4.4 Long-term equilibrium of a competitive, capitalist economy.

The profit-maximizing behavior of the firm presented above is one of the two fundamental building
blocks in the equilibrium theory of a competitive, capitalist economy. Unfortunately we cannot
present the details here. We shall limit ourselves to a rough sketch. We think of the economy as
a feedback process involving firms and consumers. Let us suppose that there are a total ofh com-
modities in the economy including raw materials, intermediate and capital goods, labor, and finished
products. By adding zero rows to the matrices(A,B) characterizing a firm we can suppose that all
theh commodities are possible inputs and all theh commodities are possible outputs. Of course,
for an individual firm most of the inputs and most of the outputs will be zero. the sole purpose for
making this change is that we no longer need to distinguish between prices of inputs and prices of
outputs. We observe the economy starting at timeT . At this time there exists within the economy
an inventory of the various commodities which we can represent by a vectorω = (ω1, . . . , ωh) ≥ 0.
ω is that portion of the outputs produced prior toT which have not been consumed up toT . We are
assuming that this is a capitalist economy, which means that the ownership ofω is divided among
the various consumersj = 1, . . . , J . More precisely, thejth consumer owns the vector of commodi-

tiesω(j) ≥ 0, and
J∑
j=1

ω(j) = ω. We are including inω(j) the amount of his labor services which

consumerj is willing to sell. Now suppose that at timeT the prevailing prices of theh commodities
areλ = (λ1, . . . , λh)′ ≥ 0. Next, suppose that the managers of the various firms assume that the
pricesλ are not going to change for a long period of time. Then, from our previous analysis we
know that the manager of theith firm will plan to buy input suppliesr(i) ≥ 0, r(i) ∈ Rh, such



46 CHAPTER 4. LINEAR PROGRAMMING

that(λ, r(i)) is in long term equilibrium, and he will plan to produce an optimum amount, sayy(i).
Herei = 1, 2, . . . , I, whereI is the total number of firms. We know thatr(i) andy(i) depend on
λ, so that we explicitly writer(i, λ), y(i, λ). We also recall that (see (4.38))

λ′r(i, λ) = λ′y(i, λ) , 1 ≤ i ≤ I . (4.40)

Now the ith manager can buyr(i) from only two sources: outputs from other firms, and the con-
sumers who collectively ownω. Similarly, theith manager can sell his planned outputy(i) either as
input supplies to other firms or to the consumers. Thus, the net supply offered for sale to consumers
is S(λ), where

S(λ) =
J∑
j=1

ω(j) +
I∑
i=1

y(i, λ) −
i∑
i=1

r(i, λ) . (4.41)

We note two important facts. First of all, from (4.40), (4.41) we immediately conclude that

λ′S(λ) =
J∑
j=1

λ′ω(j) , (4.42)

that is the value of the supply offered to consumers is equal to the value of the commodities (and
labor) which they own. The second point is that there is no reason to expect thatS(λ) ≥ 0.

Now we come to the second building block of equilibrium theory. The value of thejth consumer’s
possessions isλ′ω(j). The theory assumes that he will plan to buy a set of commoditiesd(j) =
(d1(j), . . . , dh(j)) ≥ 0 so as to maximize his satisfaction subject to the constraintλ′d(j) = λ′ω(j).
Here alsod(j) will depend onλ, so we writed(j, λ). If we add up the buying plans of all the
consumers we obtain the total demand

D(λ) =
J∑
j=1

d(j, λ) ≥ 0 , (4.43)

which also satisfies

λ′D(λ) =
J∑
j=1

λ′ω(j) . (4.44)

The most basic question of equilibrium theory is to determine conditions under which there exists a
price vectorλE such that the economy is in equilibrium,i.e., S(λE) = D(λE), because if such an
equilibrium priceλE exists, then at that price the production plans of all the firms and the buying
plan of all the consumers can be realized. Unfortunately we must stop at this point since we cannot
proceed further without introducing some more convex analysis and the fixed point theorem. For
a simple treatment the reader is referred to (Dorfman, Samuelson, and Solow [1958], Chapter 13).
For a much more general mathematical treatment see (Nikaido [1968], Chapter V).

4.5 Miscellaneous Comments
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4.5.1 Some mathematical tricks.

It is often the case in practical decision problems that the objective is not well-defined. There may
be a number of plausible objective functions. In our LP framework this situation can be formulated
as follows. The constraints are given as usual byAx ≤ b, x ≥ 0. However, there are, say,k
objective functions(c1)′x, . . . , (ck)′x. It is reasonable then to define a single objective function
f0(x) by f0(x) = minimum{(c1)′x, (c2)′x, . . . , (ck)′x}, so that we have the decision problem,

Maximizef0(x)
subject toAx ≤ b, x ≥ 0 .

(4.45)

This isnot a LP sincef0 is not linear. However, the following exercise shows how to transform
(4.45) into an equivalent LP.

Exercise 1:Show that (4.45) is equivalent to (4.46) below, in the sense thatx∗ is optimal for (4.45)
iff (x∗, y∗) = (x∗, f0(x∗)) is optimal for (4.46).

Maximizey
subject toAx ≤ b, x ≤ 0

y ≤ (ci)′x , 1 ≤ i ≤ k .
(4.46)

Exercise 1 will also indicate how to do Exercise 2.
Exercise 2:Obtain an equivalent LP for (4.47):

Maximize
n∑
j=1

ci(xi)

subject toAx ≤ b, x ≤ 0 ,

(4.47)

whereci : R→ R are concave, piecewise-linear functions of the kind shown in Figure 4.3.

The above-given assumption of the concavity of theci is crucial. In the next exercise, the inter-
pretation of “equivalent” is purposely left ambiguous.

Exercise 3:Construct an example of the kind (4.47), where theci are piecewise linear (but not
concave), and such that there is no equivalent LP.

It turns out however, that even if theci are not concave, an elementary modification of the Simplex
algorithm can be given to obtain a “local” optimal decision. See (Miller [1963]).

4.5.2 Scope of linear programming.

LP is today the single most important optimization technique. This is because many decision prob-
lems can be adequately formulated as LPs, and, given the capabilities of modern computers, the
Simplex method (together with its variants) is an extremely powerful technique for solving LPs in-
volving thousands of variables. To obtain a feeling for the scope of LP we refer the reader to the
book by one of the originators of LP (Dantzig [1963]).
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ci(xi)

xi

Figure 4.3: A function of the form used in Exercise 2.



Chapter 5

OPTIMIZATION OVER SETS
DEFINED BY INEQUALITY
CONSTRAINTS: NONLINEAR
PROGRAMMING

In many decision-making situations the assumption of linearity of the constraint inequalities in LP
is quite restrictive. The linearity of the objective function is not restrictive as shown in the first
exercise below. In Section 1 we present the general nonlinear programming problem (NP) and
prove the Kuhn-Tucker theorem. Section 2 deals with Duality theory for the case where appropriate
convexity conditions are satisfied. Two applications are given. Section 3 is devoted to the important
special case of quadratic programming. The last section is devoted to computational considerations.

5.1 Qualitative Theory of Nonlinear Programming

5.1.1 The problem and elementary results.

The general NP is a decision problem of the form:

Maximizef0(x)
subject to(x) ≤ 0 , i = 1, . . . ,m,

(5.1)

wherex ∈ Rn, fi : Rn → R, i = 0, 1, . . . ,m, are differentiable functions. As in Chapter 4,
x ∈ Rn is said to be afeasible solutionif it satisfies the constraints of (5.1), andΩ ⊂ Rn is the
subset of all feasible solutions;x∗ ∈ Ω is said to be anoptimal decisionor optimal solutionif
f0(x∗) ≥ f0(x) for x ∈ Ω. From the discussion in 4.1.2 it is clear that equality constraints and sign
constraints on some of the components ofx can all be transformed into the form (5.1). The next
exercise shows that we could restrict ourselves to objective functions which are linear; however, we
will not do this.

Exercise 1:Show that (5.2), with variablesy ∈ R,x ∈ Rn, is equivalent to (5.1):

49
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Maximizey
subject tofi(x) ≤ 0, 1 ≤ i ≤ m, andy − f0(x) ≤ 0 .

(5.2)

Returning to problem (5.1), we are interested in obtaining conditions which any optimal decision
must satisfy. The argument parallels very closely that developed in Exercise 1 of 4.1 and Exercise 1
of 4.2. The basic idea is to linearize the functionsfi in a neighborhood of an optimal decisionx∗.

Definition: Let x be a feasible solution, and letI(x) ⊂ {1, . . . ,m} be such thatfi(x) = 0 for
ı ∈ I(x), fi(x) < 0 for i 6∈ I(x). (The setI(x) is called the set ofactiveconstraints at x.)
Definition: (i) Let x ∈ Ω. A vectorh ∈ Rn is said to be anadmissible direction forΩ at x if there
exists a sequencexk, k = 1, 2, . . . , in Ω and a sequence of numbersεk, k = 1, . . . , with εk > 0
for all k such that

lim
k→∞

xk = x ,

lim
k→∞

1
εk (xk − x) = h .

(ii) Let C(Ω, x) = {h|h is an admissible direction forΩ atx}. C(Ω, x) is called thetangent cone
of Ω at x. LetK(Ω, x) = {x + h|h ∈ C(Ω, x)}. (See Figures 5.1 and 5.2 and compare them with
Figures 4.1 and 4.2.)

If we takexk = x andεk = 1 for all k, we see that0 ∈ C(Ω, x) so that the tangent cone is always
nonempty. Two more properties are stated below.

Exercise 2:(i) Show thatC(Ω, x) is acone, i.e.,if h ∈ C(Ω, x) andθ ≥ 0, thenθh ∈ C(Ω, x).
(ii) Show thatC(Ω, x) is a closed subset ofRn. (Hint for (ii): Form = 1, 2, . . . , let hm and
{xmk, εmk > 0}∞k=1 be such thatxmk → x and(1/εmk)(xmk − x) → hm ask → ∞. Suppose
thathm → h asm→ ∞. Show that there exist subsequences{xmkm , εmkm}∞m=1 such that
xmkm → x and(1/εmkm)(xmkm − x) → h asm→ ∞.)

In the definition ofC(Ω, x) we made no use of the particular functional description ofΩ. The
following elementary result is more interesting in this light and should be compared with (2.18) in
Chapter 2 and Exercise 1 of 4.1.

Lemma 1:Supposex∗ ∈ Ω is an optimum decision for (5.1).
Then

f0x(x∗)h ≤ 0 for all h ∈ C(Ω, x∗) . (5.3)

Proof: Let xk ∈ Ω, εk > 0, k = 1, 2, 3, . . . , be such that
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,

P

{x|f3(x) = 0}

Q

x∗

direction of
increasing

payoff

π(k) ={x|f0(x) = k}

{x|f1(x) = 0}
Ω

R

{x|f2(x) = 0}

Figure 5.1:Ω = PQR

lim
k→∞

xk = x∗ , lim
k→∞

1
εk (xk − x∗) = h . (5.4)

Note that in particular (5.4) implies

lim
k→∞

1
εk |xk − x∗| = |h| . (5.5)

Sincef0 is differentiable, by Taylor’s theorem we have

f0(xk) = f0(x∗ + (xk − x∗)) = f0(x∗) + f0x(x∗)(xk − x∗) + o(|xk − x∗|) . (5.6)

Sincexk ∈ Ω, andx∗ is optimal, we havef0(xk) ≤ f0(x∗), so that

0 ≥ f0x(x∗)
(xk−x∗)

εk + o(|xk−x∗|)
εk .

Taking limits ask → ∞, using (5.4) and (5.5), we can see that

0 ≥

=

lim
k→∞
f0x(x∗)h. ♦

f0x(x∗) (xk−x∗)
εk

+ lim
k→∞

o(|xk−x∗|)
|xk−x∗| lim

k→∞
|xk−x∗|
εk
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K(Ω, x∗)

0

C(Ω, x∗)

Figure 5.2:C(Ω, x∗) is the tangent cone ofΩ atx∗.

The basic problem that remains is to characterize the setC(Ω, x∗) in terms of the derivatives of the
functionsfi. Then we can apply Farkas’ Lemma just as in Exercise 1 of 4.2.

Lemma 2:Let x∗ ∈ Ω. Then

C(Ω, x∗) ⊂ {h|fix(x∗)h ≤ 0 for all i ∈ I(x∗)} . (5.7)

Proof: Let h ∈ Rn andxk ∈ Ω, εk > 0, k = 1, 2, . . . , satisfy (5.4). Sincefi is differentiable, by
Taylor’s theorem we have

fi(xk) = fi(x∗) + fix(x∗)(xk − x∗) + o(|xk − x∗|) .

Sincexk ∈ Ω, fi(xk) ≤ 0, and if i ∈ I(x∗), fi(x∗) = 0, so thatfi(xk) ≤ fi(x∗). Following the
proof of Lemma 1 we can conclude that0 ≥ fix(x∗)h. ♦

Lemma 2 gives us a partial characterization ofC(Ω, x∗). Unfortunately, in general the inclusion
sign in (5.7) cannot be reversed. The main reason for this is that the set{fix(x∗)|i ∈ I(x∗)} is not
in general linearly independent.
Exercise 3:Let x ∈ R2, f1(x1, x2) = (x1 − 1)3 + x2, andf2(x1, x2) = −x2. Let
(x∗1, x∗2) = (1, 0). ThenI(x∗) = {1, 2}. Show that
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C(Ω, x∗) 6= {h|fix(x∗)h ≤ 0 , i = 1, 2, }.
(Note that{f1x(x∗), f2x(x∗)} is not a linearly independent set; see Lemma 4 below.)

5.1.2 Kuhn-Tucker Theorem.

Definition: Let x∗ ∈ Ω. We say that theconstraint qualification(CQ) is satisfied atx∗ if

C(Ω, x) = {h|fix(x∗)h ≤ 0 for all i ∈ I(x∗)},

and we say that CQ is satisfied if CQ is satisfied at allx ∈ Ω. (Note that by Lemma 2C(Ω, x) is
always a subset of the right-hand side.)

Compare the next result with Exercise 2 of 4.2.

Theorem 1:(Kuhn and Tucker [1951]) Letx∗ be an optimum solution of (5.1), and suppose that
CQ is satisfied atx∗. Then there existλ∗i ≥ 0, for i ∈ I(x∗), such that

f0x(x∗) =
∑

i∈I(x∗)

λ∗i fix(x
∗) (5.8)

Proof: By Lemma 1 and the definition of CQ it follows thatf0x(x∗)h ≤ 0 wheneverfix(x∗)h ≤ 0
for all i ∈ I(x∗). By the Farkas’ Lemma of 4.2.1 it follows that there existλ∗i ≥ 0 for i ∈ I(x∗)
such that (5.8) holds. ♦

In the original formulation of the decision problem we often have equality constraints of the form
rj(x) = 0, which get replaced byrj(x) ≤ 0,−rj(x) ≤ 0 to give the form (5.1). It is convenient in
application to separate the equality constraints from the rest. Theorem 1 can then be expressed as
Theorem 2.

Theorem 2:Consider the problem (5.9).

Maximizef0(x)
subject tofi(x) ≤ 0 , i = 1, . . . ,m,

rj(x) = 0 , j = 1, . . . , k .
(5.9)

Letx∗ be an optimum decision and suppose that CQ is satisfied atx∗. Then there existλ∗i ≥ 0, i =
1, . . . ,m, andµ∗j , j = 1, . . . , k such that

f0x(x∗) =
m∑
i=1

λ∗i fix(x
∗) +

k∑
j=1

µ∗jrjx(x
∗) , (5.10)

and

λ∗i = 0 wheneverfi(x∗) < 0 . (5.11)

Exercise 4:Prove Theorem 2.
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An alternative form of Theorem 1 will prove useful for computational purposes (see Section 4).
Theorem 3:Consider (5.9), and suppose that CQ is satisfied at an optimal solutionx∗. Define
ψ : Rn → R by

ψ(h) = max{−f0x(x∗)h, f1(x∗) + f1x(x∗)h, . . . , fm(x∗) + fmx(x∗)h} ,
and consider the decision problem

Minimize ψ(h)
subject to−ψ(h) − f0x(x∗)h ≤ 0,
−ψ(h) + fi(x∗) + fix(x∗)h ≤ 0 , 1 ≤ i ≤ m

−1 ≤ hi ≤ 1 , i = 1, . . . , n .

(5.12)

Thenh = 0 is an optimal solution of (5.12).

Exercise 5:Prove Theorem 3. (Note that by Exercise 1 of 4.5, (5.12) can be transformed into a
LP.)
Remark:For problem (5.9) define theLagrangian functionL:

(x1, . . . , xn;λ1, . . . , λm;µ1, . . . , µk) 7→ f0(x) −
m∑
i=1

λifi(x) −
k∑
j=1

µjrj(x).

Then Theorem 2 is equivalent to the following statement: ifCQ is satisfied andx∗ is optimal, then
there existλ∗ ≥ 0 andµ∗ such thatLx(x∗, λ∗, µ∗) = 0 andL(x∗, λ∗, µ∗) ≤ L(x∗, λ, µ) for all
λ ≥ 0, µ.

There is a very important special case when the necessary conditions of Theorem 1 are also
sufficient. But first we need some elementary properties of convex functions which are stated as an
exercise. Some additional properties which we will use later are also collected here.
Recall the definition of convex and concave functions in 4.2.3.

Exercise 6:LetX ⊂ Rn be convex. Leth : X → R be a differentiable function. Then
(i) h is convex iffh(y) ≥ h(x) + hx(x)(y − x) for all x, y, in X,
(ii) h is concave iffh(y) ≤ h(x) + hx(x)(y − x) for all x, y in X,
(iii) h is concave and convex iffh is affine, i.e.h(x) ≡ α+ b′x for some
fixedα ∈ R, b ∈ Rn.
Suppose thath is twice differentiable. Then
(iv) h is convex iffhxx(x) is positive semidefinite for allx in X,
(v) h is concave iffhxx(x) is negative semidefinite for allx in X,
(vi) h is convex and concave iffhxx(x) ≡ 0.
Theorem 4:(Sufficient condition) In (5.1) suppose thatf0 is concave andfi is convex for
i = 1, . . . ,m. Then
(i) Ω is a convex subset ofRn, and
(ii) if there existx∗ ∈ Ω, λ∗i ≥ 0, i ∈ I(x∗), satisfying (5.8), thenx∗ is an optimal solution of
(5.1).
Proof:
(i) Let y, z be inΩ so thatfi(y) ≤ 0, fi(z) ≤ 0 for i = 1, . . . ,m. Let 0 ≤ θ ≤ 1. Sincefi is
convex we have
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fi(θy + (1 − θ)z) ≤ θfi(y) + (1 − θ)fi(z) ≤ 0 , 1 ≤ i ≤ m,

so that(θy + (1 − θ)z) ∈ Ω, henceΩ is convex.
(ii) Let x ∈ Ω be arbitrary. Sincef0 is concave, by Exercise 6 we have

f0(x) ≤ f0(x∗) + f0x(x∗)(x− x∗) ,

so that by (5.8)

f0(x) ≤ f0(x∗) +
∑

i∈I(x∗)

λ∗i fix(x
∗)(x− x∗) . (5.13)

Next,fi is convex so that again by Exercise 6,

fi(x) ≥ fi(x∗) + fix(x∗)(x− x∗) ;

but fi(x) ≤ 0, andfi(x∗) = 0 for i ∈ I(x∗), so that

fix(x∗)(x− x∗) ≤ 0 for i ∈ I(x∗) . (5.14)

Combining (5.14) with the fact thatλ∗i ≥ 0, we conclude from (5.13) thatf0(x) ≤ f0(x∗), so that
x∗ is optimal. ♦
Exercise 7:Under the hypothesis of Theorem 4, show that the subsetΩ∗ of Ω, consisting of all the
optimal solutions of (5.1), is a convex set.
Exercise 8:A functionh : X → R defined on a convex setX ⊂ Rn is said to bestrictly convex if
h(θy + (1 − θ)z) < θh(y) + (1 − θ)h(z) whenever0 < θ < 1 andy, z are inX with y 6= z. h is
said to be strictly concave if−h is strictly convex. Under the hypothesis of Theorem 4, show that
an optimal solution to (5.1) is unique (if it exists) if eitherf0 is strictly concave or if the
fi, 1 ≤ i ≤ m, are strictly convex. (Hint: Show that in (5.13) we have strict inequality ifx 6= x∗.)

5.1.3 Sufficient conditions for CQ.

As stated, it is usually impractical to verify if CQ is satisfied for a particular problem. In this
subsection we give two conditions which guarantee CQ. These conditions can often be verified in
practice. Recall that a functiong : Rn → R is said to beaffine if g(x) ≡ α + b′x for some fixed
α ∈ R andb ∈ Rn.

We adopt the formulation (5.1) so that

Ω = {x ∈ Rn|fi(x) ≤ 0 , 1 ≤ i ≤ m} .

Lemma 3:Supposex∗ ∈ Ω and suppose there existsh∗ ∈ Rn such that for eachi ∈ I(x∗), either
fix(x∗)h∗ < 0, or fix(x∗)h∗ = 0 andfi is affine. Then CQ is satisfied atx∗.
Proof: Let h ∈ Rn be such thatfix(x∗)h ≤ 0 for i ∈ I(x∗). Let δ > 0. We will first show that
(h+ δh∗) ∈ C(Ω, x∗). To this end letεk > 0, k = 1, 2, . . . , be a sequence converging to0 and set
xk = x∗ + εk(h+ δh∗). Clearlyxk converges tox∗, and(1/εk)(xk − x∗) converges to(h+ δh∗).
Also for i ∈ I(x∗), if fix(x∗)h < 0, then

fi(xk) = fi(x∗) + εkfix(x∗)(h+ δh∗) + o(εk|h+ δh∗|)
≤ δεkfix(x∗)h∗ + o(εk|h+ δh∗|)
< 0 for sufficiently largek ,

whereas fori ∈ I(x∗), if fi is affine, then
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fi(xk) = fi(x∗) + εkfix(x∗)(h+ δh∗) ≤ 0 for all k .

Finally, for i 6∈ I(x∗) we havefi(x∗) < 0, so thatfi(xk) < 0 for sufficiently largek. Thus we
have also shown thatxk ∈ Ω for sufficiently largek, and so by definition(h + δh∗) ∈ C(Ω, x∗).
Sinceδ > 0 can be arbitrarily small, and sinceC(Ω, x∗) is a closed set by Exercise 2, it follows that
h ∈ C(Ω, x∗). ♦

Exercise 9:Supposex∗ ∈ Ω and suppose there existsx̂ ∈ Rn such that for eachi ∈ I(x∗), either
fi(x∗) < 0 andfi is convex, orfi(x̂) ≤ 0 andfi is affine. Then CQ is satisfied atx∗. (Hint: Show
thath∗ = x̂− x∗ satisfies the hypothesis of Lemma 3.)
Lemma 4:Supposex∗ ∈ Ω and suppose there existsh∗ ∈ Rn such thatfix(x∗)h∗ ≤ 0 for
i ∈ I(x∗), and{fix(x∗)|i ∈ I(x∗), fix(x∗)h∗ = 0} is a linearly independent set. Then CQ is
satisfied atx∗.
Proof: Let h ∈ Rn be such thatfix(x∗)h ≤ 0 for all i ∈ I(x∗). Let δ > 0. We will show that
(h+ δh∗) ∈ C(Ω, x∗). LetJδ = {i|i ∈ I(x∗), fix(x∗)(h + δh∗) = 0}, consist ofp elements.
ClearlyJδ ⊂ J = {i|i ∈ I(x∗), fix(x∗)h∗ = 0}, so that{fix(x∗, u∗)|i ∈ Jδ} is linearly
independent. By the Implicit Function Theorem, there existρ > 0, an open setV ⊂ Rn containing
x∗ = (w∗, u∗), and a differentiable functiong : U → Rp, whereU = {u ∈ Rn−p||u− u∗| < ρ},
such that

fi(w, u) = 0, i ∈ Jδ , and(w, u) ∈ V

iff

u ∈ U, andw = g(u) .

Next we partitionh, h∗ ash = (ξ, η), h∗ = (ξ∗, η∗) corresponding to the partition ofx = (w, u).
Let εk > 0, k = 1, 2 . . . , be any sequence converging to0, and setuk = u∗ + εk(η + δη∗), wk =
g(uk), and finallyxk = (sk, uk).

We note thatuk converges tou∗, sowk = g(uk) converges tow∗ = g(u∗). Thus,xk converges
to x∗. Now (1/εk)(xk −x∗) = (1/εk)(wk −w∗, uk −u∗) = (1/εk)(g(uk)− g(u∗), εk(η+ δη∗)).
Sinceg is differentiable, it follows that(1/εk)(xk − x∗) converges to(gu(u∗)(η + δη∗), η + δη∗).
But for i ∈ Jδ we have

0 = fix(x∗)(h + δh∗) = fiw(x∗)(ξ + δξ∗) + fiu(x∗)(η + δη∗) . (5.15)

Also, for i ∈ Jδ , 0 = fi(g(u), u) for u ∈ U so that0 = fiw(x∗)gu(u∗) + fiu(x∗), and hence

0 = fiw(x∗)gu(u∗)(η + δη∗) + fiu(x∗)(η + δη∗) . (5.16)

If we compare (5.15) and (5.16) and recall that{fiw(x∗)|i ∈ Jδ} is a basis inRp we can conclude
that(ξ + δξ∗) = gu(u∗)(η + δη∗) so that(1/εk)(xk − x∗) converges to(h+ hδh∗).

It remains to show thatxk ∈ Ω for sufficiently largek. First of all, for i ∈ Jδ , fi(xk) =
fi(g(uk), uk) = 0, whereas fori 6∈ Jδ , i ∈ I(x∗),

fi(xk) = fi(x∗) + fix(x∗)(xk − x∗) + o(|xk − x∗|)
fi(x∗) + εkfix(x∗)(h+ δh∗) + o(εk) + o(|xk − x∗|),
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and sincefi(x∗) = 0 whereasfix(x∗)(h + δh∗) < 0, we can conclude thatfi(xk) < 0 for suffi-
ciently largek. Thus,xk ∈ Ω for sufficiently largek. Hence,(h+ δh∗) ∈ C(Ω, x∗).

To finish the proof we note thatδ > 0 can be made arbitrarily small, andC(Ω, x∗) is closed by
Exercise 2, so thath ∈ C(Ω, x∗). ♦

The next lemma applies to the formulation (5.9). Its proof is left as an exercise since it is very
similar to the proof of Lemma 4.
Lemma 5: Supposex∗ is feasible for (5.9) and suppose there existsh∗ ∈ Rn such that the set
{fix(x∗)|i ∈ I(x∗), fix(x∗)h∗ = 0}⋃{rjx(x∗)|j = 1, . . . , k} is linearly independent, andfix(x∗)h∗ ≤
0 for i ∈ I(x∗), rjx(x∗)h∗ = 0 for 1 ≤ j ≤ k. Then CQ is satisfied atx∗.

Exercise 10:Prove Lemma 5

5.2 Duality Theory

Duality theory is perhaps the most beautiful part of nonlinear programming. It has resulted in many
applications within nonlinear programming, in terms of suggesting important computational algo-
rithms, and it has provided many unifying conceptual insights into economics and management
science. We can only present some of the basic results here, and even so some of the proofs are
relegated to the Appendix at the end of this Chapter since they depend on advanced material. How-
ever, we will give some geometric insight. In 2.3 we give some application of duality theory and in
2.2 we refer to some of the important generalizations. The results in 2.1 should be compared with
Theorems 1 and 4 of 4.2.1 and the results in 4.2.3.

It may be useful to note in the following discussion that most of the results do not require differ-
entiability of the various functions.

5.2.1 Basic results.

Consider problem (5.17) which we call theprimal problem:

Maximizef0(x)
subject tofi(x) ≤ b̂i , 1 ≤ i ≤ m

x ∈ X ,

(5.17)

wherex ∈ Rn, fi : Rn → R, 1 ≤ i ≤ m, are givenconvexfunctions, f0 : Rn → R is a
givenconcavefunction,X is a givenconvexsubset ofRn and b̂ = (b̂1, . . . , b̂m)′ is a given vector.
For convenience, letf = (f1, . . . , fm)′ : Rn → Rm. We wish to examine the behavior of the
maximum value of (5.17) aŝb varies. So we define

Ω(b) = {x|x ∈ X, f(x) ≤ b}, B = {b|Ω(b) 6= φ},

and

M : B → R
⋃{+∞} byM(b) = sup{f0(x)|x ∈ X, f(x) ≤ b}

= sup{f0(x)|x ∈ Ω(b)} ,

so that in particular ifx∗ is an optimal solution of (5.17) thenM(b̂) = f0(x̂). We need to consider
the following problem also. Letλ ∈ Rm, λ ≥ 0, be fixed.

Maximize f0(x) − λ′(f(x) − b̂)
subject tox ∈ X ,

(5.18)
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and define

m(λ) = sub{f0(x) − λ′(f(x) − b̂)|x ∈ X} .

Problem (5.19) is called thedual problem:

Minimize m(λ)
subject toλ ≥ 0 .

(5.19)

Letm∗ = inf {m(λ)|λ ≥ 0}.
Remark 1:The setX in (5.17) is usually equal toRn and then, of course, there is no reason to
separate it out. However, it is sometimes possible to include some of the constraints inX in such
a way that the calculation ofm(λ) by (5.18) and the solution of the dual problem (5.19) become
simple. For example see the problems discussed in Sections 2.3.1 and 2.3.2 below.
Remark 2:It is sometimes useful to know that Lemmas 1 and 2 below holdwithoutany convexity
conditions onf0, f,X. Lemma 1 shows that the cost function of the dual problem is convex which
is useful information since there are computation techniques which apply to convex cost functions
but not to arbitrary nonlinear cost functions. Lemma 2 shows that the optimum value of the dual
problem is always an upper bound for the optimum value of the primal.
Lemma 1:m : Rn+ → R

⋃{+∞} is a convex function. (HereRn+ = {λ ∈ Rn|λ ≥ 0}.)

Exercise 1:Prove Lemma 1.

Lemma 2:(Weak duality) Ifx is feasible for (5.17),i.e.,x ∈ Ω(b̂), and ifλ ≥ 0, then

f0(x) ≤M(b̂) ≤ m∗ ≤ m(λ) . (5.20)

Proof: Sincef(x) − b̂ ≤ 0, andλ ≥ 0, we haveλ′(f(x) − b̂) ≤ 0. So,

f0(x) ≤ f0(x) − λ′(f(x) − b̂), for x ∈ Ω(b̂), λ ≥ 0 .

Hence

f0(x) ≤ sup{f0(x)|x ∈ Ω(b̂)} = M(b̂)
≤ sup{f0(x) − λ′(f(x) − b̂)|x ∈ Ω(b̂)} and sinceΩ(b̂) ⊂ X,

≤ sup{f0(x) − λ′(f(x) − b̂)|x ∈ X} = m(λ) .

Thus, we have

f0(x) ≤M(b̂) ≤ m(λ) for x ∈ Ω(b̂), λ ≥ 0 ,

and sinceM(b̂) is independent ofλ, if we take the infimum with respect toλ ≥ 0 in the right-hand
inequality we get (5.20). ♦

The basic problem of Duality Theory is to determine conditions under whichM(b̂) = m∗ in
(5.20). We first give a simple sufficiency condition.

Definition: A pair (x̂, λ̂) with x̂ ∈ X, andλ̂ ≤ 0 is said to satisfy theoptimality conditionsif



5.2. DUALITY THEORY 59

x̂ is optimal solution of (5.18) withλ = λ̂, (5.21)

x̂ is feasible for (5.17),i.e., fi(x̂) ≤ b̂i for i = 1, . . . ,m , (5.22)

λ̂i = 0 whenfi(x̂) < b̂i, equivalently, λ̂′(f(x̂) − b̂) = 0. (5.23)

λ̂ ≥ 0 is said to be anoptimal price vectorif there isx̂ ∈ X such that(x̂, λ̂) satisfy the optimality
condition. Note that in this casêx ∈ Ω(b̂) by virtue of (5.22).

The next result is equivalent to Theorem 4(ii) of Section 1 ifX = Rn, andfi, 0 ≤ i ≤ m, are
differentiable.
Theorem 1:(Sufficiency) If(x̂, λ̂) satisfy the optimality conditions, then̂x is an optimal solution to
the primal,λ̂ is an optimal solution to the dual, andM(b̂) = m∗.
Proof: Let x ∈ Ω(b̂), so that̂λ′(f(x) − b̂) ≤ 0. Then

f0(x) ≤ f0(x) − λ̂′(f(x) − b̂)
≤ sup{f0(x) − λ̂′(f(x) − b̂)|x ∈ X}
= f0(x̂) − λ̂′(f(x̂) − b̂) by (5.21)
= f0(x̂) by (5.23)

so thatx̂ is optimal for the primal, and hence by definitionf0(x̂) = M(b̂). Also

m(λ̂) = f0(x̂) − λ̂′(f(x̂) − b̂)
f0(x̂) = M(b̂) ,

so that from Weak Dualitŷλ is optimal for the dual. ♦
We now proceed to a much more detailed investigation.

Lemma 3:B is a convex subset ofRm, andM : B → R
⋃{+∞} is a concave function.

Proof: Let b, b̃ belong toB, let x ∈ Ω(b), x̃ ∈ Ω(b̃), let 0 ≤ θ ≤ 1. Then(θx + (1 − θ)x̃) ∈ X
sinceX is convex, and

fi(θx+ (1 − θ)x̃) ≤ θfi(x) + (1 − θ)fi(x̃)

sincefi is convex, so that

fi(θx+ (1 − θ)x̃) ≤ θb+ (1 − θ)b̃ , (5.24)

hence

(θx+ (1 − θ)x̃) ∈ Ω(θb+ (1 − θ)b̃)

and therefore,B is convex.
Also, sincef0 is concave,

f0(θx+ (1 − θ)x̃) ≥ θf0(x) + (1 − θ)f0(x̃) .
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Since (5.24) holds for allx ∈ Ω(b) andx̃ ∈ Ω(b̃) it follows that

M(θb+ (1 − θ)b̂) ≥ sup{f0(θx+ (1 − θ)x̃)|x ∈ Ω(b), x̃ ∈ Ω(b̃)}
≥ sup{f0(x)|x ∈ Ω(b)} + (1 − θ) sup{f0(x̃)|x̃ ∈ Ω(b̃)}
= θM(b) + (1 − θ)M(b̃). ♦

Definition: LetX ⊂ Rn and letg : X → R
⋃{∞,−∞}. A vectorλ ∈ Rn is said to be a

supergradient (subgradient)of g at x̂ ∈ X if

g(x) ≤ g(x̂) + λ′(x− x̂) for x ∈ X.
(g(x) ≥ g(x̂) + λ′(x− x̂) for x ∈ X.)

(See Figure 5-3.)

,
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b 6∈ B b̂ b

M is not stable at̂b

M(b)

M(b̂)

b̂ b

M is stable at̂b

M(b)
M(b̂) + λ′(b− b̂)

b̂ b

λ is a supergradient at̂b

Figure 5.3: Illustration of supergradient of stability.

Definition: The functionM : B → R
⋃{∞} is said to bestable at̂b ∈ B if there exists a real

numberK such that

M(b) ≤M(b̂) +K|b− b̂| for b ∈ B .

(In words,M is stable at̂b if M does not increase infinitely steeply in a neighborhood ofb̂. See
Figure 5.3.)

A more geometric way of thinking about subgradients is the following. Define the subsetA ⊂
R1+m by
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A = {(r, b)|b ∈ B, andr ≤M(b)} .

ThusA is the set lying ”below” the graph ofM . We callA the hypograph1 of M . SinceM is
concave it follows immediately thatA is convex (in fact these are equivalent statements).

Definition: A vector(λ0, λ1, . . . , λm) is said to be the normal to ahyperplane supporting A at a
point(r̂, b̂) if

λ0r̂ +
m∑
i=1

λib̂i ≥ λ0r +
m∑
i=1

λibi for all (r, b) ∈ A . (5.25)

(In words,A lies below the hyperplanêπ = {(r, b)|λ0r+
∑
λibi = λ0r̂+

∑
λibi}.) The supporting

hyperplane is said to benon-verticalif λ0 6= 0. See Figure 5.4.

Exercise 2:Show that if̂b ∈ B, b̃ ≥ b̂, andr̃ ≤M(b̂), thenb̃ ∈ B, M(b̃), and(r̃, b̃) ∈ A.
Exercise 3:Assume that̂b ∈ B, andM(b̂) <∞. Show that (i) ifλ = (λ1, . . . , λm)′ is a
supergradient ofM at b̂ thenλ ≥ 0, and(1,−λ1, . . . ,−λm)′ defines a non-vertical hyperplane
supportingA at (M(b̂), b̂), (ii) if (λ0,−λ1, . . . ,−λm)′ defines a hyperplane supportingA at
(M(b̂), b̂) thenλ0 ≥ 0, λi ≥ 0 for 1 ≤ i ≤ m; futhermore, if the hyperplane is non-vertical then
((λ1/λ0, . . . , (λm/λ0))′ is a supergradient ofM at b̂.

We will prove only one part of the next crucial result. The reader who is familiar with the
Separation Theorem of convex sets should be able to construct a proof for the second part based
on Figure 5.4, or see the Appendix at the end of this Chapter.

Lemma 4:(Gale [1967])M is stable at̂b iff M has a supergradient atb̂. Proof: (Sufficiency only)
Let λ be a supergradient atb̂, then

M(b) ≤M(b̂) + λ′(b− b̂)
≤M(b̂) + |λ||b− b̂| . ♦

The next two results give important alternative interpretations of supergradients.
Lemma 5:Suppose that̂x is optimal for (5.17). Then̂λ is a supergradient ofM at b̂ iff λ̂ is an
optimal price vector, and then(x̂, λ̂) satisfy the optimality conditions.
Proof: By hypothesis,f(x̂) = M(b̂), x̂ ∈ X, andf(x̂) ≤ b̂. Let λ̂ be a supergradient ofM at b̂.
By Exercise 2,(M(b̂), f(x̂)) ∈ A and by Exercise 3,̂λ ≥ 0 and

M(b̂) − λ̂′b̂ ≥M(b̂) − λ̂′f(x̂) ,

so thatλ̂′(f(x̂) − b̂) ≥ 0. But thenλ̂′(b̂ − f(x̂)) = 0, giving (5.23). Next letx ∈ X. Then
(f0(x), f(x)) ∈ A, hence again by Exercise 3

M(b̂) − λ̂′b̂ ≥ f0(x) − λ̂′f(x) .

Sincef0(x̂) = M(b̂), andλ̂′(f(x̂) − b̂) = 0, we can rewrite the inequality above as

1From the Greek “hypo” meaning below or under. This neologism contrasts with theepigraphof a function which is
the set lying above the graph of the function.
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π̂ is a non-vertical hyperplane supportingA at (M(b̂), b̂)

Figure 5.4: Hypograph and supporting hyperplane.

f0(x̂) + λ̂′(f(x̂) − b̂) ≥ f0(x) − λ̂′(f(x) − b̂) ,

so that (5.21) holds. It follows that(x̂, λ̂) satisfy the optimality conditions.
Conversely, supposêx ∈ X, λ̂ ≥ 0 satisfy (5.21), (5.22), and (5.23). Letx ∈ Ω(b), i.e.,

x ∈ X, f(x) ≤ b. Thenλ̂′(f(x) − b) ≤ 0 so that

f0(x) ≤ f0(x) λ̂′(f(x) − b)
= f0(x) − λ̂′(f(x) − b̂) + λ̂′(b− b̂)
≤ f0(x̂) − λ̂′(f(x̂) − b̂) + λ̂′(b− b̂) by (5.21)
= f0(x̂) + λ̂′(b− b̂) by (5.23)
= M(b̂) + λ̂′(b− b̂) .

Hence

M(b) = sup{f0(x)|x ∈ Ω(b)} ≤M(b̂) + λ̂′(b− b̂) ,

so thatλ̂′ is a supergradient ofM at b̂. ♦
Lemma 6:Suppose that̂b ∈ B, andM(b̂) < ∞. Thenλ̂ is a supergradient ofM at b̂ iff λ̂ is an
optimal solution of the dual (5.19) andm(λ̂) = M(b̂).
Proof: Let λ̂ be a supergradient ofM at b̂. Letx ∈ X. By Exercises 2 and 3
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M(b̂) − λ̂′b̂ ≥ f0(x) − λ̂′f(x)

or

M(b̂) ≥ f0(x) − λ̂′(f(x) − b̂) ,

so that

M(b̂) ≥ sup{f0(x) − λ̂′(f(x) − b̂)|x ∈ X} = m(λ̂) .

By weak duality (Lemma 2) it follows thatM(b̂) = m(λ̂) andλ̂ is optimal for (5.19).
Conversely supposêλ ≥ 0, andm(λ̂) = M(b̂). Then for anyx ∈ X

M(b̂) ≥ f0(x) − λ̂′(f(x) − b̂) ,

and if moreoverf(x) ≤ b, thenλ̂′(f(x) − b) ≤ 0, so that

M(b̂) ≥ f0(x) − λ̂′(f(x) − b̂) + λ̂′(f(x) − b)
= f0(x) − λ̂′b+ λ̂′b̂ for x ∈ Ω(b) .

Hence,

M(b) = sup{f0(x)|x ∈ Ω(b)} ≤M(b̂) + λ̂′(b− b̂) ,

so thatλ̂ is a supergradient. ♦
We can now summarize our results as follows.

Theorem 2:(Duality) Supposêb ∈ B, M(b̂) <∞, andM is stable at̂b. Then
(i) there exists an optimal solution̂λ for the dual, andm(λ̂) = M(b̂),
(ii) λ̂ is optimal for the dual iff̂λ is a supergradient ofM at b̂,
(iii) if λ̂ is anyoptimal solution for the dual, then̂x is optimal for the primal iff(x̂, λ̂) satisfy the
optimality conditions of (5.21), (5.22), and (5.23).

Proof: (i) follows from Lemmas 4,6. (ii) is implied by Lemma 6. The “if” part of (iii) follows from
Theorem 1, whereas the “only if” part of (iii) follows from Lemma 5. ♦
Corollary 1: Under the hypothesis of Theorem 2, ifλ̂ is an optimal solution to the dual then
(∂M+/∂bi)(b̂) ≤ λ̂i ≤ (∂M−/∂bi)(b̂).
Exercise 4:Prove Corollary 1. (Hint: See Theorem 5 of 4.2.3.)

5.2.2 Interpretation and extensions.

It is easy to see using convexity properties that, ifX = Rn andfi, 0 ≤ i ≤ m, are differentiable,
then the optimality conditions (5.21), (5.22), and (5.23) are equivalent to the Kuhn-Tucker condition
(5.8). Thus the condition of stability ofM at b̂ plays a similar role to the constraint qualification.
However, by Lemmas 4, 6 stability isequivalentto the existence of optimal dual variables, whereas
CQ is only asufficientcondition. In other words if CQ holds atx̂ thenM is stable at̂b. In particular,
if X = Rn and thefi are differentiable, the various conditions of Section 1.3 imply stability. Here
we give one sufficient condition which implies stability for the general case.
Lemma 7:If b̂ is in the interior ofB, in particular if there existsx ∈ X such thatfi(x) < b̂i for
1 ≤ i ≤ m, thenM is stable at̂b.
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The proof rests on the Separation Theorem for convex sets, and only depends on the fact thatM
is concave,M(b̂) < ∞ without loss of generality, and̂b is the interior ofB. For details see the
Appendix.

Much of duality theory can be given an economic interpretation similar to that in Section 4.4.
Thus, we can think ofx as the vector ofn activity levels,f0(x) the corresponding revenue,X as
constraints due to physical or long-term limitations,b as the vector of current resource supplies,
and finallyf(x) the amount of these resources used up at activity levelsx. The various convexity
conditions are generalizations of the economic hypothesis of non-increasing returns-to-scale. The
primal problem (5.17) is the short-term decision problem faced by the firm. Next, if the current
resources can be bought or sold at pricesλ̂ = (λ1, . . . , λm)′, the firm faces the decision problem
(5.18). If for a price system̂λ, an optimal solution of (5.17) also is an optimal solution for (5.18),
then we can interpret̂λ as a system ofequilibrium prices just as in 4.2. Assuming the realistic
condition b̂ ∈ B, M(b̂) < ∞ we can see from Theorem 2 and its Corollary 1 that there exists
an equilibrium price system iff(∂M+/∂bi)(b̂) < ∞, 1 ≤ i ≤ m; if we interpret(∂M+/∂bi)(b̂)
as the marginal revenue of theith resource, we can say that equilibrium prices exist iff marginal
productivities of every (variable) resource is finite. These ideas are developed in (Gale [1967]).

.

M(b)

A

bb̂

M(b̂)

Figure 5.5: IfM is not concave there may be no supporting hyperplane at(M(b̂), b̂).

Referring to Figure 5.3 or Figure 5.4, and comparing with Figure 5.5 it is evident that ifM is not
concave or, equivalently, if its hypographA is not convex, there may benohyperplane supportingA
at (M(b̂), b̂). This is the reason why duality theory requires the often restrictive convexity hypoth-
esis onX andfi. It is possible to obtain the duality theorem under conditions slightly weaker than
convexity but since these conditions are not easily verifiable we do not pursue this direction any fur-
ther (see Luenberger [1968]). A much more promising development has recently taken place. The
basic idea involved is to consider supportingA at (M(b̂), b̂) by (non-vertical) surfaceŝπ more gen-
eral than hyperplanes; see Figure 5.6. Instead of (5.18) we would then have more general problem
of the form (5.26):

Maximizef0(x) − F (f(x) − b̂)
subject tox ∈ X ,

(5.26)
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whereF : Rm → R is chosen so that̂π (in Figure 5.6) is the graph of the functionb 7→ M(b̂) −
F (b− b̂). UsuallyF is chosen from a class of functionsφ parameterized byµ = (µ1, . . . , µk) ≥ 0.
Then for each fixedµ ≥ 0 we have (5.27) instead of (5.26):

Maximizef0(x) − φ(µ; f(x) − b̂)
subject tox ∈ X .

(5.27)

.

M(b) π̂

A

bb̂

M(b̂)

Figure 5.6: The surfacêπ supportsA at (M(b̂), b̂).

If we let

ψ(µ) =sup{f0(x) − φ(µ; f(x) − b̂)|x ∈ X} .

then the dual problem is

Minimize ψ(µ)
subject toµ ≥ 0 ,

in analogy with (5.19).
The economic interpretation of (5.27) would be that if the prevailing (non-uniform) price system

is φ(µ; ·) then the resourcesf(x) − b̂ can be bought (or sold) for the amountφ(µ; f(x) − b̂). For
such an interpretation to make sense we should haveφ(µ; b) ≥ 0 for b ≥ 0, andφ(µ; b) ≥ φ(µ; b̃)
wheneverb ≥ b̃. A relatively unnoticed, but quite interesting development along these lines is
presented in (Frank [1969]). Also see (Arrow and Hurwicz [1960]).

For non-economic applications, of course, no such limitation onφ is necessary. The following
references are pertinent: (Gould [1969]), (Greenberg and Pierskalla [1970]), (Banerjee [1971]). For
more details concerning the topics of 2.1 see (Geoffrion [1970a]) and for a mathematically more
elegant treatment see (Rockafellar [1970]).

5.2.3 Applications.

Decentralized resource allocation.

Parts (i) and (iii) of Theorem 2 make duality theory attractive for computation purposes. In particular
from Theorem 2 (iii), if we have an optimal dual solutionλ̂ then the optimal primal solutions are
those optimal solutions of (5.18) forλ = λ̂ which also satisfy the feasibility condition (5.22) and
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the “complementary slackness” condition (5.23). This is useful because generally speaking (5.18)
is easier to solve than (5.17) since (5.18) has fewer constraints.

Consider a decision problem in a large system (e.g., a multi-divisional firm). The system is
made up ofk sub-systems (divisions), and the decision variable of theith sub-system is a vector
xi ∈ Rni , 1 ≤ i ≤ k. The sub-system has individual constraints of the formxi ∈ Xi wherexi is
a convex set. Furthermore, the sub-systems share some resources in common and this limitation is
expressed asf1(x1) + . . .+ fk(xk) ≤ b̂ wheref i : Rni → Rm are convex functions and̂b ∈ Rm

is the vector of available common resources. Suppose that the objective function of the large system
is additive,i.e. it is the formf1

0 (x1) + . . . + fk0 (xk) wheref i0 : Rni → R are concave functions.
Thus we have the decision problem (5.28):

Maximize
k∑
i=1

f i0(x
i)

subject toxi ∈ Xi , 1 ≤ i ≤ k,
k∑
i=1

f i(xi) ≤ b̂ .

(5.28)

Forλ ∈ Rm, λ ≥ 0, the problem corresponding to (5.19) is

Maximizef i0(x
i) − λ′f i(xi) − λ′(

k∑
i=1

f i(xi) − b̂)

subject toxi ∈ Xi , 1 ≤ i ≤ k ,

which decomposes intok separate problems:

Maximizef i0(x
i) − λ′f i(xi)

subject toxi ∈ Xi , 1 ≤ i ≤ k .
(5.29)

If we letmi(λ) = sup{f i0(xi)− λ′f i(xi)|xi ∈ Xi}, andm(λ) =
k∑
i=1

mi(λ) + λ′b̂, then the dual

problem is

Minimize m(λ) ,
subject toλ ≥ 0 .

(5.30)

Note that (5.29) may be much easier to solve than (5.28) because, first of all, (5.29) involves fewer
constraints, but perhaps more importantly the decision problems in (5.29) are decentralized whereas
in (5.28) all the decision variablesx1, . . . , xk are coupled together; in fact, ifk is very large it may
be practically impossible to solve (5.28) whereas (5.29) may be trivial if the dimensions ofxi are
small.

Assuming that (5.28) has an optimal solution and the stability condition is satisfied, we need to
find an optimal dual solution so that we can use Theorem 2(iii). For simplicity suppose that the
f i0, 1 ≤ i ≤ k, are strictly concave, and also suppose that (5.29) has an optimal solution for every
λ ≥ 0. Then by Exercise 8 of Section 1, for eachλ ≥ 0 there is a unique optimal solution of (5.29),
sayxi(λ). Consider the following algorithm.
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Step 1.Selectλ0 ≥ 0 arbitrary. Setp = 0, and go to Step 2.
Step 2. Solve (5.29) forλ = λp and obtain the optimal solutionxp = (x1(λp), . . . , xk(λp)).

Computeep =
k∑
i=1

f i(xi(λp)) − b̂. If ep ≥ 0, xp is feasible for (5.28) and can easily be seen to be

optimal.
Step 3.Setλp=1 according to

λp+1
i =

{
λpi if epi ≥ 0
λpi − dpepi if epi < 0

wheredp > 0 is chosena priori. Setp = p+ 1 and return to Step 3.
It can be shown that if the step sizesdp are chosen properly,xp will converge to the optimum

solution of (5.28). For more detail see (Arrow and Hurwicz [1960]), and for other decentralization
schemes for solving (5.28) see (Geoffrion [1970b]).

Control of water quality in a stream.

The discussion in this section is mainly based on (Kendrick,et al., [1971]). For an informal discus-
sion of schemes of pollution control which derive their effectiveness from duality theory see (Solow
[1971]). See (Dorfman and Jacoby [1970].)

Figure 5.7 is a schematic diagram of a part of a stream into whichn sources (industries and
municipalities) discharge polluting effluents. The pollutants consist of various materials, but for
simplicity of exposition we assume that their impact on the quality of the stream is measured in
terms of a single quantity, namely the biochemical oxygen demand (BOD) which they place on the
dissolved oxygen (DO) in the stream. Since the DO in the stream is used to breakdown chemically
the pollutants into harmless substances, the quality of the stream improves with the amount of
DO and decreases with increasing BOD. It is a well-advertized fact that if the DO drops below a
certain concentration, then life in the stream is seriously threatened; indeed, the stream can “die.”
Therefore, it is important to treat the effluents before they enter the stream in order to reduce the
BOD to concentration levels which can be safely absorbed by the DO in the stream. In this example
we are concerned with finding the optimal balance between costs of waste treatment and costs of
high BOD in the stream.

We first derive the equations which govern the evolution in time of BOD and DO in then areas
of the streams. The fluctuations of BOD and DO will be cyclical with a period of 24 hours. Hence,
it is enough to study the problem over a 24-hour period. We divide this period intoT intervals,
t = 1, . . . , T . During intervalt and in areai let
zi(t) = concentration of BOD measured in mg/liter,
qi(t) = concentration of DO measured in mg/liter,
si(t) = concentration of BOD of effluent discharge in mg/liter, and
mi(t) = amount of effluent discharge in liters.

The principle of conservation of mass gives us equations (5.31) and (5.32):

zi(t+ 1) − zi(t) = −αizi(t) + ψi−1zi−1(t)
vi

− ψizi(t)
vi

+ si(t)mi(t)
vi

, (5.31)

qi(t+ 1) − qi(t) = βi(qsi − qi(t)) + ψi−1qi−1(t)
vi

− ψiqi(t)
vi

+αizi(t) − ηivi, t = 1, . . . , T andi = 1, . . . ,N.
(5.32)
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Figure 5.7: Schematic of stream with effluent discharges.

Here,vi = volume of water in areai measured in liters,ψi = volume of water which flows from
areai to arei+1 in each period measured in liters.αi is the rate of decay of BOD per interval. This
decay occurs by combination of BOD and DO.βi is the rate of generation of DO. The increase in
DO is due to various natural oxygen-producing biochemical reactions in the stream and the increase
is proportional to(qs − qi) whereqs is the saturation level of DO in the stream. Finally,ηi is the
DO requirement in the bottom sludge. Thevi, ψi, αi, ηi, qs are parameters of the stream and are
assumed known. They may vary with the time intervalt. Also z0(t), q0(t) which are the concen-
trations immediately upstream from area 1 are assumed known. Finally, the initial concentrations
zi(1), qi(1), i = 1, . . . ,N are assumed known.

Now suppose that the waste treatment facility in areai removes in intervalt a fractionπi(t) of
the concentrationsi(t) of BOD. Then (5.31) is replaced by

zi(t+ 1) − zi(t) = −αizi(t) + ψizi−1

vi
− ψizi(t)

vi
+ (1−πi(t))si(t)mi(t)

vi
. (5.33)

We now turn to the costs associated with waste treatment and pollution. The cost of waste treat-
ment can be readily identified. In periodt theith facility treatsmi(t) liters of effluent with a BOD
concentrationsi(t) mg/liter of which the facility removes a fractionπi(t). Hence, the cost in period
t will be fi(πi(t), si(t),mi(t)) where the function must be monotonically increasing in all of its
arguments. We further assume thatf is convex.

The costs associated with increased amounts of BOD and reduced amounts of DO are much
more difficult to quantify since the stream is used by many institutions for a variety of purposes
(e.g., agricultural, industrial, municipal, recreational), and the disutility caused by a decrease in
the water quality varies with the user. Therefore, instead of attempting to quantify these costs let
us suppose that some minimum water quality standards are set. Letq be the minimum acceptable
DO concentration and let̄z be the maximum permissible BOD concentration. Then we face the
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following NP:

Maximize −
N∑
i=1

T∑
t=1

fi(πi(t), si(t),mi(t))

subject to (5.32), (5.33), and
−qi(t) ≤ −q , i = 1, . . . ,N ; t = 1, . . . , T,
zi(t) ≤ z̄ , i = 1, . . . ,N ; t = 1, . . . , T,
0 ≤ πi(t) ≤ 1 , i = 1, . . . ,N ; t = 1, . . . , T.

(5.34)

Suppose that all the treatment facilities are in the control of a single public agency. Then assuming
that the agency is required to maintain the standards(q, z̄) and it does this at a minimum cost it will
solve the NP (5.34) and arrive at an optimal solution. Let the minimum cost bem(q, z̄). But if
there is no such centralized agency, then the individual polluters may not (and usually do not) have
any incentive to cooperate among themselves to achieve these standards. Furthermore, it does not
make sense to enforce legally a minimum standardqi(t) ≥ q, zi(t) ≤ z̄ on every polluter since the
pollution levels in theith area depend upon the pollution levels on all the other areas lying upstream.
On the other hand, it may be economically and politically acceptable to tax individual polluters in
proportion to the amount of pollutants discharged by the individual. The question we now pose
is whether there exist tax rates such that if each individual polluter minimizes its own total cost
(i.e.,cost of waste treatment + tax on remaining pollutants), then the resulting water quality will be
acceptable and, furthermore, the resulting amount of waste treatment is carried out at the minimum
expenditure of resources (i.e.,will be an optimal solution of (5.34)).

It should be clear from the duality theory that the answer is in the affirmative. To see this let
wi(t) = (zi(t),−qi(t))′, letw(t) = (w1(t), . . . , wN (t)), and letw = (w(1), . . . , w(t)). Then we
can solve (5.32) and (5.33) forw and obtain

w = b+Ar , (5.35)

where the matrixA and the vectorb depend upon the known parameters and initial conditions, and
r is the NT-dimensional vector with components(1 − πi(t))si(t)mi(t). Note that the coefficients
of the matrix must be non-negative because an increase in any component ofr cannot decrease the
BOD levels and cannot increase the DO levels. Using (5.35) we can rewrite (5.34) as follows:

Maximize −
∑
i

∑
t

fi(πi(t), si(t),mi(t))

subject tob+Ar ≤ w̄ ,
0 ≤ πi(t) ≤ 1 , i = 1, . . . ,N ; t = 1, . . . , T,

(5.36)

where the2NT -dimensional vector̄w has its components equal to−q or z̄ in the obvious manner.
By the duality theorem there exists a2NT -dimensional vectorλ∗ ≥ 0, and an optimal solution
π∗i (t), i = 1, . . . ,N, t = 1, . . . , T , of the problem:

Maximize −
∑
i

∑
t

fi(πi(t), si(t),mi(t)) − λ∗′(b+Ar −w)

subject to0 ≤ πi(t) ≤ 1, i = 1, . . . ,N ; t = 1, . . . , T ,
(5.37)

such that{π∗i (t)} is also an optimal solution of (5.36) and, furthermore, the optimal values of (5.36)
and (5.37) are equal. If we letp∗ = A′λ∗ ≥ 0, and we write the components ofp∗ asp∗i (t) to match
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with the components(1−πi(t))si(t)mi(t) of r we can see that (5.37) is equivalent to the set ofNT
problems:

Maximize − fi(πi(t), si(t),mi(t)) − p∗i (t)(1 − πi(t))si(t)mi(t)
0 ≤ πi(t) ≤ 1 ,
i = 1, . . . ,N ; t = 1, . . . , T .

(5.38)

Thus,p∗i (t) is optimum tax per mg of BOD in areai during periodt.
Before we leave this example let us note that the optimum dual variable or shadow priceλ∗

plays an important role in a larger framework. We noted earlier that the quality standard(q, z̄)
was somewhat arbitrary. Now suppose it is proposed to change the standard in theith area during
periodt to q+∆qi(t) andz̄+∆zi(t). If the corresponding components ofλ∗ areλq∗i (t) andλz∗i (t),
then the change in the minimum cost necessary to achieve the new standard will be approximately
λq∗i (t)∆qi(t) + λz∗i (t)∆zi(t). This estimate can now serve as a basis in making a benefits/cost
analysis of the proposed new standard.

5.3 Quadratic Programming

An important special case of NP is the quadratic programming (QP) problem:

Maximizec′x− 1
2x

′Px
subject toAx ≤ b, x ≥ 0 ,

(5.39)

wherex ∈ Rn is the decision variable ,c ∈ Rn, b ∈ Rm are fixed,A is a fixedm× n matrix and
P = P ′ is a fixed positive semi-definite matrix.
Theorem 1:A vectorx∗ ∈ Rn is optimal for (5.39) iff there existλ∗ ∈ Rm, µ∗ ∈ Rn, such that

Ax∗ ≤ b, x∗ ≥ 0
c− Px∗ = A′λ∗ − µ∗, λ∗ ≥ 0, µ∗ ≥ 0 ,
(λ∗)′(Ax∗ − b) = 0 , (µ∗)′x∗ = 0 .

(5.40)

Proof: By Lemma 3 of 1.3, CQ is satisfied, hence the necessity of these conditions follows from
Theorem 2 of 1.2. On the other hand, sinceP is positive semi-definite it follows from Exercise 6
of Section 1.2 thatf0 : x 7→ c′x− 1/2 x′Px is a concave function, so that the sufficiency of these
conditions follows from Theorem 4 of 1.2. ♦

From (5.40) we can see thatx∗ is optimal for (5.39) iff there is a solution(x∗, y∗, λ∗, µ∗) to
(5.41), (5.42), and (5.43):

Ax+ ImY = b
−Px−A′λ+ Inµ = −c , (5.41)

x ≥ 0 y ≥ 0, λ ≥ 0, µ ≥ 0 , (5.42)

µ′x = 0 , λ′y = 0 . (5.43)

Suppose we try to solve (5.41) and (5.42) by Phase I of the Simplex algorithm (see 4.3.2). Then we
must apply Phase II to the LP:

Maximize −
m∑
i=1

zi −
n∑
j=1

ξj
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subject to
Ax+ Imy + z = b
−Px −A′λ+ Inµ + ξ = −c
x ≥ 0, y ≥ 0, λ ≥ 0, µ ≥ 0, z ≥ 0, ξ ≥ 0,

(5.44)

starting with a basic feasible solutionz = b, ξ = −c. (We have assumed, without loss of generality,
thatb ≥ 0 and−c ≥ 0.) If (5.41) and (5.42) have a solution then the maximum value in (5.44) is 0.
We have the following result.
Lemma 1:If (5.41), (5.42), and (5.43) have a solution, then there is an optimal basic feasible solution
of (5.44) which is also a solution f (5.41), (5.42), and (5.43).
Proof: Let x̂, ŷ, λ̂, µ̂ be a solution of (5.41), (5.42), and (5.43). Thenx̂, ŷ, λ̂, µ̂, ẑ = 0, ξ̂ = 0 is
an optimal solution of (5.44). Furthermore, from (5.42) and (5.43) we see that at most(n + m)
components of(x̂, ŷ, λ̂, µ̂) are non-zero. But then a repetition of the proof of Lemma 1 of 4.3.1 will
also prove this lemma. ♦

This lemma suggests that we can apply the Simplex algorithm of 4.3.2 to solve (5.44), starting
with the basic feasible solutionz = b, ξ = −c, in order to obtain a solution of (5.41), (5.42), and
(5.43). However, Step 2 of the Simplex algorithm must be modified as follows to satisfy (5.43):

If a variablexj is currently in the basis, do not considerµj as a candidate for entry into the basis;
if a variableyi is currently in the basis, do not considerλi as a candidate for entry into the basis. If
it not possible to remove thezi andξj from the basis, stop.

The above algorithm is due to Wolfe [1959]. The behavior of the algorithm is summarized below.
Theorem 2:SupposeP is positive definite. The algorithm will stop in a finite number of steps at an
optimal basic feasible solution(x̂, ŷ, λ̂, µ̂, ẑ, ξ̂) of (5.44). If ẑ = 0 andξ̂ = 0 then(x̂, ŷ, λ̂, µ̂) solve
(5.41), (5.42), and (5.43) and̂x is an optimal solution of (5.39). If̂z 6= 0 or ξ̂ 6= 0, then there is no
solution to (5.41), (5.42), (5.43), and there is no feasible solution of (5.39).

For a proof of this result as well as for a generalization of the algorithm which permits positive
semi-definiteP see (Cannon, Cullum, and Polak [1970], p. 159 ff).

5.4 Computational Method

We return to the general NP (5.45),

Maximizef0(x)
subject tofi(x) ≤ 0, i = 1, . . . ,m ,

(5.45)

wherex ∈ Rn, fi : Rn → R, 0 ≤ i ≤ m, are differentiable. LetΩ ⊂ Rn denote the set of
feasible solutions. For̂x ∈ Ω define the functionψ(x̂) : Rn → R by

ψ(x̂)(h) = max{−f0x(x̂)h, f1(x̂) + f1x(x̂)h, . . . , fm(x̂) + fmx(x̂)h}.

Consider the problem:

Minimize ψ(x̂)(h)
subject to− ψ(x̂)(h) − f0x(x̂)h ≤ 0 ,

−ψ(x̂)(h) + fi(x̂)fixh ≤ 0 ,
1 ≤ i ≤ m , −1 ≤ hj ≤ 1 , 1 ≤ j ≤ n .

(5.46)
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Figure 5.8:h(xk) is a feasible direction.

Call h(x̂) an optimum solution of (5.46) and leth0(x̂) = ψ(x̂)(h(x̂)) be the minimum value at-
tained. (Note that by Exercise 1 of 4.5.1 (5.46) can be solved as an LP.)

The following algorithm is due to Topkis and Veinott [1967].
Step 1.Findx0 ∈ Ω, setk = 0, and go to Step 2.
Step 2.Solve (5.46) for̂x = xk and obtainh0(xk), h(xk). If h0(xk) = 0, stop, otherwise go to Step
3.
Step 3.Compute an optimum solutionµ(xk) to the one-dimensional problem,

Maximizef0(xk + µh(xk)) ,
subject to(xk + µh(xk)) ∈ Ω, µ ≥ 0 ,

and go to Step 4.
Step 4.Setxk+1 = xk + µ(xk)h(xk), setk = k + 1 and return to Step 2.

The performance of the algorithm is summarized below.
Theorem 1:Suppose that the set

Ω(x0) = {x|x ∈ Ω, f0(x) ≥ f0(x0)}

is compact, and has a non-empty interior, which is dense inΩ(x0). Let x∗ be any limit point of
the sequencex0, x1, . . . , xk, . . . , generated by the algorithm. Then the Kuhn-Tucker conditions are
satisfied atx∗.

For a proof of this result and for more efficient algorithms the reader is referred to (Polak [1971]).
Remark:If h0(xk) < 0 in Step 2, then the directionh(xk) satisfiesf0x(xk)h(xk) > 0, andfi(xk)+
fix(xK)h(xk) < 0, 1 ≤ i ≤ m. For this reasonh(xk) is called a (desirable)feasible direction.
(See Figure 5.8.)
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5.5 Appendix

The proofs of Lemmas 4,7 of Section 2 are based on the following extremely important theorem
(see Rockafeller [1970]).
Separation theorem for convex sets.LetF,G be convex subsets ofRn such that the relative interiors
of F,G are disjoint. Then there existsλ ∈ Rn, λ 6= 0, andθ ∈ R such that

λ′g ≤ θ for all g ∈ G
λ′f ≥ θ for all f ∈ F .

Proof of Lemma 4:SinceM is stable at̂b there existsK such that

M(b) −M(b̂) ≤ K|b− b̂| for all b ∈ B . (5.47)

In R1+m consider the sets

F = {(r, b)|b ∈ Rm, r > K|b− b̂|} ,
G = {(r, b)|b ∈ B, r ≤M(b) −M(b̂)} .

It is easy to check thatF,G are convex, and (5.47) implies thatF ∩ G = φ. Hence, there exist
(λ0, . . . , λm) 6= 0, andθ such that

λ0r +
m∑
i=1

λibi ≤ θ for (r, b) ∈ G ,

λ0r +
m∑
i=1

λibi ≥ θ for (r, b) ∈ F .

(5.48)

From the definition ofF , and the fact that(λ0, . . . , λm) 6= 0, it can be verified that (5.49) can hold

only if λ0 > 0. Also from (5.49) we can see that
m∑
i=1

λib̂i ≥ θ, whereas from (5.48)
m∑
i=1

λib̂i ≤ θ,

so that
m∑
i=1

λib̂i = θ. But then from (5.48) we get

M(b) −M(b̂) ≤ 1
λ0

[θ −
m∑
i=1

λibi] =
m∑
i=1

(− λi
λ0

)(bi − b̂). ♦

Proof of Lemma 7:Sinceb̂ is in the interior of B, there existsε > 0 such that

b ∈ B whenever|b− b̂| < ε . (5.49)

In R1+m consider the sets

F = {(r, b̂)|r > M(b̂}
G = {(r, b)|b ∈ B, r ≤M(b)} .

Evidently,F,G are convex andF ∩G = φ, so that there exist(λ0, . . . , λm) 6= 0, andθ such that

λ0r +
m∑
i=1

λib̂i ≥ θ , for r > M(b̂) , (5.50)
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λ0r +
m∑
i=1

λib̂i ≤ θ , for (r, b) ∈ G . (5.51)

From (5.49), and the fact that(λ0, . . . , λm) 6= 0 we can see that (5.50) and (5.51) implyλ0 > 0.
From (5.50),(5.51) we get

λ0M(b̂) +
m∑
i=1

λib̂i = θ ,

so that (5.52) implies

M(b) ≤ (b̂) +
m∑
i=1

(− λi
λ0

)(bi − b̂i) . ♦



Chapter 6

SEQUENTIAL DECISION PROBLEMS:
DISCRETE-TIME OPTIMAL
CONTROL

In this chapter we apply the results of the last two chapters to situations where decisions have to be
made sequentially over time. A very important class of problems where such situations arise is in
the control of dynamical systems. In the first section we give two examples, and in Section 2 we
derive the main result.

6.1 Examples

The trajectory of a vertical sounding rocket is controlled by adjusting the rate of fuel ejection which
generates the thrust force. Specifically suppose that the equations of motion are given by (6.1).

ẋ1(t) = x2(t)
ẋ2(t) = − CD

x3(t)
ρ(x1(t))x2

2(t) − g + CT
x3(t)

u(t)
ẋ3(t) = −u(t) ,

(6.1)

wherex1(t) is the height of the rocket from the ground at timet, x2(t) is the (vertical) speed at
time t, x3(t) is the weight of the rocket (= weight of remaining fuel) at timet. The “dot” denotes
differentiation with respect tot. These equations can be derived from the force equations under the
assumption that there are four forces acting on the rocket, namely: inertia =x3ẍ1 = x3ẋ2; drag
force= CDρ(x1)x2

2 whereCD is constant,ρ(x1) is a friction coefficient depending on atmospheric
density which is a function ofx1; gravitational force= gx3 with g assumed constant; and thrust
forceCT ẋ3, assumed proportional to rate of fuel ejection. See Figure 6.1. The decision variable at
time t is u(t), the rate of fuel ejection. At time0 we assume that(x1(0), x2(0), x3(0)) = (0, 0,M);
that is, the rocket is on the ground, at rest, with initial fuel of weightM . At a prescribed final time
tf , it is desired that the rocket be at a position as high above the ground as possible. Thus, the

75
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decision problem can be formalized as (6.2).

Maximizex1(tf )
subject toẋ(t) = f(x(t), u(t)), 0 ≤ t ≤ tf

x(0) = (0, 0,M)
u(t) ≥ 0, x3(t) ≥ 0, 0 ≤ t ≤ tf ,

(6.2)

wherex = (x1, x2, x3)′, f : R3+1 → R3 is the right-hand side of (6.1). The constraint inequalities
u(t) ≥ 0 andx3(t) ≥ 0 are obvious physical constraints.

x3ẍ1 = inertia

CDϕ(x1)x2
2 = drag

gx3 = gravitational force

CRẋ3 = thrust

Figure 6.1: Forces acting on the rocket.

The decision problem (6.2) differs from those considered so far in that the decision variables,
which are functionsu : [0, tf ] → R, cannotbe represented as vectors in afinite-dimensional
space. We shall treat such problems in great generality in the succeeding chapters. For the moment
we assume that for computational or practical reasons it is necessary to approximate or restrict
the permissible functionu(·) to be constant over the intervals[0, t1), [t1, t2), . . . , [tN−1, tf ), where
t1, t2, . . . , tN−1 are fixeda priori. But then if we letu(i) be the constant value ofu(·) over[ti, ti+1),
we can reformulate (6.2) as (6.3):

Maximizex1(tN )(tN = tf )
subject tox(ti+1) = g(i, x(ti), u(i)), i = 0, 1, . . . ,N − 1

x(t0) = x(0) = (0, 0,M)
u(i) ≥ 0, x3(ti) ≥ 0, i = 0, 1, . . . ,N .

(6.3)

In (6.3)g(i, x(t1), u(i)) is the state of the rocket at timeti+1 when it is in statex(ti) at timeti and
u(t) ≡ u(i) for ti ≤ t < ti+1.

As another example consider a simple inventory problem where time enters discretely in a natural
fashion. The Squeezme Toothpaste Company wants to plan its production and inventory schedule
for the coming month. It is assumed that the demand on theith day, 0 ≤ i ≤ 30, is d1(i) for
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their orange brand andd2(i) for their green brand. To meet unexpected demand it is necessary that
the inventory stock of either brand should not fall belows > 0. If we let s(i) = (s1(i), s2(i))′

denote the stock at the beginning of theith day, andm(i) = (m1(i),m2(i))′ denote the amounts
manufactured on theith day, then clearly

s(i+ 1) + s(i) +m(i) − d(i) ,

whered(i) = (d1(i), d2(i))′. Suppose that the initial stock iŝs, and the cost of storing inventorys
for one day isc(s) whereas the cost of manufacturing amountm is b(m). The the cost-minimization
decision problem can be formalized as (6.4):

Maximize
30∑
i=0

(c(s(i)) + b(m(i)))

subject tos(i+ 1) = s(i) +m(i) − d(i), 0 ≤ i ≤ 29
s(0) = ŝ
s(i) ≥ (s, s)′, m(i) ≥ 0, 0 ≤ i ≤ 30 .

(6.4)

Before we formulate the general problem let us note that (6.3) and (6.4) are in the form of non-
linear programming problems. The reason for treating these problems separately is because of their
practical importance, and because the conditions of optimality take on a special form.

6.2 Main Result

The general problem we consider is of the form (6.5).

Maximize
N−1∑
i=0

f0(i, x(i), u(i))

subject to
dynamics: x(i+ 1) − x(i) = f(i, x(i), u(i)), i = 0, . . . ,N − 1 ,
initial condition: q0(x(0) ≤ 0, g0(x(0)) = 0 ,
final condition: qN (x(N)) ≤ 0, gN (x(N)) = 0 ,
state-space constraint:qi(x(i)) ≤ 0, i = 1, . . . ,N − 1 ,
control constraint: hi(u(i)) ≤ 0, i = 0, . . . ,N − 1 .

(6.5)

Herex(i) ∈ Rn, u(i) ∈ Rp, f0(i, ·, ·) : Rn+p → R, f(i, ·, ·) : Rn+p → Rn, qi : Rn →
Rmi , gi : Rn → R`i , hi : Rp → Rsi are given differentiable functions. We follow the control
theory terminology, and refer tox(i) as thestateof the system at timei, andu(i) as thecontrol or
input at timei.

We use the formulation mentioned in the Remark following Theorem 3 of V.1.2, and construct
the Lagrangian functionL by

L(x(0), . . . , x(N);u(0), . . . , u(N − 1); p(1), . . . , p(N);
λ0, . . . , λN ;α0, αN ; γ0, . . . , γN−1)
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=
N−1∑
i=0

f0(i, x(i), u(i)) −
{
N−1∑
i=0

(p(i+ 1))′(x(i+ 1) − x(i) − f(i, x(i), u(i)))+

N∑
i=0

(λi)′qi(x(i)) + (α0)′g0(x(0)) + (αN )′gN (x(N)) +
N−1∑
i=0

(γi)′hi(u(i))

}
.

Suppose thatCQ is satisfied for (6.5), andx∗(0), . . . , x∗(N); u∗(0), . . . , u∗(N − 1), is an optimal
solution. Then by Theorem 2 of 5.1.2, there existp∗(i) in Rn for 1 ≤ i ≤ N, λi∗ ≥ 0 in Rmi for
0 ≤ i ≤ N, αi∗ in R`i for i = 0,N, andγi∗ ≥ 0 in Rsi for 0 ≤ i ≤ N − 1, such that
(A) the derivative ofL evaluated at these points vanishes,
and
(B) λi∗qi(x∗(i)) = 0 for 0 ≤ i ≤ N , γi∗hi(u∗(i)) = 0 for 0 ≤ i ≤ N − 1 .
We explore condition (A) by taking various partial derivatives.

DifferentiatingL with respect tox(0) gives

f0x(0, x∗(0), u∗(0)) − {−(p∗(1))′ − (p∗(1))′[fx(0, x∗(0), u∗(0))]
+(λ0∗)′[q0x(x∗(0))] + (α0∗)′[g0x(x∗(0))]} = 0 ,

or

p∗(0) − p∗(1) = [fx(0, x∗(0), u∗(x))]′p∗(1)
+[f0x(0, x∗(0), u∗(0))]′ − [q0x(x∗(0))]′λ0∗ ,

(6.6)

where we have defined

p∗(0) = [g0x(x∗(x))]′α0∗ . (6.7)

DifferentiatingL with respect tox(i), 1 ≤ i ≤ N − 1, and re-arranging terms gives

p∗(i) − p∗(i+ 1) = [fx(i, x∗(i), u∗(i))]′p∗(i+ 1)
+[f0x(i, x∗(i), u∗(i))]′ − [qix(x∗(i))]′λi∗ .

(6.8)

DifferentiatingL with respect tox(N) gives,

p∗(N) = −[gNx(x∗(N))]′αN∗ − [qNx(x∗(N))]′λN∗ .

It is convenient to replaceαN∗ by −αN∗ so that the equation above becomes (6.9)

p∗(N) = [gNx(x∗(N))]′αN∗ − [qNx(x∗(N))]′λN∗ . (6.9)

DifferentiatingL with respect tou(i), 0 ≤ i ≤ N − 1 gives

[f0u(i, x∗(i), u∗(i))]′ + [fu(i, x∗(i), u∗(i))]′p∗(i+ l) − [hiu(u∗(i))]′γi∗ = 0 . (6.10)

We summarize our results in a convenient form in
Table 6.1

Remark 1: Considerable elegance and mnemonic simplification is achieved if we define the
Hamiltonian functionH by
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Supposex∗(0), . . . , x∗(N);
u∗(0), . . . , u∗(N − 1) maximizes
N−1∑
i=0

f0(i, x(i), u(i)) subject

to the constraints below

then there existp∗(N);λ0∗ , . . . , λN∗;α0∗ , αN∗;

γ0∗ , . . . , γN−1∗ , such that

dynamics:i = 0, . . . ,N − 1
x(i+ 1) − x(i) = f(i, x(i), u(i))

initial condition:
q0(x∗(0)) ≤ 0, g0(x∗(0)) = 0

final conditions:

qN(x∗(N)) ≤ 0, gN (x∗(N)) = 0

state space constraint:

i = 1, . . . ,N − 1
qi(x∗(i)) ≤ 0

control constraint:

i = 0, . . . ,N − 1
hi(u∗(i)) ≤ 0

adjoint equations:i = 0, . . . ,N − 1
p∗(i) − p∗(i+ 1) = [fx(i, x∗(i), u∗(i)]′p∗(i+ 1)

+[f0x(i, x∗(i), u∗(i)]′ − [qix(x∗(i)]′γi∗

transversality conditions:
p∗(0) = [g0x(x∗(0))]′α0∗

p∗(N) = [gNx(x∗(N))]′αN∗ − [qNx(x∗(N))]′λN∗

[f0u(i, x∗(i), u∗(i))]′ + [fu(i, x∗(i)u∗(i))]′.
p∗(i1) = [hiu(u∗(i))]′γi∗

λ0∗ ≥ 0,
(λ0∗)′q0(x∗(0)) = 0
λN∗ ≥ 0,

(λN∗)′qN (x∗(N)) = 0

λi∗ ≥ 0,
(λi∗)′qi(x∗(i)) = 0

γi∗ ≥ 0
(γi∗)′hi(u∗(i) = 0

Table
6.1:
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H(i, x, u, p) = f0(i, x, u) + p′f(i, x, u) .

The dynamic equations then become

x∗(i+ 1) − x∗(i) = [Hp(i, x∗(i), u∗(i), p∗(i+ 1))]′ ,
0 ≤ i ≤ N − 1 .

(6.11)

and the adjoint equations (6.6) and (6.8) become

p∗(i) − p∗(i+ 1) = [Hx(i, x∗(i), u∗(i), u∗(i), p∗(i+ 1))]′ − [qix(x∗(i))]′λi∗ ,
0 ≤ i ≤ N − 1 ,

whereas (6.10) becomes

[hiu(u∗(i))]′γi∗ = [Hu(i, x∗(i), u∗(i), p∗(i+ 1))]′, 0 ≤ i ≤ N − 1 . (6.12)

Remark 2:If we linearize the dynamic equations about the optimal solution we obtain

δx(i + 1) − δx(i) = [fx(i, x∗(i), u∗(i))]δx(i) + [fu(i, x∗(i, x∗, (i), u∗(i))]δu(i) ,

whose homogeneous part is

z(i+ 1) − z(i) = [fx(i, x∗(i), u∗(i))]z(i) ,

which has for it adjoint the system

r(i) − r(i+ 1) = [fx(i, x∗(i), u∗(i))]′r(i+ 1) . (6.13)

Since the homogeneous part of the linear difference equations (6.6), (6.8) is (6.13), we call (6.6),
(6.8) theadjoint equations, and thep∗(i) are calledadjoint variables.
Remark 3:If the f0(i, ·, ·) are concave and the remaining function in (6.5) are linear, thenCQ is

satisfied, and the necessary conditions of Table 6.1 are also sufficient. Furthermore, in this case we
see from (6.13) thatu∗(i) is an optimal solution of

MaximizeH(i, x∗(i), u, p∗(i+ 1)),
subject tohi(u) ≤ 0 .

For this reason the result is sometimes called themaximum principle.
Remark 4:The conditions (6.7), (6.9) are calledtransversalityconditions for the following reason.
Supposeq0 ≡ 0, qN ≡ 0, so that the initial and final conditions readg0(x(0)) = 0, gN (x(N)) = 0,
which describe surfaces inRn. Conditions (6.7), (6.9) become respectivelyp∗(0) = [g0x(x∗(0))]′α0∗ , p∗(N) =
[gNx(x(N))]′αN∗ which means thatp∗(0) andp∗(N) are respectively orthogonal or transversal to
the initial and final surfaces. Furthermore, we note that in this case the initial and final conditions
specify(`0 +`n) conditions whereas the transversality conditions specify(n−`0)+(n−`n) condi-
tions. Thus, we have a total of2n boundary conditions for the2n-dimensional system of difference
equations (6.5), (6.12); but note that these2n boundary conditions aremixed, i.e., some of them
refer to the initial time0 and the rest refer to the final time.
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Exercise 1:For the regulator problem,

Maximize 1
2

N−1∑
i=0

x(i)′Qx(i) +
1
2

N−1∑
i=0

u(i)′Pu(i)

subject tox(i+ 1) − x(i) = Ax(i) +Bu(i), 0 ≤ i ≤ N − 1
x(0) = x̂(0),
u(i) ∈ Rp , 0 ≤ i ≤ N − 1 ,

wherex(i) ∈ Rn, A andB are constant matrices,̂x(0) is fixed,Q = Q′ is positive semi-definite,
andP = P ′ is positive definite, show that the optimal solution is unique and can be obtained by
solving a2n-dimensional linear difference equation with mixed boundary conditions.

Exercise 2:Show that the minimal fuel problem,

Minimize
N−1∑
i=0


 P∑
j=1

|(u(i))j |

 ,

subject tox(i+ 1) − x(i) = Ax(i) +Bu(i), 0 ≤ i ≤ N − 1
x(0) = x̂(0), x(N) = x̂(N) ,
u(i) ∈ Rp , |u(i))j | ≤ 1, 1 ≤ j ≤ p, 0 ≤ i ≤ N − 1

can be transformed into a linear programming problem. Herex̂(0), x̂(N) are fixed,A andB are as
in Exercise 1.
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Chapter 7

SEQUENTIAL DECISION PROBLEMS:
CONTINUOUS-TIME OPTIMAL
CONTROL OF LINEAR SYSTEMS

We will investigate decision problems similar to those studied in the last chapter with one (math-
ematically) crucial difference. A choice of control has to be made at each instant of timet where
t varies continuously over a finite interval. The evolution in time of the state of the systems to be
controlled is governed by a differential equation of the form:

ẋ(t) = f(t, x(t), u(t)) ,

wherex(t) ∈ Rn andu(t) ∈ Rp are respectively the state and control of the system at timet.

To understand the main ideas and techniques of analysis it will prove profitable to study the linear
case first. The general nonlinear case is deferred to the next chapter. In Section 1 we present the
general linear problem and study the case where the initial and final conditions are particularly
simple. In Section 2 we study more general boundary conditions.

7.1 The Linear Optimal Control Problem

We consider a dynamical system governed by the linear differential equation (7.1):

ẋ(t) = A(t)x(t) +B(t)u(t), t ≥ t0 . (7.1)

HereA(·) andB(·) aren× n- andn× p-matrix valued functions of time; we assume that they are
piecewise continuous functions. The controlu(·) is constrained to take values in a fixed setΩ ⊂ Rp,
and to be piecewise continuous.
Definition: A piecewise continuous functionu : [t0,∞) → Ω will be called anadmissible control.
U denotes the set of all admissible controls.

Let c ∈ Rn, x0 ∈ Rn be fixed and lettf ≥ t0 be a fixed time. We are concerned with the

83
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decision problem (7.2).

Maximizec′x(tf ),
subject to

dynamics:ẋ(t) = A(t)x(t) +B(t)u(t) , t0 ≤ t ≤ tf ,
initial condition: x(t0) = x0 ,
final condition:x(tf ) ∈ Rn ,
control constraint:u(·) ∈ U .

(7.2)

Definition: (i) For any piecewise continuous functionu(·) : [t0, tf ] → Rp, for anyz ∈ Rn, and
anyt0 ≤ t1 ≤ t2 ≤ tf let

φ(t2, t1, z, u)

denote the state of (7.1) at timet2, if a time t1 it is in statez, and the controlu(·) is applied.
(ii) Let

K(t2, t1, z) = {φ(t2, t1, z, u)|u ∈ U} .
Thus,K(t2, t1, z) is the set of states reachable at timet2 starting at timet1 in statez and using
admissible controls. We callK the reachableset.
Definition: Let Φ(t, τ), t0 ≤ τ ≤ t ≤ tf , be thetransition-matrix function of the homogeneous
part of (7.1),i.e.,Φ satisfies the differential equation

∂Φ
∂t (t, τ) = A(t)Φ(t, τ) ,

and the boundary condition

Φ(t, t) ≡ In .

The next result is well-known. (See Desoer [1970].)

Lemma 1:φ(t2, t1, z, u) = Φ(t2, t1)z +
∫ t2

t1

Φ(t2, τ)B(τ)u(τ)dτ .

Exercise 1:(i) Assuming thatΩ is convex, show thatU is a convex set. (ii) Assuming thatU is
convex show thatK(t2, t1, z) is a convex set. (It is a deep result thatK(t2, t1, z) is convex even if
Ω is not convex (see Neustadt [1963]), provided we include inU any measurable function
u : [t0,∞) → Ω.)

Definition: Let K ⊂ Rn, and letx∗ ∈ K. We say thatc is theoutward normal to a hyperplane
supporting K atx∗ if c 6= 0, and

c′x∗ ≥ c′x for all x ∈ K .

The next result gives a geometric characterization of the optimal solutions of (2).
Lemma 2:Supposec 6= 0. Let u∗(·) ∈ U and letx∗(t) = φ(t, t0, x0, u∗). Thenu∗ is an optimal
solution of (2) iff
(i) x∗(tf ) is on the boundary ofK = K(tf , t0, x0), and
(ii) c is the outward normal to a hyperplane supportingK atx∗. (See Figure 7.1.)

Proof: Clearly (i) is implied by (ii) because ifx∗(tf ) is in the interior ofK there isδ > 0 such
that(x∗(tf ) + δc) ∈ K; but then
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x3

c x2

x1

c

x∗(tf )

π∗ = {x|c′x = c′x∗(tf )}K

Figure 7.1:c is the outward normal toπ∗ supportingK atx∗(tf )
.

c′(x∗(tf ) + δc) = c′x∗(tf ) + δ|c|2 > c′x∗(tf ) .

Finally, from the definition ofK it follows immediately thatu∗ is optimal iff c′x∗(tf ) ≥ c′x for all
x ∈ K . ♦

The result above characterizes the optimal controlu∗ in terms of the final statex∗(tf ). The beauty
and utility of the theory lies in the following result which translates this characterization directly in
terms ofu∗.
Theorem 1:Let u∗(·) ∈ U and letx∗(t) = φ(t, t0, x0, u∗), t0 ≤ t ≤ tf . Let p∗(t) be the solution
of (7.3) and (7.4):

adjoint equation:ṗ∗(t) = −A′(t)p∗(t) , t0 ≤ t ≤ tf . (7.3)

final condition:p∗(tf ) = c . (7.4)

Thenu∗(·) is optimal iff

(p∗(t))′B(t)u∗(t) = sup{(p∗(t))′B(t)v|v ∈ Ω} , (7.5)

for all t ∈ [t0, tf ], except possibly for a finite set.

Proof: u∗(·) is optimal iff for everyu(·) ∈ U

(p∗(tf ))′[Φ(tf , t0)x0 +
∫ tf
t0

Φ(tf , τ)B(τ)u∗(τ)dτ ]
≥ (p∗(tf ))′[Φ(tf , t0)x0 +

∫ tf
t0

Φ(tf , τ)B(τ)u(τ)dτ ] ,

which is equivalent to (7.6).∫ tf
t0

(p∗(tf ))′Φ(tf , τ)B(τ)u∗(τ)dτ
≥ ∫ tf

t0
(p∗(tf ))′Φ(tf , τ)B(τ)u(τ)dτ

(7.6)
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Now by properties of the adjoint equation we know thatp∗(t))′ = (p∗(tf ))′Φ(tf , t) so that (7.6) is
equivalent to (7.7),∫ tf

t0
(p∗(τ))′B(τ)u∗(τ)dτ ≥ ∫ tf

t0
(p∗(τ))′B(τ)u(τ)dτ, (7.7)

and the sufficiency of (7.5) is immediate.
To prove the necessity letD be the finite set of points where the functionB(·) or u∗(·) is discon-

tinuous. We shall show that ifu∗(·) is optimal then (7.5) is satisfied fort 6∈ D. Indeed if this is not
the case, then there existst∗ ∈ [t0, tf ], t∗ 6∈ D, andv ∈ Ω such that

(p∗(t∗))′B(t∗)u∗(t∗) < (p∗(t∗))′B(t∗)v ,

and sincet∗ is a point of continuity ofB(·) andu∗(·), it follows that there existsδ > 0 such that

(p∗(t))′B(t)u∗(t) < (p∗(t))′B(t)v, for |t− t∗| < δ . (7.8)

Defineũ(·) ∈ U by

ũ(t) =
{
v |t− t∗| < δ, t ∈ [t0, tf ]
u∗(t) otherwise .

Then (7.8) implies that∫ tf
t0

(p∗(t))′B(t)ũ(t)dt >
∫ tf
t0

(p∗(t))′B(t)u∗(t)dt .

But then from (7.7) we see thatu∗(·) cannot be optimal, giving a contradiction. ♦

Corollary 1: For t0 ≤ t1 ≤ t2 ≤ tf ,

(p∗(t2))x∗(t2) ≥ (p∗(t2))′x for all x ∈ K(t2, t1, x∗(t1)). (7.9)

Exercise 2:Prove Corollary 1.
Remark 1:The geometric meaning of (7.9) is the following. Takingt1 = t0 in (7.9), we see that if
u∗(·) is optimal,i.e., if c = p∗(tf ) is the outward normal to a hyperplane supportingK(tf , t0, x0)
atx∗(tf ), thenx∗(t) is on the boundary ofK(t, t0, x0) andp∗(t) is the normal to a hyperplane
supportingK(t, t0, x0) atx∗(t). This normal is obtained by transporting backwards in time, via
the adjoint differential equation, the outward normalp∗(tf ) at timetf . The situation is illustrated
in Figure 7.2.
Remark 2:If we define theHamiltonianfunctionH by

H(t, x, u, p) = p′(A(t)x +B(t)u) ,

and we defineM by

M(t, x, p) = sup{H(t, x, u, p)|u ∈ Ω},
then (7.5) can be rewritten as

H(t, x∗(t), u∗(t), p∗(t)) = M(t, x∗(t), p∗(t)) . (7.10)

This condition is known as themaximum principle.
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Exercise 3:(i) Show thatm(t) = M(t, x∗(t), p∗(t)) is a Lipschitz function oft. (ii) If A(t), B(t)
are constant, show thatm(t) is constant. (Hint: Show that(dm/dt) ≡ 0.)

The next two exercises show how we can obtain important qualitative properties of an optimal
control.

Exercise 4:Suppose thatΩ is bounded and closed. Show that there exists an optimal controlu∗(·)
such thatu∗(t) belongs to the boundary ofΩ for all t.
Exercise 5:SupposeΩ = [α, β], so thatB(t) is ann× 1 matrix. Suppose thatA(t) ≡ A and
B(t) ≡ B are constant matrices andA hasn real eigenvalues. Show that there is an optimal
controlu∗(·) andt0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ tf such thatu∗(t) ≡ α or β on [ti, ti+1), 0 ≤ i ≤ n.
(Hint: first show that(p∗(t))′B = γ1 exp(δ1t) + . . .+ γn exp(δn(t)) for someγi, δi in R.)
Exercise 6:Assume thatK(tf , t0, x0) is convex (see remark in Exercise 1 above). Let
f0 : Rn → R be a differentiable function and suppose that the objective function in (7.2) is
f0(x(tf )) instead ofc′x(tf ). Supposeu∗(·) is an optimal control. Show thatu∗(·) satisfies the
maximum principle (7.10) wherep∗(·) is the solution of the adjoint equation (7.3) with the final
condition

p∗(tf ) = 5f0(x∗(tf )) .

Also show that this condition is sufficient for optimality iff0 is concave. (Hint: Use Lemma 1 of
5.1.1 to show that ifu∗(·) is optimal, thenf0x(x∗(tf )(x∗(tf ) − x) ≤ for all x ∈ K(tf , t0, x0).)

7.2 More General Boundary Conditions

We consider the following generalization of (7.2). The notion of the previous section is retained.

Maximizec′x(tf )
subject to
dynamics:ẋ(t) = A(t)x(t) +B(t)u(t), t0 ≤ t ≤ tf ,
initial condition: G0x(t0) = b0 ,
final condition: Gfx(tf ) = bf ,
control constraint: u(·) ∈ U , i.e., u : [t′,t{] → ⊗ and

u(·)piecewise continuous.

(7.11)

In (7.11)G0 andGf are fixed matrices of dimensions`0xn and`f × n respectively, whileb0 ∈
R`0, bf ∈ R`f are fixed vectors.

We will analyze the problem in the same way as before. That is, we first characterize optimality
in terms of the state at the final time, and then translate these conditions in terms of the control. For
convenience let

T 0 = {z ∈ Rn|G0z = b0} ,
T f = {z ∈ Rn|Gfz = bf} .

Definition: Let p ∈ Rn . Let z∗ ∈ T 0. We say thatp is orthogonal toT 0 at z∗ and we write
p ⊥ T 0(z∗) if
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p′(z − z∗) = 0 for all z ∈ T 0 .

Similarly if z∗ ∈ T f , p ⊥ T f (z∗) if

p′(z − z∗) = 0 for all z ∈ T f .

Definition: LetX(tf ) = {Φ(tf , t0)z + w|z ∈ T 0, w ∈ K(tf , t0, 0)}.
Exercise 1:X(tf ) = {Φ(tf , t0, z, u)|z ∈ T 0, u(·) ∈ U}.

Lemma 1:Let x∗(t0) ∈ T 0 andu∗(·) ∈ U . Let x∗(t) = φ(t, t0, x∗(t0), u∗), and suppose that
x∗(tf ) ∈ T f .
(i) Suppose theΩ is convex. Ifu∗(·) is optimal, there exist̂p0 ∈ R, p̂0 ≥ 0 andp̂ ∈ Rn, not both
zero, such that

(p̂0c+ p̂)′x∗(tf ) ≥ (p̂0c+ p̂)′x for all x ∈ X(tf ) , (7.12)

p̂ ⊥ T f (x∗(tf )) , (7.13)

[Φ(tf , t0)]′(p̂0c+ p̂) ⊥ T 0(x∗(t0)) . (7.14)

(ii) Conversely if there exist̂p0 > 0, andp̂ such that (7.12) and (7.13) are satisfied, thenu∗(·) is
optimal and (7.14) is also satisfied.
Proof: Clearlyu∗(·) is optimal iff

c′x∗(tf ) ≥ c′x for all x ∈ X(tf ) ∩ T f . (7.15)

(i) Suppose thatu∗(·) is optimal. InR1+m define setsS1, S2 by

S1 = {(r, x)|r > c′x∗(tf ), x ∈ T f} , (7.16)

S2 = {(r, x)|r = c′x , x ∈ X(tf )} . (7.17)

First of allS1 ∩S2 = φ because otherwise there existsx ∈ X(tf )∩ T f such thatc′x > c′x∗(tf )
contradicting optimality ofu∗(·) by (7.15).

Secondly,S1 is convex sinceT f is convex. SinceΩ is convex by hypothesis it follows by Exercise
1 of Section 1 thatS2 is convex.

But then by the separation theorem for convex sets (see 5.5) there existsp̂0 ∈ R, p̂ ∈ Rn, not
both zero, such that

p̂0r
1 + p̂′x1 ≥ p̂0r

2 + p̂′x2 for all (ri, xi) ∈ Si , i = 1, 2. (7.18)

In particular (7.18) implies that

p̂0r + p̂′x∗(tf ) ≥ p̂0c
′x+ p̂′x for all x ∈ X(tf ), r > c′x∗(tf ). (7.19)

Letting r → ∞ we conclude that (7.19) can hold only ifp̂0 ≥ 0. On the other hand lettingr →
c′x∗(tf ) we see that (7.19) can hold only if

p̂0c
′x∗(tf ) + p̂′x∗(tf ) ≥ p̂0c

′x+ p̂′x for all x ∈ X(tf ) , (7.20)

which is the same as (7.12). Also from (7.18) we get
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p̂0r + p̂′x ≥ p̂0c
′x∗(tf ) + p̂′x∗(tf ) for all r > c′x∗(tf ), x ∈ T f ,

which can hold only if

p̂1c
′x∗(tf ) + p̂′x ≥ p̂0c

′x∗(tf ) + p̂′x∗(tf ) for all x ∈ T f ,

or

p̂′(x− x∗(tf )) ≥ 0 for all x ∈ T f (7.21)

But {x− x∗(tf )|x ∈ T f} = {z|Gf z = 0} is a subspace ofRn, so that (7.21) can hold only if

p̂′(x− x∗(tf )) = 0 for all x ∈ T f ,

which is the same as (7.13). Finally (7.12) always implies (7.14), because by the definition ofX(tf )
and Exercise 1,{Φ(tf , t0)(z − x∗(t0)) + x∗(tf )} ∈ X(tf ) for all z ∈ T 0, so that from (7.12) we
get

0 ≥ (p̂0c+ p̂)′Φ(tf , t0)(z − x∗(t0)) for all z ∈ T 0 ,

which can hold only if (7.14) holds.
(ii) Now suppose that̂p0 > 0 andp̂ are such that (7.12), (7.13) are satisfied. Letx̃ ∈ X(tf ) ∩ T f .
Then from (7.13) we conclude that

p̂′x∗(tf ) = p̂′x̃ ,

so that from (7.12) we get

p̂0c
′x∗(tf ) ≥ p̂0c

′x̃ ;

but then by (7.15)u∗(·) is optimal. ♦

Remark 1:If it is possible to choosêp0 > 0 thenp̂0 = 1, p̂ = (p̂/p̂0) will also satisfy (7.12),
(7.13), and (7.14). In particular, in part (ii) of the Lemma we may assumep̂0 = 1.
Remark 2:it would be natural to conjecture that in part (i)p̂0 may be chosen> 0. But in Figure
7.3 below, we illustrate a 2-dimensional situation whereT 0 = {x0}, T f is the vertical line, and
T f ∩X(tf ) consists of just one vector. It follows that the controlu∗(·) ∈ U for which
x∗(tf ) = φ(tf , t0, x0, u∗) ∈ T f is optimal for any c. Clearly then for somec (in particular for the
c in Figure 7.3) we are forced to setp̂0 = 0. In higher dimensions the reasons may be more
complicated, but basically ifT f is “tangent” toX(tf ) we may be forced to set̂p0 = 0 (see
Exercise 2 below). Finally, we note that part (i) is not too useful ifp̂0 = 0, since then (7.12), (7.13),
and (7.14) hold for any vectorc whatsoever. Intuitivelŷp0 = 0 means that it is so difficult to satisfy
the initial and final boundary conditions in (7.11) that optimization becomes a secondary matter.
Remark 3: In (i) the convexity ofΩ is only used to guarantee thatK(tf , t0, 0) is convex. But it is
known thatK(tf , t0, 0) is convex even ifΩ is not (see Neustadt [1963]).
Exercise 2:Suppose there existsz in the interior of X(tf ) such thatz ∈ T f . Then in part (i) we
must havêp0 > 0.

We now translate the conditions obtained in Lemma 1 in terms of the controlu∗.
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Theorem 1:Let x∗(t0) ∈ T 0 andu∗(·) ∈ U . Letx∗(t) = φ(t, t0, x∗(t0), u∗) and suppose that
x∗(tf ) ∈ T f .
(i) Suppose thatΩ is convex. Ifu∗(·) is optimal for (7.11), then there exist a numberp∗0 ≥ 0, and a
functionp∗ : [t0, tf ] → Rn, not both identically zero, satisfying

adjoint equation: ṗ∗(t) = −A′(t)p∗(t) , t0 ≤ t ≤ tf (7.22)

initial condition: p∗(t0)⊥T 0(x∗(t0)) (7.23)

final condition: (p∗(tf ) − p∗0c)⊥T f (x∗(tf )) , (7.24)

and themaximum principle

H(t, x∗(t), u∗(t), p∗(t)) = M(t, x∗(t), p∗(t)) , (7.25)

holds for allt ∈ [t0, tf ] except possibly for a finite set.
(ii) Conversely suppose there existp∗0 > 0 andp∗(·) satisfying (7.22), (7.23), (7.24), and (7.25).
Thenu∗(·) is optimal.

[Here

H(t, x, u, p) = p′(A(t)x+B(t)u), M(t, x, p) = sup{H(t, x, v, p)|v ∈ Ω}.]

Proof: A repetition of a part of the argument in the proof of Theorem 1 of Section 1 show that ifp∗

satisfies (7.22), then (7.25) is equivalent to (7.26):

(p∗(tf ))′x∗(tf ) ≥ (p∗(tf ))′x for all x ∈ K(tf , t0, x∗(t0)) . (7.26)

(i) Supposeu∗(·) is optimal andΩ is convex. Then by Lemma 1 there existp̂ ≥ 0, p̂ ∈ Rn, not
both zero, such that (7.12), (7.13) and (7.14) are satisfied. Letp∗0 = p̂0 and letp∗(·) be the solution
of (7.22) with the final condition

p∗(tf ) = p∗0c+ p̂ = p̂0c+ p̂ .

Then (7.14) and (7.13) are respectively equivalent to (7.23) and (7.24), whereas sinceK(tf , t0, x∗(t0)) ⊂
X(tf ), (7.26) is implied by (7.12).
(ii) Supposep∗0 > 0 and (7.22), (7.23), (7.24), and (7.26) are satisfied. Letp̂0 = p∗0 and p̂ =
p∗(tf ) − p∗0c, so that (7.24) becomes equivalent to (7.13). Next ifx ∈ X(tf ) we have

(p̂0c+ p̂)′x = (p∗(tf ))′x
= (p∗(tf ))′(Φ(tf , t0)z + w) ,
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for somez ∈ T 0 and somew ∈ K(tf , t0, 0). Hence

(p̂0c+ p̂)′x = (p∗(f ))′Φ(tf , t0)(z − x∗(t0))
+(p∗(tf ))′(w + φ(tf , t0)x∗(t0))

= (p∗(t0))′(z − x∗(t0))
+(p∗(tf ))′(w + Φ(tf , t0)x∗(t0)) .

But by (7.23) the first term on the right vanishes, and since(w+φ(tf , t0)x∗(t0)) ∈ K(tf , t0, x∗(t0)),
it follows from (7.26) that the second term is bounded by(p∗(tf ))′x∗(tf ). Thus

(p̂0c+ p̂)′x∗(tf ) ≥ (p̂0c+ p̂)′x for all x ∈ X(tf ) ,

and sou∗(·) is optimal by Lemma 1. ♦

Exercise 3:Suppose that the control constraint set isΩ(t) which varies continuously witht, and
we require thatu(t) ∈ Ω(t) for all t. Show that Theorem 1 also holds for this case where, in (7.25),
M(t, x, p) =sup{H(t, x, v, p)|v ∈ Ω(t)}.
Exercise 4:How would you use Exercise 3 to solve Example 3 of Chapter 1?
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Chapter 8

SEQUENTIAL DECISION PROBLEMS:
CONTINUOUS-TIME OPTIMAL
CONTROL OF NONLINEAR SYSTEMS

We now present a sweeping generalization of the problem studied in the last chapter. Unfortunately
we are forced to omit the proofs of the results since they require a level of mathematical sophis-
tication beyond the scope of theseNotes. However, it is possible to convey the main ideas of the
proofs at an intuitive level and we shall do so. (For complete proofs see (Lee and Markus [1967]
or Pontryagin,et al., [1962].) The principal result, which is a direct generalization of Theorem 1 of
7.2 is presented in Section 1. An alternative form of the objective function is discussed in Section
2. Section 3 deals with the minimum-time problem and Section 4 considers the important special
case of linear systems with quadratic cost. Finally, in Section 5 we discuss the so-called singular
case and also analyze Example 4 of Chapter 1.

8.1 Main Results

8.1.1 Preliminary results based on differential equation theory.

We are interested in the optimal control of a system whose dynamics are governed by the nonlinear
differential equation

ẋ(t) = f(t, x, (t), u(t)) , t0 ≤ t ≤ tf , (8.1)

wherex(t) ∈ Rn is the state andu(t) ∈ Rp is the control. Supposeu∗(·) is an optimal control
andx∗(·) is the corresponding trajectory. In the case of linear systems we obtained the necessary
conditions for optimality by comparingx∗(·) with trajectoriesx(·) corresponding to other admis-
sible controlsu(·). This comparison was possible because we had an explicitly characterization of
x(·) in terms ofu(·). Unfortunately whenf is nonlinear such a characterization is not available.
Instead we shall settle for a comparison between the trajectoryx∗(·) and trajectoriesx(·) obtained
by perturbing the controlu∗(·) and the initial conditionx∗(t0). We can then estimate the difference
betweenx(·) andx∗(·) by the solution to a linear differential equation as shown in Lemma 1 below.
But first we need to impose some regularity conditions on the differential equation (8.1). We assume
throughout that the functionf : [t0, tf ] ×Rn ×Rp → Rn satisfies the following conditions:

95
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1. for each fixedt ∈ [t0, tf ], f(t, ·, ·) : RnxRp → Rn is continuously differentiable in the
remaining variables(x, u),

2. except for a finite subsetD ⊂ [t0, tf ], the functionsf, fx, fu are continuous on[t0, tf ]×Rn×
Rp, and

3. for every finiteα, there exist finite numberβ andγ such that

|f(t, x, u)| ≤ β + γ|x| for all t ∈ [t0, tf ], x ∈ Rn, u ∈ Rp with |u| ≤ α .

The following result is proved in every standard treatise on differential equations.

Theorem 1:For everyz ∈ Rn, for everyt1 ∈ [t0, tf ], and every piecewise continuous function
u(·) : [t0, tf ] → Rp, there exists a unique solution

x(t) = φ(t, t1, z, u(·)) , t1 ≤ t ≤ tf ,

of the differential equation

ẋ(t) = f(t, x(t), u(t)) , t1 ≤ t ≤ tf ,

satisfying the initial condition

x(t1) = z .

Furthermore, for fixedt1 ≤ t2 in [t0, tf ] and fixedu(·), the functionφ(t2, t1, ·, u(·)) : Rn → Rn is
differentiable. Moreover, then× n matrix-valued functionΦ defined by

Φ(t2, t1, z, u(·)) = ∂φ
∂z (t2, t1, z, u(·))

is the solution of the linear homogeneous differential equation

∂Φ
∂t (t, t1, z, u, (·)) = [∂f∂x(t, x, (t), u(t))]Φ(t, t1 , z, u(·)), t1 ≤ t ≤ tf ,

and the initial condition

Φ(t1, t1, z, u(·)) = In .

Now let Ω ⊂ Rp be a fixed set and letU be set of all piecewise continuous functionsu(·) :
[t0, tf ] → Ω. Let u∗(·) ∈ U be fixed and letD∗ be the set of discontinuity points ofu∗(·). Let
x∗0 ∈ Rn be a fixed initial condition.

Definition: π = (t1, . . . , tm; `1, . . . , `m; u1, . . . , um) is said to be aperturbation datafor u∗(·) if

1. m is a nonnegative integer,

2. t0 < t1 < t2 < . . . tm < tf , andti 6∈ D∗ ⋃
D, i = 1, . . . ,m (recall thatD is the set of

discontinuity points off ),

3. `i ≥ 0, i = 1, . . . ,m, and

4. ui ∈ Ω, i = 1, . . . ,m.
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Let ε(π) > 0 be such that for0 ≤ ε ≤ ε(π) we have[ti − ε`i, ti] ⊂ [t0, tf ] for all i, and
[ti−ε`i, ti]

⋂
[tj−ε`j , tj] = φ for i 6= j. Then for0 ≤ ε ≤ ε(π),the perturbed controlu(π,ε)(·) ∈ U

corresponding toπ is defined by

u(π,ε)(t) =
{
ui for all t ∈ [ti − ε`i, ti] , i = 1, . . . ,m
u∗(t) otherwise .

Definition: Any vectorξ ∈ Rn is said to be aperturbationfor x∗0, and a functionx(ξ,ε) defined for
ε > 0 is said to be aperturbed initial conditionif

lim
ε→0

x(ξ,ε) = x∗0 ,

and

lim
ε→0

1
ε (x(ξ,ε) − x∗0) = ξ .

Now let x∗(t) = φ(t, t0, x∗0, u
∗(·)) and letxε(t) = φ(t, t0, x(ξ,ε), u(π,ε)(·)). Let Φ(t2, t1) =

Φ(t2, t1, x∗(t1), u∗(·)). The following lemma gives an estimate ofx∗(t) − xε(t). The proof of the
lemma is a straightforward exercise in estimating differences of solutions to differential equations,
and it is omitted (see for example (Lee and Markus [1967])).

Lemma 1:lim
ε→0

|xε(t) − x∗(t) − εh(π,ε)(t)| = 0 for t ∈ [t0, t1], whereh(π,ε)(·) is given by

h(π,ε)(t) = Φ(t, t0)ξ , t ∈ [t0, t1)
= Φ(t, t0)ξ + Φ(t, t1)[f(t1, x∗(t1), u1) − f(t1, x∗(t1), u∗(t1))]`1 , t ∈ [t1, t2)

= Φ(t, t0)ξ +
i∑

j=1

Φ(t, tj)[f(tj , x∗(tj), uj) − f(tj, x∗(tj), u∗(tj))]`j , t ∈ [ti, ti+1)

= Φ(t, t0)ξ +
m∑
j=1

Φ(t, tm)[f(tj, x∗(tj), uj) − f(tj, x∗(tj), u∗tj))]`j , t ∈ [tm, tf ] .

(See Figure 8.1.)
We callh(π,ξ)(·) the linearized (trajectory) perturbation corresponding to(π, ξ).

Definition: For z ∈ Rn, t ∈ [t0, tf ] let

K(t, t0, z) = {φ(t, t0, z, u(·))|u(·) ∈ U}
be the set of states reachable at timet, starting at timet0 in statez, and using controlsu(·) ∈ U .
Definition: For eacht ∈ [t0, tf ], let

Q(t) = {h(π,0)(t)|πis a perturbation data foru∗(·),and
h(π,0)(·)is the linearized perturbation
corresponding to(π, 0)} .

Remark:By Lemma 1(x∗(t)+εh(π,ξ)) belongs to the setK(t, t0, x(ξ,ε)) up to an error of ordero(ε).
In particular forξ = 0, the setx∗(t) + Q(t) can serve as an approximation to the setK(t, t0, x∗0).
More precisely we have the following result which we leave as an exercise.
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Figure 8.1: Illustration for Lemma1.

Exercise 1:(Recall the definition of the tangent cone in 5.1.1.) Show that

Q(t) ⊂ C(K(t, t0, x∗0), x∗(t)) . (8.2)

We can now prove a generalization of Theorem 1 of 7.1.
Theorem 2: Consider the optimal control problem (8.3):

Maximizeψ(x(tf ))
subject to

dynamics: ẋ(t) = f(t, x(t), u(t)) , t0 ≤ t ≤ tf ,
initial condition: x(t0) = x∗0 ,
final condition: x(tf ) ∈ Rn ,
control constraint: u(·) ∈ U , i.e.,u : [t0, tf ] → Ω and

u(·) piecewise continuous,

(8.3)

whereψ : Rn → R is differentiable andf satisfies the conditions listed earlier.
Let u∗(·) ∈ U be an optimal control and letx∗(t) = φ(t, t0, x∗0, u∗(·)), t0 ≤ t ≤ tf , be the

corresponding trajectory. Letp∗(t), t0 ≤ t ≤ tf , be the solution of (8.4) and (8.5):

adjoint equation: ṗ∗(t) = −[∂f∂x(t, x∗(t), u∗(t))]′p∗(t), t0 ≤ t ≤ tf , (8.4)
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final condition: p∗(tf ) = 5ψ(x∗(tf )) . (8.5)

Thenu∗(·) satisfies themaximum principle

H(t, x∗(t), u∗(t), p∗(t)) = M(t, x∗(t), p∗(t)) (8.6)

for all t ∈ [t0, tf ] except possibly for a finite set. [HereH(t, x, u, p) = p′f(t, x, u, ), M(t, x, p) =
sup{H(t, x, v, p)|v ∈ Ω}].
Proof: Sinceu∗(·) is optimal we must have

ψ(x∗(tf )) ≥ ψ(z) for all z ∈ K(tf , t0, x∗0) ,

and so by Lemma 1 of 5.1.1

ψ(x∗(tf ))h ≤ 0 for all h ∈ C(K(tf , t0, x∗0), x
∗(tf )) ,

and in particular from (8.2)

ψx(x∗(tf ))h ≤ 0 for all h ∈ Q(tf ) . (8.7)

Now suppose that (8.6) does not hold from somet∗ 6∈ D∗ ∪D. Then there existsv ∈ Ω such that

p∗(t∗)′[f(t∗, x(t∗), v) − f(t∗, x(t∗), u∗(t∗))] > 0 . (8.8)

If we consider the perturbation dataπ = (t∗; 1; v), then (8.8) is equivalent to

p∗(t∗)′h(π,0)(t∗) > 0 . (8.9)

Now from (8.4) we can see thatp∗(t∗)′ = p∗(tf )′Φ(tf , t∗). Also h(π,0)(tf ) = Φ(tf , t∗)h(π,0)(t∗)
so that (8.9) is equivalent to

p∗(tf )′h(π,0)(tf ) > 0

which contradicts (8.7). ♦

8.1.2 More general boundary conditions.

In Theorem 2 the initial condition is fixed and the final condition is free. The problem involving
more general boundary conditions is much more complicated and requires more refined analysis.
Specifically, Lemma 1 needs to be extended to Lemma 2 below. But first we need some simple
properties of the setsQ(t) which we leave as exercises.

Exercise 2:Show that
(i) Q(t) is a cone,i.e., if h ∈ Q(t) andλ ≥ 0, thenλh ∈ Q(t),
(ii) for t0 ≤ t1 ≤ t2 ≤ tf , Φ(t2, t1)Q(t1) ⊂ Q(t2) .
Definition: LetC(t) denote the closure ofQ(t).
Exercise 3:Show that
(i) C(t) is a convex cone,
(ii) for t0 ≤ t1 ≤ t2 ≤ tf , Φ(t2, t1)C(t1) ⊂ C(t2) .
Remark:From Lemma 1 we know that ifh ∈ C(t) then(x∗(t)+ εh) belongs toK(t, t0, x∗(t0)) up
to an error of ordero(ε). Lemma 2, below, asserts further that ifh is in the interior ofC(t) then in
fact (x∗(t) + εh) ∈ K(t, t0, x∗(t0)) for ε > 0 sufficiently small. The proof of the lemma depends
upon some deep topological results and is omitted. Instead we offer a plausibility argument.
Lemma 2:Let h belong to the interior of the coneC(t). Then for allε > 0 sufficiently small,
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(x∗(t) + εh) ∈ K(t, t0, x∗0) . (8.10)

Plausibility argument.(8.10) is equivalent to

εh ∈ K(t, t0, x∗(t0)) − {x∗(t)} , (8.11)

where we have moved the origin tox∗(t). The situation is depicted in Figure 8.2.

0

Ĉ(ε)
K̂(ε)

o(ε)
K(t1, t0, x∗) − {x∗(t)}

h

C(t)δε

εh

Figure 8.2: Illustration for Lemma2.

Let Ĉ(ε) be the cross-section ofC(t) by a plane orthogonal toh and passing throughεh. Let
K̂(ε) be the cross-section ofK(t, t0, x∗0) − {x∗(t0)} by the same plane. We note the following:
(i) by Lemma 1 the distance between̂C(ε) andK̂(ε) is of the ordero(ε);
(ii) since h is in the interior ofC(t), the minimum distance betweenεh and Ĉ(ε) is δε where
δ > 0 is independent ofε.
Hence forε > 0 sufficiently smallεh must be trapped inside the setK̂(ε).

(This would constitute a proof except that for the argument to work we need to show that there
are no “holes” inK̂(ε) through whichεh can “escape.” The complications in a rigorous proof arise
precisely from this drawback in our plausibility argument.) ♦

Lemmas 1 and 2 give us a characterization ofK(t, t0, x∗0) in a neighborhood ofx∗(t) when we
perturb the controlu∗(·) leaving the initial condition fixed. Lemma 3 extends Lemma 2 to the case
when we also allow the initial condition to vary over a fixed surface in a neighborhood ofx∗0.

Let g0 : Rn → R`0 be a differentiable function such that the`0 × n matrix g0
x(x) has rank

`0 for all x. Let b0 ∈ Rn be fixed and letT 0 = {x|g0(x) − b0}. Suppose thatx∗0 ∈ T 0 and let
T 0(x∗0) = {ξ|g0

x(x
∗
0)ξ = 0}. Thus,T 0(x∗0) + {x∗0} is the plane throughx∗0 tangent to the surface

T 0. The proof of Lemma 3 is similar to that of Lemma 2 and is omitted also.
Lemma 3:Leth belong to the interior of the cone{C(t)+Φ(t, t0)T 0(x∗0)}. Forε ≥ 0 leth(ε) ∈ Rn

be such that limh(ε) = 0, and lim
ε→0

(
1
ε
)h(ε) = h. Then forε > 0 sufficiently small there exists

x0(ε) ∈ T 0 such that

(x∗(t) + h(ε)) ∈ K(t, t0, x0(ε)) .
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We can now prove the main result of this chapter. We keep all the notation introduced above.
Further, letgf : Rn → R`f be a differentiable function such thatgfx(x) has rank̀ f for all x.
Let bf ∈ Rn be fixed and letT f = {x|gf (x) − bf}. Finally, if x∗(tf ) ∈ T f let T f (x∗(tf )) =
{ξ|gfx(x∗(tf ))ξ = 0}.

Theorem 3:Consider the optimal control problem (8.12):

Maximizeψ(x(tf ))
subject to

dynamics: ẋ(t) = f(t, x(t), u(t)) , t0 ≤ t ≤ tf ,
initial conditions: g0(x(t0)) = b0 ,
final conditions: gf (x(tf )) = bf ,
control constraint: u(·) ∈ U , i.e., u : [t0, tf ] → Ω and

u(·) piecewise continuous.

(8.12)

Let u∗(·) ∈ U , let x∗0 ∈ T 0 and letx∗(t) = φ(t, t0, x∗0, u
∗(·)) be the corresponding trajectory.

Suppose thatx∗(tf ) ∈ T f , and suppose that(u∗(·), x∗0) is optimal. Then there exist a number
p∗0 ≥ 0, and a functionp∗ : [t0, tf ] → Rn, not both identically zero, satisfying

adjoint equation: ṗ∗(t) = −[∂f∂x(t, x∗(t), u∗(t))]′p∗(t), t0 ≤ t ≤ tf , (8.13)

initial condition: p∗(t0)⊥T 0(x∗0) , (8.14)

final condition: (p∗(tf ) − p∗0∇ψ(x∗(tf )))⊥T f (x∗(tf )) . (8.15)

Furthermore, themaximum principle

H(t, x∗(t), u∗(t), p∗(t)) = M(t, x∗(t), p∗(t)) (8.16)

holds for allt ∈ [t0, tf ] except possibly for a finite set. [HereH(t, x, p, u) = p′f(t, x, u, ), M(t, x, p) =
sup{H(t, x, v, p)|v ∈ Ω}].

Proof: We break the proof up into a series of steps.
Step 1.By repeating the argument presented in the proof of Theorem 2 we can see that (8.15) is
equivalent to

p∗(tf )′h ≤ 0 for all h ∈ C(tf ) . (8.17)

Step 2.Define two convex setsS1, S2 in R1+m as follows:
S1 = {(y, h)|y > 0, h ∈ T f (x∗(tf ))},
S2 = {(y, h)|y = ψx(x∗(tf ))h, h ∈ {C(tf ) + Φ(tf , t0)T 0(x∗0)}} .
We claim that the optimality of(u∗(·), x∗0) implies thatS1∩ Relative Interior(S2) = φ. Suppose
this is not the case. Then there existsh ∈ T f (x∗(tf )) such that

ψx(x∗(tf ))h > 0 , (8.18)
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h ∈ Interior{C(tf ) + Φ(tf , t0)T 0(x∗0)} . (8.19)

Now by assumptiongfx(x∗(tf ) has maximum rank. Sincegfx(x∗(tf ))h = 0 it follows that the
Implicit Function Theorem that forε > 0 sufficiently small there existsh(ε) ∈ Rn such that

gf (x∗(tf ) + h(ε)) = bf , (8.20)

and, moreover,h(ε) → 0, (1/ε)h(ε) → h asε → 0. From (8.18) and Lemma 3 it follows that for
ε > 0 sufficiently small there existsx0(ε) ∈ T 0 anduε(·) ∈ U such that

x∗(tf ) + h(ε) = φ(tf , t0, x0(ε), uε(·)) .

Hence we can conclude from (8.20) that the pair(x0(ε), uε(·)) satisfies the initial and final condi-
tions, and the corresponding value of the objective function is

ψ(x∗(tf ) + h(ε)) = ψ(x∗(tf )) + ψx(x∗(tf ))h(ε) + o(|h(ε)|) ,

and sinceh(ε) = εh+ o(ε) we get

ψ(x∗(tf ) + h(ε)) = ψ(x∗(tf )) + ε)ψx(x∗(tf ))h+ o(ε) ;

but then from (8.18)

ψ(x∗(tf ) + h(ε)) > ψ(x∗(tf ))

for ε > 0 sufficiently small, thereby contradicting the optimality of(u∗(·), x∗0).
Step 3.By the separation theorem for convex sets there existp̂0 ∈ R, p̂1 ∈ Rn, not both zero, such
that

p̂0y
1 + p̂′1h

1 ≥ p̂0y
2 + p̂′1h

2 for all (yi, hi) ∈ S1 , i = 1, 2 . (8.21)

Arguing in exactly the same fashion as in the proof of Lemma 1 of 7.2 we can conclude that (8.21)
is equivalent to the following conditions:

p̂0 ≥ 0 ,
p̂1⊥T f (x∗(tf )) ,

(8.22)

Φ(tf , t0)′(p̂0∇ψ(x∗(tf )) + p̂1)⊥T 0(x∗0) , (8.23)

and

(p̂0ψx(x∗(tf )) + p̂′1)h ≤ 0 for all h ∈ C(tf ) . (8.24)

If we let p̂∗0 = p̂0 andp∗(tf ) = p̂0∇ψ(x∗(tf )) + p̂1 then (8.22), (8.23), and (8.24) translate respec-
tively into (8.15), (8.14), and (8.17). ♦
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8.2 Integral Objective Function

In many control problems the objective function is not given as a functionψ(x(tf )) of the final
state, but rather as an integral of the form∫ tf

t0

f0(t, x(t), u(t))dt . (8.25)

The dynamics of the state, the boundary conditions, and control constraints are the same as before.
We proceed to show how such objective functions can be treated as a special case of the problems
of the last section. To this end we defined theaugmented systemwith state variablẽx = (x0, x) ∈
R1+m as follows:

·
x̃=

[
ẋ0(t)
ẋ(t)

]
= f̃(t, x̃(t), u(t)) =

[
f0(t, x(t), u(t))
f(t, x(t), u(t))

]
.

The initial and final conditions which are of the form

g0(x) = b0, gf (x) = bf are augmented̃g0(x̃) =
[

x0

g0(x)

]
= b̃0 =

[
0
b0

]

and g̃f (x̃) = gf (x) = bf . Evidently then the problem of maximizing (8.25) is equivalent to the
problem of maximizing

ψ(x̃(tf )) = x0(tf ) ,

subject to the augmented dynamics and constraints which is of the form treated in Theorem 3 of
Section 1, and we get the following result.
Theorem 1:Consider the optimal control problem (8.26):

Maximize
∫ tf

t0

f0(t, x(t), u(t))dt

subject to
dynamics: ẋ(t) = f(t, x(t), u(t)), t0 ≤ t ≤ tf ,
initial conditions: g0(x(t0)) = b0 ,
final conditions: gf (x(tf )) = bf ,
control constraint: u(·) ∈ U .

(8.26)

Let u∗(·) ∈ U , let x∗0 ∈ T o and letx∗(t) = φ(t, t0, x∗0, u
∗(·)), and suppose thatx∗(tf ) ∈ T f . If

(u∗(·), x∗0) is optimal, then there exists a functioñp∗ = (p∗0, p
∗) : [t0, tf ] → R1+m, not identically

zero, and withp∗0(t) ≡ constant andp∗0(t) ≥ 0, satisfying

(augmented) adjoint equation:
·
p̃∗ (t) = −[∂f̃∂x̃(t, x∗(t), u∗(t))]′p̃∗(t) ,

initial condition: p∗(t0)⊥T 0(x∗0) ,
final condition: p∗(tf )⊥T f (x∗(tf )) .
Futhermore, themaximum principle

H̃(t, x∗(t), p̃∗(t), u∗(t)) = M̃(t, x∗(t), p̃∗(t))

holds for all t ∈ [t0, tf ] except possibly for a finite set. [HerẽH(t, x, p̃, u) = p̃′f̃(t, x, u) =
p0f0(t, x, u) + p′f(t, x, u), andM̃(t, x, p̃) = sup{H̃(t, x, p̃, v)|v ∈ Ω}.]

Finally, if f0 andf do not explicitly depend ont, thenM̃(t, x∗(t), p̃∗(t)) ≡ constant.

Exercise 1:Prove Theorem 1. (Hint: For the final part show that(d/dt) M̃(t, x∗(t), p̃∗(t)) ≡ 0.)
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8.3 Variable Final Time

8.3.1 Main result.

In the problem considered up to now the final timetf is assumed to be fixed. In many important
cases the final time is itself a decision variable. One such case is the minimum-time problem where
we want to transfer the state of the system from a given initial state to a specified final state in
minimum time. More generally, consider the optimal control problem (8.27).

Maximize
∫ tf

t0

f0(t, x(t), u(t))dt

subject to
dynamics: ẋ(t) = f(t, x, (t), u(t)), , t0 ≤ t ≤ tf ,
initial condition: g0(x(t0)) = b0 ,
final condition: gf (x(t)f)) = bf ,
control constraint: u(·) ∈ U ,
final-time constraint: tf ∈ (t0,∞) .

(8.27)

We analyze (8.27) by converting the variable time interval[t0, tf ] into a fixed-time interval[0, 1].
This change of time-scale is achieved by regardingt as a new state variable and selecting a new
time variables which ranges over[0, 1]. The equation fort is

dt(s)
ds = α(s) , 0 ≤ s ≤ 1 ,

with initial condition

t(0) = t0 .

Hereα(s) is a new control variable constrained byα(s) ∈ (0,∞). Now if x(·) is the solution of

ẋ(t) = f(t, x(t), u(t)) , t0 ≤ t ≤ tf , x(t0) = x0 (8.28)

and if we define

z(s) = x(t(s)), v(s) = u(t(s)) , 0 ≤ s ≤ 1 ,

then it is easy to see thatz(·) is the solution of

dz
ds (s) = α(s)f(s, z(s), v(s)) , 0 ≤ s ≤ 1 z(0) = x0 . (8.29)

Conversely from the solutionz(·) of (8.29) we can obtain the solutionx(·) of (8.28) by

x(t) = z(s(t)) , t0 ≤ t ≤ tf ,

wheres(·) : [t0, tf ] → [0, 1] is the functional inverse ofs(t); in fact, s(·) is the solution of the
differential equatioṅs(t) = 1/α(s(t)), s(t0) = 0.
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With these ideas in mind it is natural to consider the fixed-final-time optimal control problem
(8.30), where the state vector(t, z) ∈ R1+m, and the control(α, v) ∈ R1+p :

Maximize
∫ 1

0
f0(t(s), z(s), v(s))α(s)ds

subject to
dynamics: (ż(s), ṫ(s)) = (f(t(s), z(s), v(s))α(s), α(s)),
initial constraint: g0(z(0)) = b0, t(0) = t0 ,
final constraint: gf (z(1)) = bf , t(1) ∈ R ,
control constraint: (v(s), α(s)) ∈ Ω × (0,∞)

for 0 ≤ s ≤ 1 andv(·), α(·) piecewise continuous.

(8.30)

The relation between problems (8.27) and (8.30) is established in the following result.

Lemma 1:(i) Let x∗0 ∈ T 0, u∗(·) ∈ U , t∗f ∈ (t0,∞) and letx∗(t) = φ(t, t0, x∗0, u
∗(·)) be the

corresponding trajectory. Suppose thatx∗(t∗f ) ∈ T f , and suppose that(u∗(·), x∗0, t∗f ) is optimal for
(8.27). Definez∗0 , v∗(·), andα∗(·) by

z∗0 = x∗0
v∗(s) = u∗(t0 + s(t∗f − t0))
α∗(s) = (t∗f − t0)

, 0 ≤ s ≤ 1 ,
, 0 ≤ s ≤ 1 .

Then((v∗(·), α∗(·)), z∗0 ) is optimal for (8.30).
(ii) Let z∗0 ∈ T 0, and let(v∗(·), α∗(·)) be an admissible control for (8.30) such that the correspond-
ing trajectory(t∗(·), z∗(·)) satisfies the final conditions of (8.30). Suppose that((v∗(·), α∗(·)), z∗0 )
is optimal for (8.30). Definex∗0, u∗(·) ∈ U , andt∗f by

x∗0 = z∗0 ,
u∗(t) = v∗(s∗(t)) , t0 ≤ t ≤ t∗f ,
t∗f = t∗(1) ,

wheres∗(·) is functional inverse oft∗(·). Then(u∗(·), z∗0 , t∗f ) is optimal for (8.27).

Exercise 1:Prove Lemma 1.
Theorem 1:Let u∗(·) ∈ U , let x∗0 ∈ T 0, let t∗f ∈ (0,∞), and let

x∗(t) = φ(t, t0, x∗0, u∗(·)), t0 ≤ t ≤ tf , and suppose thatx∗(t∗f ) ∈ T f . If (u∗(·), x∗0, t∗f ) is optimal
for (8.27), then there exists a functioñp∗ = (p∗0, p

∗) : [t0, t∗f ] → R1+m, not identically zero, and
with p∗0(t) ≡ constant andp∗0(t) ≥ 0, satisfying

(augmented) adjoint equation:
·
p̃
∗

(t) = −[∂f̃∂x̃(t, x∗(t), u∗(t))]′p̃∗(t) ,
(8.31)

initial condition: p∗(t0)⊥T 0(x∗0) , (8.32)
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final condition: p∗(t∗f )⊥T f (x∗(t∗f )) . (8.33)

Also themaximum principle

H̃(t, x∗(t), p̃∗(t), u∗(t)) = M̃(t, x∗(t), p̃∗(t)) , (8.34)

holds for allt ∈ [t0, tf ] except possibly for a finite set. Furthermore,t∗f must be such that

Ĥ(t∗f , x
∗(t∗f ), p̃

∗(t∗f ), u
∗(t∗f )) = 0 . (8.35)

Finally, if f0 andf do not explicitly depend ont, thenM̂(t, x∗(t), p̃∗(t)) ≡ 0.

Proof: By Lemma 1,z∗0 = x∗0, v
∗(s) = u∗(t0 + s(t∗f − t0)) andα∗(s) = (t∗f − t0) for 0 ≤ s ≤ 1

constitute an optimal solution for (8.30). The resulting trajectory is
z∗(s) = x∗(t0 + s(t∗f − t0)), t∗(s) = t0 + s(t∗f − t0), 0 ≤ s ≤ 1 , so that in particular
z∗(1) = x∗(t∗f ).
By Theorem 1 of Section 2, there exists a functionλ̃∗ = (λ∗0, λ∗, λ∗n+1) : [0, 1] → R1+n+1, not
identically zero, and withλ∗0(s) ≡ constant andλ∗0(s) ≥ 0, satisfying

adjoint equation:




λ̇∗0(t)
λ̇∗(t)

λ̇∗n+1(t)


 = −




0
{[∂f0∂z (t∗(s), z∗(s), v∗(s))]′λ∗0(s)
+[∂f∂z (t

∗(s), z∗(s), v∗(s))]′λ∗(s)}α∗(s)
{[∂f0∂t (t∗(s), z∗(s), v∗(s))]′λ∗0(s)
+[∂f∂t (t

∗(s), z∗(s), v∗(s))]′λ∗(s)}α∗(s)


 (8.36)

initial condition: λ∗(0)⊥T 0(z∗0) (8.37)

final condition: λ∗(1)⊥T f (z∗(1)) , λ∗n+1(1) = 0 . (8.38)

Furthermore, the maximum principle

λ∗0(s)f0(t∗(s), z∗(s), v∗(s))α∗(s)
+λ∗(s)′f(t∗(s), z∗(s), v∗(s))α∗(s) + λ∗n+1(s)α

∗(s)
= sup{[λ∗0(s)f0(t∗(s), z∗(s), w)β

+λ∗(s)′f(t∗(s), z∗(s), w)β + λ∗n+1(s)β]|w ∈ Ω, β ∈ (0,∞)}
(8.39)

holds for alls ∈ [0, 1] except possibly for a finite set.
Let s∗(t) = (t− t0)/(t∗f − t0), t0 ≤ t ≤ t∗f , and definẽp∗ = (p∗0, p∗) : [t0, t∗f ] → R1+n by

p∗0(t) = λ∗0(s∗(t)), p∗(t) = λ∗(s∗(t)), t0 ≤ t ≤ t∗f . (8.40)

First of all, p̃∗ is not identically zero. Because if̃p∗ ≡ 0, then from (8.40) we have(λ∗0, λ∗) ≡ 0 and
then from (8.36),λ∗n+1 ≡ constant, but from (8.38),λ∗n+1(1) = 0 so that we would havẽλ∗ ≡ 0
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which is a contradiction. It is trivial to verify that̃p∗(·) satisfies (8.31), and, on the other hand (8.37)
and (8.38) respectively imply (8.32) and (8.33). Next, (8.39) is equivalent to

λ∗0(s)f0(t∗(s), z∗(s), v∗(s))
+λ∗(s)′f(t∗(s), z∗(s), v∗(s)) + λ∗n+1(s) = 0

(8.41)

and

λ∗0(s)f0(t∗(s), z∗(s), v∗(s)) + λ∗(s)′f(t∗(s), z∗(s), v∗(s))
= Sup{[λ∗0(s)f0(t∗(s), z∗(s), w) + λ∗(s)′f(t∗(s), z∗(s), w)]|w ∈ Ω}. (8.42)

Evidently (8.42) is equivalent to (8.34) and (8.35) follows from (8.41) and the fact thatλ∗n+1(1) = 0.
Finally, the last assertion of the Theorem follows from (8.35) and the fact thatM̃(t, x∗(t), p̃∗(t)) ≡
constant iff0, f are not explicitly dependent ont. ♦

8.3.2 Minimum-time problems

.
We consider the following special case of (8.27):

Maximize
∫ tf

t0

(−1)dt

subject to
dynamics: ẋ(t) = f(t, x(t), u(t)), t0 ≤ t ≤ tf
initial condition: x(t0) = x0 ,
final condition: x(tf ) = xf ,
control constraint: u(·) ∈ U ,
final-time constraint: tf ∈ (t0,∞) .

(8.43)

In (8.43),x0, xf are fixed, so that the optimal control problem consists of finding a control which
transfers the system from statex0 at timet0 to statexf in minimum time. Applying Theorem 1 to
this problem gives Theorem 2.
Theorem 2:Let t∗f ∈ (t0,∞) and letu∗ : [t0, t∗f ] → Ω be optimal. Letx∗(·) be the corresponding
trajectory. Then there exists a functionp∗ : [t0, t∗f ] → Rn, not identically zero, satisfying

adjoint equation:ṗ∗(t) = −[∂f∂x(t, x∗(t), u∗(t))]′p∗(t), t0 ≤ t ≤ t∗f ,
initial condition: p∗(t0) ∈ Rn ,
final condition:p∗(t∗f ) ∈ Rn .
Also themaximum principle

H(t, x∗(t), p∗(t), u∗(t)) = M(t, x∗(t), p∗(t)) (8.44)

holds for allt ∈ [t0, t∗f ] except possibly for a finite set.
Finally,

M(t∗f , x
∗(tf ), p∗(tf )) ≥ 0 (8.45)

and iff does not depend explicitly ont then

M(t, x∗(t), p∗, (t)) ≡ constant . (8.46)
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Exercise 2:Prove Theorem 2.
We now study a simple example illustrating Theorem 2.Example 1:The motion of a particle is
described by

mẍ(t) + σẋ(t) = u(t) ,

wherem = mass,σ = coefficient of friction,u = applied force, andx = position of the particle. For
simplicity we suppose thatx ∈ R, u ∈ R andu(t) constrained by|u(t)| ≤ 1. Starting with an
initial condition x(0) = x01, ẋ(0) = x02 we wish to find an admissible control which brings the
particle to the statex = 0, ẋ = 0 in minimum time.

Solution:Takingx1 = x, x2 = ẋ we rewrite the particle dynamics as

[
ẋ1(t)
ẋ2(t)

]
=

[
0 1
0 − α

] [
x1(t)
x2(t)

]
+

[
0
b

]
u(t) , (8.47)

whereα = (σ/m) > 0 andb = (1/m) > 0. The control constraint set isΩ = [−1, 1].
Suppose thatu∗(·) is optimal andx∗(·) is the corresponding trajectory. By Theorem 2 there exists

a non-zero solutionp∗(·) of

[
ṗ∗1(t)
ṗ∗2(t)

]
= −

[
0 0
1 − α

] [
p∗1(t)
p∗2(t)

]
(8.48)

such that (8.44), (8.45), and (8.46) hold. Now the transition matrix function of the homogeneous
part of (8.47) is

Φ(t, τ) =
[

1 1
α(1 − e−α(t−τ))

0 e−α(t−τ)

]
,

so that the solution of (8.48) is[
p∗1(t)
p∗2(t)

]
=

[
1 0

1
α(1 − eαt) eαt

] [
p∗1(0)
p∗2(0)

]
,

or

p∗1(t) ≡ p∗1(0) ,

and

p∗2(t) = 1
αp

∗
1(0) + eαt(− 1

αp
∗
1(0) + p∗2(0)) . (8.49)

The HamiltonianH is given by

H(x∗(t), p∗(t), v) = (p∗1(t) − αp∗2(t))x∗2(t) + bp∗2(t)v
= eαt(p∗1(0) − αp∗2(0))x

∗
2(t) + pb∗2(t)v ,
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so that from the maximum principle we can immediately conclude that

u∗(t) =




+1 if p∗2(t) > 0,
−1 if p∗2(t) < 0,
? if p∗2(t) = 0 .

(8.50)

Furthermore, since the right-hand side of (8.47) does not depend ont explicitly we must also have

eαt(p∗1(0) − αp∗2(0))x
∗
2(t) + bp∗2(t)u

∗(t) ≡ constant. (8.51)

We now proceed to analyze the consequences of (8.49) and (8.50). First of all sincep∗1(t) ≡
p∗1(0), p∗2(·) can have three qualitatively different forms.
Case 1.−p∗1(0) + αp∗2(0) > 0: Evidently then, from (8.49) we see thatp∗2(t) must be a strictly
monotonically increasing function so that from (8.50)u∗(·) can behave in one of two ways:

either

u∗(t) =
{ −1 for t < t̂ and p∗2(t) < 0 for t < t̂,

+1 for t > t̂ and p∗2(t) > 0 for t > t̂,

or

u∗(t) ≡ +1 and p∗2(t) > 0 for all t.

Case 2.−p∗1(0) + αp∗2(0) < 0 : Evidentlyu∗(·) can behave in one of two ways:

either

u∗(t) =
{

+1 for t < t̂ and p∗2(t) > 0 for t < t̂,

−1 for t > t̂ and p∗2(t) < 0 for t > t̂,

or

u∗(t) ≡ −1 and p∗(t) < 0 for all t.

Case 3.−p∗1(0) + αp∗2(0) = 0 : In this casep∗2(t) ≡ (1/α)p∗1(0). Also sincep∗(t) 6≡ 0, we must
have in this casep∗1(0) 6= 0. Henceu∗(·) we can behave in one of two ways:

either

u∗(t) ≡ +1 and p∗2(t) ≡ 1
αp

∗
1(0) > 0 ,

or

u∗(t) ≡ −1 and p∗2(t) ≡ 1
αp

∗
1(0) < 0 ,
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Thus, the optimal controlu∗ is always equal to +1 or -1 and it can switch at most once between
these two values. The optimal control is given by

u∗(t) = sgn p∗2(t)
= sgn[ 1

αp
∗
1(0) + eαt(− 1

αp
∗
1(0) + p∗2(0))] .

Thus the search for the optimal control reduces to findingp∗1(0), p∗2(0) such that the solution of the
differential equation

ẋ = x2

ẋ2 = −αx2 + b sgn[ 1
αp

∗
1(0) + eαt(− 1

αp
∗
1(0) + p∗2(0))] ,

(8.52)

with initial condition

x1(0) = x10, x20 = x20 (8.53)

also satisfies the final condition

x1(t∗f ) = 0, x2(t∗f ) = 0 , (8.54)

for somet∗f > 0; and thent∗f is the minimum time.
There are at least two ways of solving the two-point boundary value problem (8.52), (8.53), and

(8.54). One way is to guess at the value ofp∗(0) and then integrate (8.52) and (8.53)forward in time
and check if (8.54) is satisfied. If (8.54) is not satisfied then modifyp∗(0) and repeat. An alternative
is to guess at the value ofp∗(0) and then integrate (8.52) and (8.54)backwardin time and check of
(8.53) is satisfied. The latter approach is more advantageous because we know that any trajectory
obtained by this procedure is optimal for initial conditions which lie on the trajectory. Let us follow
this procedure.

Suppose we choosep∗(0) such that−p∗1(0) = αp∗2(0) = 0 andp∗2(0) > 0. Then we must have
u∗(t) ≡ 1. Integrating (8.52) and (8.54) backward in time give us a trajectoryξ(t) where

ξ̇1(t) = −ξ̇2(t)
ξ̇2(t) = αξ2(t) − b ,

with

ξ1(0) − ξ2(0) = 0 .

This gives

ξ1(t) = b
α(−t+ eαt−1

α ) , ξ2(t) = b
α (1 − eαt) ,

which is the curveOA in Figure 8.3.
On the other hand, ifp∗(0) is such that−p∗1(0) + αp∗2(0) = 0 andp∗2(0) < 0, thenu∗(t) ≡ −1

and we get

ξ1(t) = − b
α(−t+ eαt−1

α ) , ξ2(t) = − b
α(1 − eαt) ,

which is the curveOB.
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B
u∗ ≡ −1

D

u∗ ≡ 1
C

ξ1

O ξ2

u∗ ≡ 1

A

E

u∗ ≡ −1
F

Figure 8.3: Backward integration of (8.52) and (8.54).

Next supposep∗(0) is such that−p∗1(0) + αp∗2(0) > 0, andp∗2(0) < 0. Then [(1/α)p∗1(0) +
eαt(−(1/α)p∗1(0) + p∗2(0))] will have a negative value fort ∈ (0, t̂) and a positive value fort ∈
(t̂,∞). Hence, if we integrate (8.52), (8.54) backwards in time we get trajectoryξ(t) where

ξ̇(t) = −ξ2(t)
ξ̇2(t) = αξ2(t)+

{−b for t < t̂

b for t > t̂ ,

with ξ1(0) = 0, ξ2(0) = 0. This give us the curveOCD. Finally if p∗(0) is such that−p∗1(0) +
αp∗2(0) < 0, andp∗2(0) < 0, thenu∗(t) = 1 for t < t̂ andu∗(t) = −1 for t > t̂, and we get the
curveOEF .

We see then that the optimal controlu∗(·) has the following characterizing properties:

u∗(t) =
{

1 if x∗(t) is aboveBOAor onOA
−1 if x∗(t) is belowBOAor onOB .

Hence we can synthesize the optimal control in feedback from:u∗(t) = ψ(x∗(t)) where the

B u∗ ≡ −1 x2

u∗ ≡ 1

x1

Au∗ ≡ 1

Ou∗ ≡ −1

Figure 8.4: Optimal trajectories of Example 1.
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functionψ : R2 → {1,−1} is given by (see Figure 8.4)

ψ(x1, x2) =
{

1 if (x1, x2) is aboveBOAor onOA
−1 if (x1, x2) is belowBOAor onOB .

8.4 Linear System, Quadratic Cost

An important class of problems which arise in practice is the case when the dynamics are linear and
the objective function is quadratic. Specifically, consider the optimal control problem (8.55):

Minimize
∫ T

0

1
2
[x′(t)P (t)x(t) + u′(t)Q(t)u(t)]dt

subject to
dynamics: ẋ(t) = A(t)x(t) +B(t)u(t), 0 ≤ t ≤ T ,
initial condition: x(0) = x0 ,
final condition: Gfx(t) = bf ,
control constraint: u(t) ∈ Rp, u(·) piecewise continuous.

(8.55)

In (8.56) we assume thatP (t) is ann×n symmetric, positive semi-definite matrix whereasQ(t) is
a p × p symmetric, positive definite matrix.Gf is a given`f × n matrix, andx0 ∈ Rn, bf ∈ R`f

are given vectors.T is a fixed final time.
We apply Theorem 1 of Section 2, so that we must search for a numberp∗0 ≥ 0 and a function

p∗ : [0, T ] → Rn, not both zero, such that

ṗ∗(t) = −p∗0(−P (t)x∗(t)) −A′(t)p∗(t) , (8.56)

and

p∗(t)⊥T f (x∗(t)) = {ξ|Gf ξ = 0} . (8.57)

The Hamiltonian function is

H(t, x∗(t), p̃∗(t), v) = −1
2p

∗
0[x

∗(t)′P (t)x∗(t) + v′Q(t)v]
+p∗(t)′[A(t)x∗(t) +B(t)v]

so that the optimal controlu∗(t) must maximize

−1
2p

∗
0v

′Q(t)v + p∗(t)′B(t)v for v ∈ Rp . (8.58)

If p∗0 > 0, this will imply

u∗(t) = 1
p∗0
Q−1(t)B′(t)p∗(t) , (8.59)

whereas ifp∗0 = 0, then we must have

p∗(t)′B(t) ≡ 0 (8.60)

because otherwise (8.58) cannot have a maximum.
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We make the following assumption about the system dynamics.
Assumption:The control systeṁx(t) = A(t)x(t) + B(t)u(t) is controllable over the interval
[0, T ]. (See (Desoer [1970]) for a definition of controllability and for the properties we use below.)
Let Φ(t, τ) be the transition matrix function of the homogeneous linear differential equationẋ(t) =
A(t)x(t). Then the controllability assumption is equivalent to the statement that for anyξ ∈ Rn

ξ′Φ(t, τ)B(τ) = 0 , 0 ≤ τ ≤ T , impliesξ = 0 . (8.61)

Next we claim that if the system is controllable thenp∗0 6= 0, because ifp∗0 = 0 then from (8.56)
we can see that

p∗(t) = (Φ(T, t))′p∗(T )

and hence from (8.60)

(p∗(t))′Φ(T, t)B(t) = 0 , 0 ≤ t ≤ T ,

but then from (8.61) we getp∗(T ) = 0. Hence ifp∗0 = 0, then we must havẽp∗(t) ≡ 0 which is a
contradiction. Thus, under the controllability assumption,p∗0 > 0, and hence the optimal control is
given by (8.59). Now ifp∗0 > 0 it is trivial that p̂∗(t) = (1, (p∗(t)/p∗0)) will satisfy all the necessary
conditions so that we can assume thatp∗0 = 1. The optimal trajectory and the optimal control is
obtained by solving the following two-point boundary value problem:

ẋ∗(t) = A(t)x∗(t) +B(t)Q−1(t)B′(t)p∗(t)
ṗ(t) = P (t)x∗(t) −A′(t)p∗(t)
x∗(0) = x0, G

fx∗(T ) = bf , p∗(T )⊥T f (x∗(T )) .

For further details regarding the solution of this boundary value problem and for related topics see
(See and Markus [1967]).

8.5 The Singular Case

In applying the necessary conditions derived in this chapter it sometimes happens thatH(t, x∗(t), p∗(t), v)
is independent ofv for values oft lying in a non-zero interval. In such cases the maximum principle
does not help in selecting the optimal value of the control. We are faced with the so-called singular
case (because we are in trouble–not because the situation is rare). We illustrate this by analyzing
Example 4 of Chapter 1.

The problem can be summarized as follows:

Maximize
∫ T

0
c(t)dt =

∫ T

0
(1 − s(t))f(k(t))dt

subject to
dynamics: k̇(t) = s(t)f(k(t)) − µk(t) , 0 ≤ t ≤ T
initial constraint: k(0) = k0 ,
final constraint: k(t) ∈ R ,
control constraint: s(t) ∈ [0, 1], s(·) piecewise continuous.
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We make the following assumptions regarding the production functionf :

fk(k) > 0, fkk(K) < 0 for all k , (8.62)

lim
k→0

fk(k) = ∞ . (8.63)

Assumption (8.62) says that the marginal product of capital is positive and this marginal product
decreases with increasing capital. Assumption (8.63) is mainly for technical convenience and can
be dispensed with without difficulty.

Now suppose thats∗ : [0, T ] → [0, 1] is an optimal savings policy and letk∗(t), 0 ≤ t ≤ T ,
be the corresponding trajectory of the capital-to-labor ratio. Then by Theorem 1 of Section 2, there
exist a numberp∗0 ≥ 0, and a functionp∗ : [0, T ] → R, not both identically zero, such that

ṗ∗(t) = −p∗0(1 − s∗(t))fk(k∗(t)) − p∗(t)[s∗(t)fk(k∗(t)) − µ] (8.64)

with the final condition

p∗(T ) = 0 , (8.65)

and the maximum principle holds. First of all, ifp∗0 = 0 then from (8.64) and (8.65) we must also
havep∗(t) ≡ 0. Hence we must havep∗0 > 0 and then by replacing(p∗0, p

∗) by (1/p∗0)(p
∗
0, p

∗) we
can assume without losing generality thatp∗0 = 1, so that (8.64) simplifies to

ṗ∗(t) = −1(1 − s∗(t))fk(k∗(t)) − p∗(t)[s∗(t)fk(k∗(t)) − µ] . (8.66)

The maximum principle says that

H(t, k∗(t), p∗(t), s) = (1 − s)f(k∗(t)) + p∗(t)[sf(k∗(t)) − µk∗(t)]

is maximized overs ∈ [0, 1] ats∗(t), which immediately implies that

s∗(t) =




1 if p∗(t) > 1
0 if p∗(t) < 1
? if p∗(t) = 1

(8.67)

We analyze separately the three cases above.
Case 1.p∗(t) > 1, s∗(t) = 1 : Then the dynamic equations become

k̇∗(t) = f(k∗(t)) − µk∗(t) ,
ṗ∗(t) = −p∗(t)[fk(k∗(t)) − µ] .

(8.68)

The behavior of the solutions of (8.68) is depicted in the(k, p)−, (k, t)− and(p, t)−planes in
Figure 8.5. HerekG, kH are the solutions offk(kG)− µ = 0 andf(kM )− µk = 0. Such solutions
exist and are unique by virtue of the assumptions (8.62) and (8.63). Futhermore, we note from

(8.62) thatkG < kM , andfk(k) − µ
<
> 0 according ask

<
> kG whereasf(k) − µk

>
< 0 according

ask
<
> kM . (See Figure 8.6.)
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Figure 8.5: Illustration for Case 1.

Case 2.p∗(t) < 1, s∗(t) = 0: Then the dynamic equations are

k̇∗(t) = −µk∗(t) ,
ṗ∗(t) = −fk(k∗(t)) + µp∗(t) ,

giving rise to the behavior illustrated in Figure 8.7.
Case 3.p∗(t) = 1, s∗(t) =?: (Possibly singular case.) Evidently ifp∗(t) = 1 only for a finite set of
timest then we do not have to worry about this case. We face the singular case only ifp∗(t) = 1
for t ∈ I, whereI is a non-zero interval. But then we haveṗ∗(t) = 0 for t ∈ I so that from (8.66)
we get

−(1 − s∗(t))fk(k∗(t)) − [s∗(t)fk(k∗(t)) − µ] = 0 for t ∈ I ,

so

−fk(k∗(t)) + µ = 0 for t ∈ I ,

or

k∗(t) = kG for t ∈ I . (8.69)

In turn then we must havėk∗(t) = 0 for t ∈ I so that

s∗(t)f(kG) − µKG = 0 for t ∈ I ,

and hence,

s∗(t) = µ kG
f(kG) for t ∈ I . (8.70)
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Figure 8.6: Illustration for assumptions (8.62), (8.63).

Thus in the singular case the optimal solution is characterized by (8.69) and (8.70), as in Figure 8.8.

We can now assemble separate cases to obtain the optimal control. First of all, from the final
condition (8.65) we know that fort close toT, p∗(t) < 1 so that we are in Case 2. We face two
possibilities: Either (A)

p∗(t) < 1 for all t < [0, T ]

and thens∗(t) = 0, k∗(t) = k0e
−µt, for 0 ≤ t ≤ T , or (B)

there existst2 ∈ (0, T ) such thatp∗(t2) = 1 andp∗(t) < 1 for t2 < t ≤ T .

We then have three possibilities depending on the value ofk∗(t2):
(Bi) k∗(t2) < kG : then ṗ∗(t2) < 0 so thatp∗(t) > 1 for t < t2 and we are in Case 1 so that
s∗(t) = 1 for t < t2. In particular we must havek0 < kG.
(Bii) k∗(t2) > kG : thenṗ∗(2) > 0 but thenp∗(t2 + ε) > 1 for ε > 0 sufficiently small and since
p∗(T ) = 0 there must existt3 ∈ (t2, T ) such thatp∗(t3) = 1. This contradicts the definition oft2
so that this possibility cannot arise.
(Biii) k∗(t2) − kG : then we can have a singular arc in some interval(t1, t2) so thatp∗(t) =
1, k∗(t) = kG, ands∗(t) = µ(kG/f(kG)) for t ∈ (t1, t2). For t < t1 we either havep∗(t) >
1, s∗(t) > 1 if k0 < kG, or we havep∗(t) < 1, s∗(t) = 0 if k > kG.

The various possibilities are illustrated in Figure 8.9.
The capital-to-labor ratiokG is called thegolden meanand the singular solution is called the

golden path.The reason for this term is contained in the following exercise.

Exercise 1:A capital-to-labor ratiôk is said to besustainableif there existŝs ∈ [0, 1] such that
ŝf(k̂) − µk̂ = 0. Show thatkG is the unique sustainable capital-to-labor ratio which maximizes
sustainable consumption(1 − s)f(k).
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Figure 8.7: Illustration for Case 2.

8.6 Bibliographical Remarks

The results presented in this chapter appeared in English in full detail for the first time in 1962 in the
book by Pontryagin,et al., cited earlier. That book contains many extensions and many examples
and it is still an important source. However, the derivation of the maximum principle given in the
book by Lee and Markus is more satisfactory. Several important generalizations of the maximum
principle have appeared. On the one hand these include extensions to infinite-dimensional state
spaces and on the other hand they allow for constraints on the state more general than merely initial
and final constraints. For a unified, but mathematically difficult, treatment see (Neustadt [1969]).
For a less rigorous treatment of state-space constraints see (Jacobson,et al, [1971]), whereas for a
discussion of the singular case consult (Kelley,et al. [1968]).

For an applications-oriented treatment of this subject the reader is referred to (Athans and Falb
[1966]) and (Bryson and Ho [1969]). For applications of the maximum principle to optimal eco-
nomic growth see (Shell [1967]). There is no single source of computational methods for optimal
control problems. Among the many useful techniques which have been proposed see (Lasdon,et
al., [1967]), (Kelley [1962]), (McReynolds [1966]), and (Balakrishnan and Neustadt [1964]); also
consult (Jacobson and Mayne [1970]), and (Polak [1971]).
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Figure 8.8: Case 3. The singular case.
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Chapter 9

Dynamic programing

SEQUENTIAL DECISION PROBLEMS: DYNAMIC PROGRAMMING FORMULATION
The sequential decision problems discussed in the last three Chapters were analyzed by varia-

tional methods,i.e., the necessary conditions for optimality were obtained by comparing the op-
timal decision with decisions in a small neighborhood of the optimum. Dynamic programming
(DP is a technique which compares the optimal decision withall the other decisions. This global
comparison, therefore, leads to optimality conditions which aresufficient. The main advantage of
DP, besides the fact that it give sufficiency conditions, is that DP permits very general problem for-
mulations which do not require differentiability or convexity conditions or even the restriction to a
finite-dimensional state space. The only disadvantage (which unfortunately often rules out its use)
of DP is that it can easily give rise to enormous computational requirements.

In the first section we develop the main recursion equation of DP for discrete-time problems. The
second section deals with the continuous-time problem. Some general remarks and bibliographical
references are collected in the final section.

9.1 Discrete-time DP

We consider a problem formulation similar to that of Chapter VI. However, for notational conve-
nience we neglect final conditions and state-space constraints.

Maximize
N−1∑
i=0

f0(i, x(i), u(i)) + Φ(x(N))

subject to
dynamics: x(i+ 1) = f(i, x(i), u(i)) , i = 0, 1, . . . ,N − 1 ,
initial condition: x(0) = x0 ,
control constraint: u(i) ∈ Ωi , i = 0, 1, . . . ,N − 1 .

(9.1)

In (9.1), the statex(i) and the controlu(i) belong to arbitrary setsX andU respectively.X andU
may be finite sets, or finite-dimensional vector spaces (as in the previous chapters), or even infinite-
dimensional spaces.x0 ∈ X is fixed. TheΩi are fixed subsets ofU . Finally f0(i, ·, ·) : X × U →
R,Φ : X → R, f(i, ·, ·) : X × U → X are fixed functions.

121
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The main idea underlying DP involves embedding the optimal control problem (9.1), in which
the system starts in statex0 at time0, into a family of optimal control problems with the same
dynamics, objective function, and control constraint as in (9.1) but with different initial states and
initial times. More precisely, for eachx ∈ X andk between) andN − 1, consider the following
problem:

Maximize
N−1∑
i=k

f0(i, x(i), u(i)) + Φ(x(N)) ,

subject to
dynamics: x(i+ 1) = f(i, x(i), u(i)), i = k, k + 1, . . . ,N − 1,
initial condition: x(k) = x,
control constraint:u(i) ∈ Ωi, i = k, k + 1, ·,N − 1 .

(9.2)

Since the initial timek and initial statex are the only parameters in the problem above, we will
sometimes use the index(9.2)k,x to distinguish between different problems. We begin with an
elementary but crucial observation.
Lemma 1: Supposeu∗(k), . . . , u∗(N − 1) is an optimal control for(9.2)k,x, and letx∗(k) =
x, x∗(k + 1), . . . , x∗(N) be the corresponding optimal trajectory. Then for any`, k ≤ ` ≤ N −
1, u∗(`), . . . , u∗(N − 1) is an optimal control for(9.2)`,x∗(`).
Proof: Suppose not. Then there exists a controlû(`), û(`+ 1), . . . , û(N − 1), with corresponding
trajectoryx̂(`) = x∗(`), x̂(`+ 1), . . . , x̂(N), such that

N−1∑
i=`

f0(i, x̂(i), û(i)) + Φ(x̂(N))

>

N−1∑
i=`

f0(i, x∗(i), u∗(i)) + Φ(x∗(N)) .

(9.3)

But then consider the control̃u(k), . . . , ũ(N − 1) with

ũ(i)
{
u∗(i) , i = k, . . . , `− 1
û(i) , i = `, . . . ,N − 1 ,

and the corresponding trajectory, starting in statex at timek, is x̃(k), . . . , x̃(N) where

x̃(i) =
{
x∗(i) , i = k, . . . , `
x̂(i) , i = `+ 1, . . . ,N .

The value of the objective function corresponding to this control for the problem(9.2)k,x is

N−1∑
i=k

f0(i, x̃(i), ũ(i)) + Φ(x̃(n))

=
`−1∑
i=k

f0(i, x∗(i), u∗(i)) +
N−1∑
i=`

f0(i, x̂(i), û(i)) + Φ(x̂(N))

>

N−1∑
i=k

f0(i, x∗(i), u∗(i)) + Φ(x∗(N)) ,



9.1. DISCRETE-TIME DP 123

by (9.3), so thatu∗(k), . . . , u∗(N − 1) cannot be optimal for9.2)k, x, contradicting the hypothesis.
(end theorem)

From now on we assume that an optimal solution to(9.2)k,x exists for all0 ≤ k ≤ N −1, and all
x ∈ X. LetV (k, x) be the maximum value of(9.2)k,x. We callV the(maximum) value function.
Theorem 1:DefineV (N, ·) by (V (N,x) = Φ(x). V (k, x) satisfies the backward recursion equa-
tion

V (k, x) = Max{f0, (k, x, u) + V (k1, f(k, x, u, ))|u ∈ Ωk}, 0 ≤ k ≤ N − 1 . (9.4)

Proof: Let x ∈ X, let u∗(k), . . . , u∗(N − 1) be an optimal control for(9.2)k,x, and letx∗(k) =
x, . . . , x∗(N) be the corresponding trajectory bex(k) = x, . . . , x(N). We have

N−1∑
i=k

f0(i, x∗(i), u∗(i)) + Φ(x∗(N))

≥
N−1∑
i=k

f0(i, x(i), u(i)) + Φ(x(N)) .

(9.5)

By Lemma 1 the left-hand side of (9.5) is equal to

f0(k, x, u∗(k)) + V (k + 1, f(k, x∗, u∗(k)) .

On the other hand, by the definition ofV we have

N−1∑
i=k

f0(i, x(i), u(i)) + Φ(x(N)) = f0(k, x, u(k))

+{
N∑

i=k+1

f0(i, x(i), u(i)) + Φ(x(N)) ≤ f0(k, x, u, (k)) + V (k + 1, f(k, x, u(k))} ,

with equality if and only ifu(k+1), . . . , u(N −1) is optimal for(9.2)k+1,x(k+1). Combining these
two facts we get

f0(k, xu∗(k)) + V (k + 1, f(k, x, u∗(k)))
≥ f0(k, x, u(k)) + V (k + 1, f(x, k, u(k))) ,

for all u(k) ∈ Ωk, which is equivalent to (9.4).(end theorem)
Corollary 1: Let u(k), . . . , u(N − 1) be any control for the problem(9.2)k,x and letx(k) =
x, . . . , x(N) be the corresponding trajectory. Then

V (`, x(`)) ≤ f0(`, x(`), u(`)) + V (`+ 1, f(`, x(`), u(`)), k ≤ ` ≤ N − 1 ,

and equality holds for allk ≤ ` ≤ N − 1 if and only if the control is optimal for(9.2)k,x.
Corollary 2: Fork = 0, 1, . . . ,N − 1, letψ(k, ·) : X → Ωk be such that

f0(k, x, ψ(k, x)) + V (k + 1, f(k, x, ψ(k, x))
= Max{f0(k, x, u) + V (k + 1, f(k, x, u))|u ∈ Ωk} .

Thenψ(k, ·), k = 0, . . . ,N − 1 is an optimal feedback control, i.e., for any k, x the control
u∗(k), . . . , u∗(N − 1) defined byu∗(`) = ψ(`, x∗(`)), k ≤ ` ≤ N − 1, where
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x∗(`+ 1) = f(`, x∗(`), ψ(`, x∗(`)), k ≤ ` ≤ N − 1 , x∗(k) = x ,

is optimal for(α)k,x.
Remark:Theorem 1 and Corollary 2 are the main results of DP. The recursion equation (9.4) al-
lows us to compute the value function, and in evaluating the maximum in (9.4) we also obtain the
optimum feedback control. Note that this feedback control is optimum forall initial conditions.
However, unless we can find a “closed-form” analytic solution to (9.4), the DP formulation may
necessitate a prohibitive amount of computation since we would have to compute and store the val-
ues ofV andψ for all k andx. For instance, supposen = 10 and the state-spaceX is a finite set
with 20 elements. Then we have to compute and store10 × 20 values ofV , which is a reasonable
amount. But now supposeX = Rn and we approximate each dimension ofx by 20 values. Then
for N = 10, we have to compute and store10x(20)n values ofV . Forn = 3 this number is 80,000,
and forn = 5 it is 32,000,000, which is quite impractical for existing computers. This “curse of
dimensionality” seriously limits the applicability of DP to problems where we cannot solve (9.4)
analytically.

• Exercise 1:An instructor is preparing to lead his class for a long hike. He assumes that each
person can take up toW pounds in his knapsack. There areN possible items to choose from.
Each unit of itemi weighswi pounds. The instructor assigns a numberUi > 0 for each
unit of item i. These numbers represent the relative utility of that item during the hike. How
many units of each item should be placed in each knapsack so as to maximize total utility?
Formulate this problem by DP.

9.2 Continuous-time DP

We consider a continuous-time version of (9.2):

Maximize
∫ tf
0 f0(t, x(t), u(t))dt + Φ(x(tf ))

subject to
dynamics: ẋ(t) = f(t, x(t), u(t)) , t0 ≤ t ≤ tf
initial condition: x(0) = x0 ,
control constraint: u : [t0, tf ] → Ω and u(·) piecewise continuous.

(9.6)

In (9.6),x ∈ Rn, u ∈ Rp, Ω ⊂ Rp. Φ : Rn → R is assumed differentiable andf0, f are assumed
to satisfy the conditions stated in VIII.1.1.

As before, fort0 ≤ t ≤ tf andx ∈ Rn, let V (t, x) be the maximum value of the objective
function over the interval[t, tf ] starting in statex at timet. Then it is easy to see thatV must satisfy

V (t, x) = Max{
∫ t+∆

t
f0(τ, x(τ), u(τ))dτ

+V (t+ ∆, x(t+ ∆))|u : [t, t+ ∆] → Ω},∆ ≥ 0 ,
(9.7)

and

V (tf , x) = Φ(x) . (9.8)
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In (9.7),x(τ) is the solution of

ẋ(τ) = f(τ, x(τ), u(τ)) , t ≤ τ ≤ t+ ∆ ,
x(t) = x .

Let us suppose thatV is differentiable int andx. Then from (9.7) we get

V (t, x) = Max{f0(t, x, u)∆ + V (t, x) + ∂V
∂x f(t, x, u)∆

+∂V
∂t (t, x)∆ + o(∆)|u ∈ Ω}, ∆ > 0 .

Dividing by ∆ > 0 and letting∆ approach zero we get theHamilton-Jacobi- Bellmanpartial
differentiable equation for the value function:

∂V
∂t (t, x) + Max{f0(t, x, u) + ∂V

∂x (t, x)f(t, x, u)|u ∈ Ω} = 0. (9.9)

Theorem 1:Suppose there exists a differentiable functionV : [t0, tf ] × Rn → R which satisfies
(9.9) and the boundary condition (9.8). Suppose there exists a functionψ : [t0, tf ] × Rn → Ω
with ψ piecewise continuous int and Lipschitz inx, satisfying

f0(t, x, ψ(t, x)) + ∂V
∂x f(t, x, ψ(t, x))

= Max{f0(t, x, u) + ∂V
∂x f(t, x, u)|u ∈ Ω} .

(9.10)

Thenψ is an optimal feedback control for the problem (9.6), andV is the value function.
Proof: Let t ∈ [t0, tf ] andx ∈ Rn. Let û : [t, tf ] → Ω be any piecewise continuous control and
let x̂(τ) be the solution of

·
x̂ (τ) = f(τ, x̂(τ), û(τ)) , t ≤ τ ≤ tf ,
x̂(t) = x .

(9.11)

Let x∗(τ) be the solution of

ẋ∗(τ) = f(τ, x∗(τ), ψ(τ, x∗(τ))) , t ≤ τ ≤ tf ,
x∗(τ) = x .

(9.12)

Note that the hypothesis concerningψ guarantees a solution of (9.12). Letu∗(τ) = ψ(τ, x∗, (τ)), t ≤
τ ≤ tf . To show thatψ is an optimal feedback control we must show that∫ tf

t
f0(tτ, x∗(τ), u∗(τ))dτ + Φ(x∗(τ))

≤
∫ tf

t
f0(τ, x∗(τ), û(τ))dτ + Φ(x̂(tf )) .

(9.13)

To this end we note that

V (tf , x∗(tf )) − V (t, x∗(t)) =
∫ tf

f

dV

dτ
(τ, x∗(τ))dτ

=∈tft {∂V
∂τ

(τ, x∗(τ) +
∂V

∂x
ẋ∗(τ)}dτ

= −
∫ tf

t
F − 0(τ, x∗(τ), u∗(τ))dτ ,

(9.14)
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using (9.9), (9.10). On the other hand,

V (tf , x̂(tf )) − V (t, x̂, (t)) =
∫ tf

t
{∂V
∂τ

(τ, x̂(τ)) +
∂V

∂x

·
x̃ (τ)}dτ

≤ −
∫ tf

t
f0(τ, x̂(τ), û∗(τ))dτ ,

(9.15)

using (9.9). From (9.14), (9.15), (9.8) and the fact thatx∗(t) = x̂(t) = x we conclude that

V (t, x) = Φ(x∗(tf )) +
∫ tf

t
f0(τ, x∗(τ), u∗(τ))

≥ Φ(x̂(tf )) +
∫ tf

t
f0(τ, x̂(τ), û(τ))dτ

so that (9.13) is proved. It also follows thatV is the maximum value function. ♦

• Exercise 1:Obtain the value function and the optimal feedback control for the linear regula-
tory problem:

Minimize 1
2x

′(T )P (T )x(t) + 1
2

∫
T0{x′(t)P (t)x(t)

+u′(t)Q(t)u(t)}dt
subject to

dynamics: ẋ(t) = A(t)x(t) +B(t)u(t) , 0 ≤ t ≤ T ,
initial condition: x(0) = x0 ,
control constraint: u(t) ∈ Rp ,

whereP (t) = P ′(t) is positive semi-definite, andQ(t) = Q′(t) is positive definite. [Hint:
Obtain the partial differential equation satisfied byV (t, x) and try a solution of the form
V (t, x) = x′R(t)x whereR is unknown.]

9.3 Miscellaneous Remarks

There is vast literature dealing with the theory and applications of DP. The most elegant applications
of DP are to various problems in operations research where one can obtain “closed-form” analytic
solutions to be recursion equation for the value function. See (Bellman and Dreyfus [1952]) and
(Wagner [1969]). In the case of sequential decision-making under uncertainties DP is about the
only available general method. For an excellent introduction to this area of application see (Howard
[1960]). For an important application of DP to computational considerations for optimal control
problems see (Jacobson and Mayne [1970]). Larson [1968] has developed computational tech-
niques which greatly increase the range of applicability of DP where closed-form solutions are not
available. Finally, the book of Bellman [1957] is still excellent reading. []
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