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Abstract

We develop a local image-correspondence algorithm
which performs well near occluding boundaries. Unlike
traditional robust methods, our method can find corre-
spondences when the only contrast present is the occlud-
ing boundary itself and when the sign of contrast along
the boundary is possibly reversed. We define a new image
transform which characterizes local image homogeneity,
defined as an attribute value in a central region and a
function describing the surrounding local similarity struc-
ture. In this paper we use radial similarity functions and
color attributes; within each window we compute the cen-
tral color and an image with the cumulative probability
that color is unchanged along a ray from the center to a
given point in the window. This representation is insensi-
tive to structure outside an occluding boundary, but can
model the boundary itself. We show comparative results
tracking finger, mouth, and eye features.

1 Introduction
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Finding corresponding points in image pairs or image
sequences is a central problem in computer vision. Most
classical methods assume brightness constancy, and per-
form best when tracking high-contrast regions that lie on
a single surface. However, many images have visually
important features that violate this assumption. Develop-
ing methods to track corresponding points which lie on
occluding boundaries is necessary if one is to track com-
plicated objects with multiple articulated surfaces, such as
the human face.

In recent years, robust estimation methods have been

Figure 1. Correspondence is di�cult when a
uniform surface moves across di�erent back-
ground patterns. Consider the correspon-
dence of window A with windows B or C;
traditional robust methods equate the match
between A:B and A:C, since the \outlier" re-
gions in each is equally di�erent.

applied to image correspondence, and have been shown to
considerably improve performance in cases of occlusion.
Black and Anandan pioneered robust optic flow using re-
descending error norms that substantially discount the ef-
fect of outliers [1]. Shizawa and Mase derived methods
for transparent local flow estimation [2]. Bhat and Nayar
have advocated the use of rank statistics for robust corre-
spondence [4]; Zabih and Woodfill use ordering statistics
combined with spatial structure in the CENSUS transform
[5]. Several authors have explored methods of finding im-
age ”layers” to pool motion information over arbitrarily
shaped regions of support and to iteratively refine parame-
ter estimates [6, 8, 7], but these methods generally assume
models of global object motion to define coherence.

However, these methods make a critical assumption:
that there will be sufficient contrast in the foreground (”in-
lier”) portion of an analysis window to localize the corre-
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Figure 2. Finding local correspondences in regions with occlusion is a di�cult challenge. (a,e) and
(c,g) are images taken before and after user's expression changes; (b,f) and (d,h) are enlarged
views of corresponding points, with a cross drawn to indicate the center point of the window.
Traditional correspondence methods have di�culty at points such as these, where there is little
foreground texture, substantial occlusion, and variable sign of contrast at the occlusion boundary.

spondence match. This is often not true, due either to a
uniform foreground surface or low-resolution video sam-
pling. This problem is illustrated in Figure 1, which shows
a foreground region with zero contrast in front of two
different background regions; note that the sign of con-
trast changes at the occlusion boundary between the two
frames. A example in real imagery is shown in Figure
2; the marked locations pose a considerable challenge for
existing robust correspondence methods, since any win-
dow large enough to include substantial foreground con-
trast will include a very large percentage of outliers.

Most robust and non-robust correspondence meth-
ods fail when there is no coherent foreground contrast.
Transparent-motion analysis [2, 3, 9, 10] can potentially
detect motion in these difficult cases, but has not, to date,
been able to provide precise spatial localization of corre-
sponding points. Smoothing methods such as regulariza-
tion or parametric motion constraints (affine [11, 12, 13]
or learned from examples [14]) can provide approximate
localization when good motion estimates are available in
nearby image regions, but this is not always the case. If
a corpus of training images is available, techniques for
feature or appearance modeling can solve these problems,
c.f. [18, 19].

For many detailed image analysis/synthesis tasks,
finding precise correspondences such as shown in these
figures is extremely important. Image compositing [15],
automatic morphing [16], and video resynthesis [17], all
require accurate correspondence and slight flaws can yield
perceptually significant errors. To obtain good results, au-
thors of these methods have relied on either extreme re-
dundancy of measurement, human-assisted tracking, sub-

stantial smoothing, or domain-specific feature-appearance
models.

In this paper, we describe a new method that can solve
the correspondence tasks illustrated in Figures 1 and 2 us-
ing purely local image analysis, without prior training,
and without smoothing or pooling of motion estimates.
Our approach defines an image transform; this transform
characterizes the local structure of an image in a manner
insensitive to points in an occluded region (e.g., outliers),
but whichis sensitive to the shape of the occlusion bound-
ary itself. In essence, our method is to perform matching
on a redundant, local representation of image homogene-
ity. In this paper we show examples where color is the
attribute analyzed for homogeneity, but our method is ap-
plicable to other local image characteristics (such as tex-
ture, range data, or simply image intensity). While we
only show sparse tracking results, our method can readily
yield dense correspondences, assuming sufficient image
contrast.

2 A robust image transform

Since contrast determines the ability to find unique corre-
spondences, we motivate our approach by considering the
sources of contrast within a local image window that con-
tains an occlusion boundary. We define the “foreground”
to be the scene layer on which the central point of the
window resides; points on all other layers are considered
“background”. We desire a transform which ignores back-
ground contrast but is sensitive to contrast energy from the
occluding boundaries of the foreground layer.

In general one does not knowa priori whether con-
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Figure 3. Construction of the Radial Cumu-
lative Similarity (RCS) transform. (a) Color
window, (b) central color C (in box at lower-
left) and map of local similarity S. Bright
pixels indicate similar value as central color.
(c) neighborhood of cumulative similarity, N ,
where each pixel re
ects the likelihood the
ray from the center point has uniform color.

trast within a particular window is entirely within the fore-
ground layer, is due to the occlusion boundary between
foreground and background, or is entirely within the back-
ground layer. When contrast is in the foreground layer,
an ideal template would model it fully, both in magni-
tude and sign. When the contrast is due to an occlusion
edge, it is reasonable only to define a template based on
the contrast energy, since the sign of contrast is arbitrary
with changing background. When contrast is in the back-
ground layer, it should be ignored in an ideal template.

We define a robust local image representation that ap-
proximates this ideal, without any prior knowledge of the
occlusion location. Our representation is comprised of
a central image-attribute value (typically color) and of a
local contrast neighborhood of this attribute, attenuated
to discount background influence. Many different diffu-
sion functions could be used to attenuate background in-
fluence; in this paper we explore radial cumulative prob-
ability functions. The local neighborhood is defined by
estimating the contrast energy of the attribute relative to
the center value, interpreting this energy probabilistically,

and computing the cumulative likelihood that the attribute
is unchanged along the ray from the template center to a
particular neighborhood point.

Formally, given a discrete color image intensity func-
tion I(x; y) we compute a local robust representation:

RI;x;y = fCI;x;y; NI;x;y(i; j)g

where�Mn � i; j � Mn. Our representation is com-
prised of two terms, a central value and a neighborhood
function; the central value is simply the image attribute
averaged over the center point or a small central area:

CI;x;y =
1

(2Mc + 1)2

i;j�McX

i;j=�Mc

A(I; x + i; j � i):

whereA(I; x; y) is an image attribute function and can be
defined to be any local image property. In this paper we
explore attribute functions which return the color or hue
vector corresponding to the pixel at the given location. We
typically keep the central region small, withMc = 0 or
1. The neighborhood is defined over window coordinates
�Mn � i; j � Mn using the similarity of other image
attribute values to the central value:

SI;x;y(i; j) = e�EI;x;y(i;j)
T
EI;x;y(i;j):

EI;x;y(i; j) = (CI;x;y �A(I; x+ i; y + j))

Note that� logS is a local contrast energy function, and
is thus independent of contrast sign.

When tracking a single feature of known size, we
could simply useSI;x;y(i; j) over a fixed (possibly non-
rectangular) window cropped to resolve the entire feature
and the occlusion boundary. This would yield a tem-
plate which captures both the foreground and occlusion
contrast, and was insensitive to contrast sign. However,
when automatically tracking features for image analy-
sis/synthesis, or when computing dense correspondence
for stereo or motion, we rarely have the luxury of knowl-
edge of appropriate window size.

For fully automatic processing, we define a function
which substantially attenuates the influence of exterior
pixels. We define our neighborhood function by propa-
gating the attribute similarity functionS outward along a
ray from the center of the window, so that once we en-
counter a dissimilarity (i.e., contrast energy) we attenuate
the influence of any contrast found farther out along that
ray. We are essentially making the assumption that the
most proximate contrast is due either to surface contrast
or occlusion contrast; background contrast must lie be-
yond an occurrence of occlusion contrast. Our algorithm
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Figure 4. The RCS transform is stable despite occlusion boundaries of di�erent contrast sign.
(a,b) show the RCS transform of the marked locations in Figure 2(b,f), while (c,d) show the RCS
transform of Figure 2(d,h).

reflects the conservative assumption that, in the absence
of any prior knowledge of occlusion location, correspon-
dence judgments are best made on the most proximate
contrast.

Our neighborhood function is the cumulative product
of S, computed radially from the center point:

NI;x;y(i; j) =
Y

(k;l)2ri;j

SI;x;y(k; l)

whereri;j is the set of points that lie along the ray from
(0; 0) to (i; j), inclusive. Other possible neighborhood
functions include pixel-fill or diffusion operators; these
would also capture non-convex local similarity structure.

We call the representationR the Radial Cumulative
Similarity (RCS) transform, since it reflects the radial ho-
mogeneity of a given attribute value. Figure 3 illustrates
the computation of color RCS for a image window con-
taining a fingertip. The substantial benefit of the RCS
transform is invariance to sign of contrast at an occlud-
ing boundary, as well as invariance to background con-
trast. As an example Figure 4 shows the RCS transform
for the marked locations in Figure 2; despite dissimilar
background structure and occlusion contrast sign reversal,
the transformed pairs are substantially similar.

3 Finding correspondences

We define a distance metric using the RCS transform as
the weightedL2 error in central attribute and neighbor-
hood function value:

D�(RI;x;y;RI0;x0;y0) = (1� �)�N + ��C

where the neighborhood difference is

�N =
1

(2Mn + 1)2

X

i;j

(NI;x;y(i; j)�NI0;x0;y0(i; j))2:

The central attribute difference is similarly,

�C =
1

a
((CI;x;y �CI0;x0;y0))T (CI;x;y �CI0;x0;y0):

wherea is the dimension ofA (andC).
The bias term� expresses a trade-off between the con-

tribution of the central attribute error and the neighbor-
hood function error. Generally the neighborhood error is
the most important, since it captures the spatial structure
at the given point. However, in certain cases of spatial
ambiguity the central attribute value is critical for making
the correct match unambiguous. For example in the im-
age shown in Figure 2(c), the neighborhood component of
the RCS transform would be roughly equal for the marked
point and a point located just below the top lip (centered
in the dark region of the open mouth). A modest value of
� disambiguates this case.

To perform a correspondence search given a point
(x; y) in an imageI, we compute the RCS transform
R� = RI;x;y and search for the point(x̂; ŷ) in a second
imageI0 such that

(x̂; ŷ) = arg min
x0;y02Wx;y

D�(R�;RI0;x0;y0)

whereWx;y is a search window of radiusMw centered at
(x; y).

4 Results

In the present implementation we recompute allRI0;x0;y0

each timeD is evaluated. We have not optimized for
speed; usingMn = 8, Mw = 50, Mc = 0 a substan-
tial fraction of a second is consumed to find a correspon-
dence minima per feature. However since RCS is a trans-
form, we could easily precomputeR over the entire im-
age and then be faced with the run-time cost of a stan-
dard least-squares template search with template radius
Mn and search radiusMw.
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(h)

A:B A:C B:C A:D B:D C:D
L2 0.05 0.35 0.33 0.27 0.22 0.15
ROBUST 0.04 0.62 0.65 0.38 0.37 0.20
RCS 0.05 0.11 0.07 0.35 0.27 0.30
(ideal) 0 0 0 1 1 1

Figure 5. Fingertip feature locations (a) feature A, (b) feature B, (c) features C (top) and D
(bottom). Feature D is a distractor. (d-g) Raw color values and RCS transform for features A-D.
(h) Correspondence values between features for three di�erent metrics: L2 on intensity, robust
norm (Lorentzian � = 0:4) on intensity, and L2 on the RCS transform. The ideal correspondence
values would be near 0 for pairs of �ngertips, and near 1 for pairs with the distractor. Values are
not normalized and so can only be compared within-method.

We compared our method to correspondence search
using classicL2 norms, using normalized correlation, us-
ing a robust redescending norm (from [1], a Lorentzian
� with � = 0:1), and using our RCS transform with
� = 0:1. TheL2 norm and normalized correlation yielded
substantially similar results, and so for brevity we only
showL2 results here.

First we note that in the majority of image locations,
all three methods yield accurate results. It is only at
points near discontinuities, and further at points where the
discontinuity changes contrast sign between images, that
there is a dramatic difference between RCS and the com-
parison methods. We will thus demonstrate performance
in a disproportionate number of these cases (these are of-
ten critical locations for image analysis/synthesis tasks).

Figure 5 shows a comparison of correspondence
values for a fingertip at various background locations
(A,B,C), and a distractor region (D) of the hand. The table
in Figure 5(h) shows that only the RCS method has cor-
rect performance: low distance measures for all the cases
of correspondence between actual fingertips (A:B, A:C,
B:C) and high distance for cases with the distractor (A:D,

B:D, C:D).

Figures 6 and 7 show results from tracking16 features
simultaneously on image pairs of an eye, mouth, and fin-
gers, and from comparing to hand-labeled ground truth.
The mean coordinate error across the three images was
5:6 pixels for theL2 norm,5:2 pixels for the redescending
robust norm, and0:97 pixels for the RCS method. The im-
ages were processed at 320x240 resolution. As expected,
theL2 norm had difficulty at regions where substantial
occlusion was present, and the redescending robust norm
had problems where the designated correspondence was
at a region of occlusion contrast sign reversal. At points
where no occlusion was present theL2 and redescending
norm had no coordinate error, but the RCS did return er-
roneous correspondences in approximately5% of points.

This lower performance of RCS away from occlusion
boundaries is not surprising: When analyzing an image
window of a single surface where brightness constancy
holds (e.g., there is no occlusion) suboptimal performance
results from downweighting portions of the window that
are actually foreground. Informally, regions of high con-
trast that are prone to aliasing in the RCS representation
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(a) (b)

(c) (d) (e)
L2, 8 errors robust norm, 6 errors RCS, 3 errors

(f) (g)

(h) (i) (j)
L2, 6 errors robust norm, 6 errors RCS, 2 errors

Figure 6. Results of exhaustive correspondence search for 16 di�erent features in various image
pairs. (a,b) hand-labeled feature locations an image pair with moving eyeballs, (f,g), an image
pair with changing mouth expression. For each feature in the �rst image (a,f), we searched for the
point in the second image (b,g) with minimum correspondence error using three di�erent distance
metrics: L2, robust norm, and RCS. (c,h) Results using L2 norm on intensity, showing arrows
where incorrect correspondences were returned. There were 8 and 6 correspondence errors, with
mean squared coordinate error of 6:1 and 3:4 pixels, respectively. (d,i) Results using robust norm
on intensity: 6 and 6 correspondence errors, mean squared coordinate error of 5:0 and 3:3 pixels.
(e,j) Results using L2 norm on RCS transform: 3 and 2 correspondence errors, mean squared
coordinate error of 2:3 and 0:4 pixels.
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Figure 7. Results as in previous �gure on an image pair with a hand moving over di�erent back-
grounds. (a) shows �rst image of pair, (b) results on second image using robust norm (L2 norm
yielded same result): 4 errors, mse=7.3 pixels, (c) RCS result: 2 errors, mse=0.21 pixels.

can be detected by computing the sum of the radial cumu-
lative similarity function,N : if that sum is below a certain
threshold the RCS transform should be considered degen-
erate. Fortunately, occlusion-free regions of high contrast
are cases where the traditional methods perform exceed-
ingly well. We are currently implementing a hybrid algo-
rithm which reverts to aL2 when that method yields good
results. Alternatively a smoothing or regularization stage
would also greatly alleviate this problem.

5 Conclusion

Radial Cumulative Similarity (RCS) is a new image trans-
form that describes local image homogeneity, comprised
of a central attribute value and a function of the sur-
rounding radial similarity structure. We compute radial-
similarity as the cumulative product of the probability the
attribute value is constant along a given ray from the cen-
ter. When applied to color attributes, this representation
is insensitive to structure outside an occluding boundary,
yet it can model the boundary itself. The RCS can there-
fore be used to track foreground surfaces near occlusion
where there is no foreground contrast other than the from
the occlusion boundary.
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