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Abstract

Hybrid system theory lies at the intersection of the fields of engineering control theory and

computer science verification. It is defined as the modeling, analysis, and control of systems

which involve the interaction of both discrete state systems, represented by finite automata, and

continuous state dynamics, represented by differential equations. The embedded autopilot of a

modern commercial jet is a prime example of a hybrid system: the autopilot modes correspond

to the application of different control laws, and the logic of mode switching is determined by

the continuous state dynamics of the aircraft, as well as through interaction with the pilot. To

understand the behavior of hybrid systems, to simulate, and to control these systems, theoretical

advances, analyses, and numerical tools are needed. In this paper, we first present a general

model for a hybrid system along with an overview of methods for verifying continuous and hybrid

systems. We describe a particular verification technique for hybrid systems, based on two-person

zero-sum game theory for automata and continuous dynamical systems. We then outline a

numerical implementation of this technique using level set methods, and we demonstrate its

use in the design and analysis of aircraft collision avoidance protocols, and in verification of

autopilot logic.

Keywords: hybrid systems, hybrid control, verification, reachability.

1 Introduction

The field of formal verification in computer science has achieved great success in the analysis of

large scale discrete systems: using temporal logic to express discrete sequences of events, such
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as Component A will request data until Component B sends data, researchers in verification have

uncovered design flaws in such safety critical systems as microprocessors which control aircraft

cockpit displays and design standards for a military hardware bus [1]. Discrete analysis, however,

is not rich enough to verify systems which evolve according to both continuous dynamics and

discrete events. Embedded systems, or physical systems controlled by a discrete logic, such as the

current autopilot logic for automatically controlling an aircraft, or a future automated protocol for

controlling an aircraft in the presence of other aircraft, are prime examples of systems in which

event sequences are determined by continuous state dynamics. These systems use discrete logic

in control because discrete abstractions make it easier to manage system complexity and discrete

representations more naturally accommodate linguistic and qualitative information in controller

design. While engineering control theory has successfully designed tools to verify and control

continuous state systems, these tools do not extend to systems which mix continuous and discrete

state, as in the examples above.

Hybrid systems theory lies at the intersection of the two traditionally distinct fields of computer

science verification and engineering control theory. It is loosely defined as the modeling and anal-

ysis of systems which involve the interaction of both discrete event systems (represented by finite

automata) and continuous time dynamics (represented by differential equations). The goals of this

research are in the design of verification techniques for hybrid systems, the development of a soft-

ware toolkit for efficient application of these techniques, and the use of these tools in the analysis

and control of large scale systems. In this paper, we present a summary of recent research results,

and a detailed set of references, on the development of tools for the verification of hybrid systems,

and on the application of these tools to some interesting examples.

The problem that has received much recent research attention has been the verification of the

safety property of hybrid systems, which seeks a mathematically precise answer to the question: is

a potentially unsafe configuration, or state, reachable from an initial configuration? For discrete

systems, this problem has a long history in mathematics and computer science and may be solved

by posing the system dynamics as a discrete game [2, 3]; in the continuous domain, control problems

of the safety type have been addressed in the context of differential games [4]. For systems involving

continuous dynamics, it is very difficult to compute and represent the set of states reachable from

some initial set. In this paper, we present recent solutions to the problem, including a method, based

on the level set techniques of Osher and Sethian [5], which determines an implicit representation

of the boundary of this reachable set. This method is based on the theorem, which is proved in [6]

using two-person zero-sum game theory for continuous dynamical systems, that the solution to a

particular Hamilton-Jacobi partial differential equation corresponds exactly to the boundary of the

reachable set. In addition, we show that useful information for the control of such systems can be

extracted from this boundary computation.

Much of the excitement in hybrid system research stems from the potential applications. With

techniques such as the above, it is now possible to verify, and design safe, automated control

schemes for low dimensional systems. We present two interesting examples in the verification of
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protocols for aircraft collision avoidance, and of mode switching logic in autopilots. We survey

other applications that have been studied in this framework.

We conclude with a discussion of problem complexity and new directions that will enable treatment

of problems of higher dimension.

The material in this paper is based on the hybrid system algorithm of [7], the level set implemen-

tation of [6, 8], the aircraft landing examples of [9] and of [10].

2 Hybrid Model and Verification Methodology

2.1 Continuous, Discrete, and Hybrid Systems

Much of control theory is built around continuous-state models of system behavior. For example,

the differential equation model given by

ẋ = f(x, u, d) (1)

describes a system with state x ∈ R
n that evolves continuously in time according to the dynamical

system f(·, ·, ·), a function of x, u ∈ U ⊆ R
nu , d ∈ D ⊆ R

nd . In general, u is used to represent

parameters that can be controlled, called control inputs, and d represents disturbance inputs, which

are parameters that cannot be controlled, such as the actions of another system in the environment.

The initial state x(0) = x0 is assumed to belong to a set X0 ⊆ R
n of allowable initial conditions.

A trajectory of (1) is represented as (x(t), u(t), d(t)), such that x(0) ∈ X0, and x(t) satisfies the

differential equation (1) for control and disturbance input trajectories u(t) and d(t). We recommend

[11, 12] as current references for continuous-state control systems.

Discrete-state models, such as finite automata, are also prevalent in control. The finite automaton

given by

(Q,Σ, Init, R) (2)

models a system which is a finite set of discrete state variables Q, a set of input variables Σ = Σu∪Σd

which is the union of control actions σu ∈ Σu and disturbance actions σd ∈ Σd, a set of initial states

Init ⊆ Q, and a transition relation R : Q×Σ → 2Q which maps the state and input space to subsets

of the state space (2Q). A trajectory of (2) is a sequence of states and inputs, written as (q(·), σ(·)),

where q(0) ∈ Init and q(i + 1) ∈ R(q(i), σ(i)) for index i ∈ Z. The original work of Ramadge and

Wonham [13] brought the use of discrete state systems to control, though parallels can be drawn

between this work and that of Church, Büchi and Landweber [3, 14] who originally analyzed the

von Neumann-Morgenstern [2] discrete games. A comprehensive reference for modeling and control

of discrete state systems is [15].

Control theory is concerned with the design of a signal, either a continuous or discrete function
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of time, which when applied to the system causes the system state to exhibit desirable properties.

These properties should hold despite possible disruptive action of the disturbance. A concrete

example of a continuous-state control problem is in the control of an aircraft: here the state

(position, orientation, velocity) of the aircraft evolves continuously over time in response to control

inputs (throttle, control surfaces), as well as to disturbances (wind, hostile aircraft).

A hybrid automaton combines continuous-state and discrete-state dynamic systems, in order to

model systems which evolve both continuously and according to discrete jumps. A hybrid automa-

ton is defined to be a collection:

(S, Init, In, f,Dom, R) (3)

where S = Q ∪ R
n is the union of discrete and continuous states; Init ⊆ S is a set of initial states;

In = (Σu ∪ Σd) ∪ (U ∪D) is the union of actions and inputs; f is a function which takes state and

input and maps to a new state, f : S × In → S; Dom ⊆ S is a domain; and R : S × In → 2S is a

transition relation.

The state of the hybrid automaton is represented as a pair (q, x), describing the discrete and contin-

uous state of the system. The continuous-state control system is “indexed” by the mode and thus

may change as the system changes modes. Dom describes, for each mode, the subset of the continu-

ous state space within which the continuous state may exist, and R describes the transition logic of

the system, which may depend on continuous state and input, as well as discrete state and action.

A trajectory of this hybrid system is defined as the tuple: ((q(t), x(t)), (σu(t), σd(t)), (u(t), d(t))) in

which q(t) ∈ Q evolves according to discrete jumps, obeying the transition relation R; for fixed q(t),

x(t) evolves continuously according to the control system f(q(t), x(t), (σu(t), σd(t)), (u(t), d(t))).

The introduction of disturbance parameters to both the control system defined by f and the reset

relation defined by R will allow us to treat uncertainties, environmental disturbances, and actions

of other systems.

This hybrid automaton model presented above allows for general nonlinear dynamics, and is a

slight simplification of the model used in [7]. This model was developed from the early control

work of [16, 17, 18, 19]. The emphasis of this work has been on extending the standard modeling,

reachability and stability analyses, and controller design techniques to capture the interaction

between the continuous and discrete dynamics. Other approaches to modeling hybrid systems

involve extending finite automata to include simple continuous dynamics: these include timed

automata [20], linear hybrid automata [21, 22, 23, 24], and hybrid input/output automata [25].

2.2 Safety Verification

Much of the research in hybrid systems has been motivated by the need to verify the behavior

of safety critical system components. The problem of safety verification may be encoded as a

condition on the region of operation in the system’s state space: given a region of the state space
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Figure 2: Using the backwards reachable set to verify safety.

which represents unsafe operation, prove that the set of states from which the system can enter this

unsafe region has empty intersection with the system’s set of initial states.

This problem may be posed as a property of the system’s reachable set of states. There are two

basic types of reachable sets. For a forward reachable set, we specify the initial conditions and

seek to determine the set of all states that can be reached along trajectories that start in that

set. Conversely, for a backward reachable set we specify a final or target set of states, and seek

to determine the set of states from which trajectories start that can reach that target set. It is

interesting to note that the forward and backward reachable sets are not simply time reversals of

each other. The difference is illustrated in Figure 1 for generic target and initial sets, in which the

arrows represent trajectories of the system. Figure 2 illustrates how a backwards reachable set may

be used to verify system safety.

Powerful software tools for the automatic safety verification of discrete systems have existed for

some time, such as Murφ [26], PVS [27], SMV [28], and SPIN [29]. The verification of hybrid

systems presents a more difficult challenge, primarily due to the uncountable number of distinct

states in the continuous state space. In order to design and implement a methodology for hybrid

system verification, we first need to be able to represent reachable sets of continuous systems, and

to evolve these reachable sets according to the system’s dynamics.

It comes as no surprise that the size and shape of the reachable set depends on the control and

disturbance inputs in the system: control variables may be chosen so as to minimize the size of the
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Figure 3: A discrete abstraction with appropriate control information.

backwards reachable set from an unsafe target, whereas the full range of disturbance variables must

be taken into account in this computation. Thus, the methodology for safety verification has two

components. The first involves computing the backward reachable set from an a priori specified

unsafe target set; the second involves extracting from this computation the control law which must

be used on the boundary of the backwards reachable set, in order to keep the system state out

of this reachable set. Application of this methodology results in a system description with three

simple modes (see Figure 3). Outside of the backwards reachable set, and away from its boundary,

the system may use any control law it likes and it will remain safe (labeled as “safe” in Figure

3). When the system state touches the reachable set or unsafe target set boundary, the particular

control law which is guaranteed to keep the system from entering the interior of the reachable

set must be used. Inside the reachable set (labeled as “outside safe set” in Figure 3), there is no

control law which will guarantee safety, however application of the particular optimal control law

used to compute the boundary may still result in the system becoming safe, if the disturbance is

not playing optimally for itself.

In the following section, we first summarize different methods for computing reachable sets for

continuous systems. We then provide an overview of our algorithm, which uses an implicit surface

function representation of the reachable set, and a differential game theoretic method for its evolu-

tion. In the ensuing sections, we illustrate how this reachable set computation may be embedded

as the key component in safety verification of hybrid systems.

3 Verifying Continuous Systems

Computing reachable sets for safety specifications has been a main focus of the control and com-

puter aided verification communities for the past several years. In the past three years, several
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experimental reachability tools have been developed, and may be classified according to how sets

of states are represented, and the assumptions on the dynamics under which states are propagated.

We classify as “overapproximative” a group of methods which seek an efficient overapproximation

of the reachable set. The tools d/dt [30, 31] and Checkmate [32, 33] represent sets as convex

polyhedra, and propagate these polyhedra under linear and affine dynamics, which could represent

overapproximations of nonlinear dynamics along each surface of the polyhedra. Piecewise affine

systems are used in [34, 35]. VeriSHIFT [36] uses ellipsoidal overapproximations of reach sets for

linear systems with linear input; it implements techniques developed in [37]. Polygonal overap-

proximations of reachable sets for some classes of nonlinear systems is treated in [38]. The tool

Coho, developed in [39, 40] uses as set representation two dimensional projections of higher dimen-

sional non-convex polyhedra, and evolves these “projectagons” under affine over-approximations of

nonlinear dynamics using linear programming. In [41], the authors present a solution using sets

specified by linear inequalities, for discrete-time linear dynamics. A recent algorithm [42] proposes

to divide the continuous state space into a finite number of sets, and then to compute the reachable

set using a discrete algorithm. The method works for polynomial dynamics and the subzero level

sets of polynomials as set representation: by partitioning the state space into a “cylindrical alge-

braic decomposition” based on the system polynomials, a discrete approximation of the dynamics

can be constructed.

A second group of methods is based on computing “convergent approximations” to reachable sets:

here the goal is to represent as closely as possible the true reachable set. Methods include nu-

merical computation of solutions to static Hamilton-Jacobi equations [43] and to techniques from

viability theory and set valued analysis [44]. In our work, we have developed a reachability compu-

tation method based on level set techniques [5, 45, 46] and viscosity solutions to Hamilton-Jacobi

equations [47, 48], using the ideas presented in [49, 7]. We represent a set as the zero sublevel

set of an appropriate function, and the boundary of this set is propagated under the nonlinear

dynamics using a validated numerical approximation of a time dependent Hamilton-Jacobi-Isaacs

(HJI) partial differential equation (PDE) governing system dynamics [50, 51, 6]. These convergent

approximative methods allow for both control inputs and disturbance inputs in the problem for-

mulation, and they compute a numerical solution on a fixed grid (the mesh points do not move

during the computation).

In most of the overapproximative schemes, the reachable set representation scales polynomially

with the continuous state space dimension n. Exceptions include orthogonal polyhedra, which is

exponential in n, and the algorithm based on cylindrical algebraic decomposition, in which the rep-

resentation size depends on the dimension of the polynomials involved. Since algorithm execution

time and its memory requirements generally scale linearly with the size of the representation of the

reachable set, overapproximative schemes in which the set representation scales polynomially with

n have a significant advantage over other schemes. However, these overapproximative schemes are

generally too imprecise for problems in which the dynamics are nonlinear, and for which the shape

of the reachable set is not a polygon or an ellipse. The schemes based on convergent approximations
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Figure 4: Relative coordinate system. Origin is located at the center of the evader.

are exponential in n, and thus are not practical for problems of dimension greater than about five

or six. However, these schemes can all handle nonlinear dynamics, they work within a differential

game setting, and they make no assumptions about the shape of the reachable set.

In this section, using as motivation a classical pursuit-evasion game involving two identical vehicles,

we present our methodology and results for computing reachable sets for continuous systems (1).

The material in this section is presented in detail in [6, 8, 52, 53].

3.1 A Game of Two Identical Vehicles

As our demonstration example, we will adapt a classical pursuit evasion game involving two identical

vehicles (see [54, 53] for more details). If the vehicles get too close together, a collision occurs. One

of the vehicles (the pursuer) wants to cause a collision, while the other (the evader) wants to avoid

one. Each vehicle has a three dimensional state vector consisting of a location in the plane and a

heading. Isaacs [4] pioneered a framework for solving such games, using a method similar to the

method of characteristics [55].

We study the problem in relative coordinates (see Figure 4). We draw our vehicles as aircraft, as

we have used the solution to this example as inspiration for verifying two-aircraft tactical conflict

avoidance strategies in Air Traffic Control.

Fixing the evader at the planar origin and facing to the right, the relative model of pursuer with

respect to evader is:

ẋ =
d

dt







x1

x2

x3






=







−v + v cos x3 + ux2

v sinx3 − ux1

d − u






= f(x, u, d), (4)
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where the three state dimensions are relative planar location [x1 x2]
T ∈ R

2 and relative heading

x3 ∈ [0, 2π], and v ≥ 0 is the linear velocity of each aircraft. In Figure 4 the relative heading is

measured counter clockwise from the horizontal. The control input is the angular velocity of the

evader, u ∈ U = [−1, +1], and the disturbance input is d ∈ D = [−1, +1], the pursuer’s angular

velocity. A collision occurs if
√

x2
1 + x2

2 ≤ d0 for any value of x3, in R
3 this collision set is a cylinder

of radius d0 centered on the x3 axis. To solve this pursuit evasion game, we would like to determine

the set of initial states from which the pursuer can cause a collision despite the best efforts of the

evader.

3.2 Computing Reachable Sets for Continuous Dynamic Games

The backwards reachable set is the set of initial conditions giving rise to trajectories that lead

to some target set. More formally, let G0 be the target set, G(τ) be the backwards reachable set

over finite horizon τ < ∞, x(·) denote a trajectory of the system, and x(τ) be the state of that

trajectory at time τ . Then G(τ) is the set of x(0) such that x(s) ∈ G0 for some s ∈ [0, τ ]. The

choice of input values over time influences how a trajectory x(t) evolves. For systems with inputs,

the backwards reachable set G(τ) is the set of x(0) such that for every possible control input u there

exists a disturbance input d that results in x(s) ∈ G0 for some s ∈ [0, τ ] (where we abuse notation

and refer interchangeably to the input signal over time and its instantaneous value).

The solution to the pursuit evasion game described in the previous section is a backwards reachable

set. Let the target set be the collision set

G0 =

{

x ∈ R
3|

√

x2
1 + x2

2 ≤ d0

}

. (5)

Then G(τ) is the set of initial configurations such that for any possible control input chosen by the

evader, the pursuer can generate a disturbance input that leads to a collision within τ time units.

We use the very general implicit surface function representation for the reachable set: for example,

consider the cylindrical target set (5) for the collision avoidance example. We represent this set as

the zero sublevel set of a scalar function φ0(x) defined over the state space

φ0(x) =
√

x2
1 + x2

2 − d0,

G0 =
{

x ∈ R
3|φ0(x) ≤ 0

}

.

Thus, a point x is inside G0 if φ0(x) is negative, outside G0 if φ0(x) is positive, and on the boundary

of G0 if φ0(x) = 0. Constructing this signed distance function representation for G0 is straight-

forward for basic geometric shapes. Using negation, minimum, and maximum operators, we can

construct functions G0 which are unions, intersections, and set differences. For example, if Gi is

represented by gi(x), then, min[g1(x), g2(x)] represents G1∪G2, max[g1(x), g2(x)] represents G1∩G2,

and max[g1(x),−g2(x)] represents G1 \ G2.
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In [6] we proved that an implicit surface representation of the backwards reachable set can be found

by solving a modified HJI PDE. Using ∇φ to represent the gradient of φ, the modified HJI PDE is

∂φ(x, t)

∂t
+ min [0, H(x,∇φ(x, t))] = 0, (6)

with Hamiltonian

H(x, p) = max
u∈U

min
d∈D

p · f(x, u, d) (7)

and terminal conditions

φ(x, 0) = φ0(x). (8)

If G0 is the zero sublevel set of φ0(x), then the zero sublevel set of the viscosity solution φ(x, t)

to (6)–(8) specifies the backwards reachable set as

G(τ) =
{

x ∈ R
3|φ(x,−τ) ≤ 0

}

.

Notice that (6) is solved from time t = 0 backwards to some t = −τ ≤ 0.

There are several interesting points to make about the HJI PDE (6)–(8). First, the min [0, H]

formulation in (6) ensures that the reachable set only grows as τ increases. This formulation

effectively “freezes” the system evolution when the state enters the target set, which enforces the

property that a state which is labeled as “unsafe” cannot become “safe” at a future time. Second,

we note that the maxu mind operation in computing the Hamiltonian (7) results in a solution

which is not necessarily a “no regret”, or saddle, solution to the differential game. By ordering the

optimization so that the maximum occurs first, the control input u is effectively “playing” against

an unknown disturbance – it is this order which produces a conservative solution, appropriate for

the application to system verification under uncertainty. Third, it is proven in [6] that out of many

possible weak solutions, the viscosity solution [47] of (6)–(8) yields the reachable set boundary.

The significance of this last point is that it enables us to draw from the well developed numerical

schemes of the level set literature to compute accurate approximations of φ(x, t).

To compute numerical approximations of the viscosity solution to (6)–(8), we have developed a

C++ implementation based on high resolution level set methods (an excellent introduction to these

schemes can be found in [46]). We use a fifth order accurate weighted, essentially non-oscillatory

(WENO) stencil [56, 45] to approximate ∇φ(x, t), although we have also implemented a basic first

order scheme for speed [5, 57]. We use the well studied Lax-Friedrichs (LF) approximation [58] to

numerically compute Hamiltonian (7). Finally, we treat the time derivative in (6) with the method

of lines and a second order total variation diminishing (TVD) Runge-Kutta scheme [59]. Numerical

convergence of our algorithm is demonstrated and validated in [51, 6].
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Figure 5: Growth of the reachable set [6] (animation at [60])

Figure 6: Other views of the reachable set [6] (animation at [60])

3.3 Collision Avoidance Example Results

We can apply our numerical methods to the collision avoidance problem. In Figure 5, the target

set G0 for the example appears on the far left (the cylinder); the remaining images show how G(τ)

grows as τ increases from zero. For the parameters chosen in section 3.1, the reachable set converges

to a fixed point for τ & 2.6. Figure 6 shows several views of this fixed point. Should the pursuer

start anywhere within this reachable set, it can cause a collision by choosing an appropriate input

d, no matter what input u the evader might choose. Conversely, if the pursuer starts outside this

reachable set, then there exists an input u that the evader can choose that will avoid a collision

no matter what input d the pursuer might choose. Thus, for initial conditions outside this set, the

system can be verified to be safe.

We note that the shape of the reachable set in this example complies with our intuition – the relative

heading coordinate x3 is the vertical coordinate in these figures, so a horizontal slice represents all

possible relative planar coordinates of the two vehicles at a fixed relative heading. Consider a slice

through the most extended part of the helical bulge (which occurs at the midpoint of the set on

the vertical axis). The relative heading for this slice is x3 = π, which is the case in which the two

aircraft have exactly opposite headings. It is not surprising that the reachable set is largest at this

relative heading, and smallest for slices at the top and bottom of the reachable set, where x3 = 0

and thus the aircraft have the same heading.

Figure 7 shows an annotated frame from an animation of the collision system, and a series of frames

from that animation are shown in Figure 8, progressing from left to right. The evader starts on

the left surrounded by the collision circle, while the pursuer starts on the right. The dotted shape

surrounding the evader is the slice of the reachable set for the current relative heading of the two

vehicles; for example, in the leftmost figure the vehicles have relative heading x3 ≈ π and so the

horizontal midplane slice of the reachable set is shown. The evader wants to continue to the right,

and the pursuer simply wants to cause a collision. By choosing its safe input according to (7),

as the pursuer approaches the boundary of the reachable set, the evader keeps the pursuer from
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Figure 7: Annotated frame from collision avoidance example animation

Figure 8: Evader keeps pursuer from entering reachable set, and hence avoids collision (animation
at [60])

Figure 9: Pursuer starts within the reachable set, and can thus cause a collision despite the evader’s
efforts (animation at [60])
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entering the reachable set and thus from causing a collision. Figure 9 shows a sequence in which

the pursuer starts within the reachable set and can cause a collision.

The computations discussed in this section are expensive to perform: they require gridding the

state space, and thus their complexity is exponential in the continuous state dimension. The set in

Figure 6 took about 15 minutes to compute on a three dimensional grid using a standard Pentium

III laptop; four dimensional problems can take a few days to run. In Section 6, we will discuss

our current work in computing projective overapproximations to decrease the computation time to

achieve a useful result.

4 Verifying Hybrid Systems

In the previous section, we demonstrated the concept illustrated in Figure 3, in which the problem

of verification of safety for continuous systems may be solved by a reachable set computation.

This computation abstracts an uncountable number of states into the three classes: inside safe

set, boundary of safe set, and outside safe set. We showed that this implicit surface function

representation contains information which may be used for designing a safe control law. This safe

control law could be used to filter any other control law as the system state approaches the reachable

set boundary.

We now consider the problem of computing reachable sets for hybrid systems. Assuming that tools

for discrete and continuous reachability are available, computing reachable sets for hybrid systems

requires keeping track of the interplay between these discrete and continuous tools. Fundamentally,

reachability analysis in discrete, continuous or hybrid systems seeks to partition states into two

categories: those that are reachable from the initial conditions, and those that are not. Early work

in this area focussed on decidable classes: it was shown that decidability results exist for timed and

some classes of linear hybrid automata [61]. Software tools were designed to automatically compute

reachable sets for these systems: Uppaal [62] and Kronos [63] for timed automata, and HyTech

[64, 65] for linear hybrid automata. Some of these tools allow symbolic parameters in the model,

and researchers began to study the problem of synthesizing values for these parameters in order

to satisfy some kind of control objective, such as minimizing the size of the backwards reachable

set. The procedure that we describe here was motivated by the work of [66, 67] for reachability

computation and controller synthesis on timed automata, and that of [68] for controller synthesis on

linear hybrid automata. Tools based on the analysis of piecewise linear systems, using mathematical

programming tools such as CPLEX[34] have found success in several industrial applications.

Our hybrid system analysis algorithm [7] is built upon our implicit reachable set representation

and level set implementation for continuous systems. Thus, we are able to represent and analyze

nonlinear hybrid systems, with generally shaped sets. In this sense, our work is related to that of

the viability community [44, 69], which has extended concepts from viability to hybrid systems [70];

though the numerical techniques presented here differ from theirs. Other hybrid system reachability
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algorithms fall within this framework; the differences lie in their discrete and continuous reachability

solvers and the types of initial conditions, inputs, invariants and guards that they admit. Tools such

as d/dt, Checkmate, and VeriSHIFT have been designed using the different methods of continuous

reachable set calculation surveyed in the previous section [30, 31, 33, 36, 41]: the complexity of

these tools is essentially the complexity of the algorithm used to compute reachable sets in the

corresponding continuous state space.

Methods for hybrid system verification listed above have found application in automotive control

problems [34, 71], experimental industrial batch plants [72], vehicle collision avoidance problems

[73, 74], as well as envelope protection problems [9, 75]. The problems that have been solved to

date are generally of low dimension: to the best of our knowledge, even the overapproximative

methods to date have not been directly applied to systems of continuous dimension greater than 6.

In the next section, we present results for envelope protection on nonlinear, hybrid systems with

three continuous dimensions, representing the longitudinal dynamics of jet aircraft under hybrid

control.

4.1 Computing Reachable Sets for Hybrid Systems

We describe the algorithm first with a picture, and then present the details of a few key components.

The full details of the algorithm are in [7], with new implementation results presented in [8].

Consider the sequence of eight diagrams in Figure 10. We draw the hybrid automaton as a set

of discrete states {q1, . . . , q7} with a transition logic represented by R (the arrows indicate the

possible discrete state transitions, the dependence on continuous state and input variables is implied

but not shown in the Figure). Associated to each discrete state qi are the continuous dynamics

ẋ = f(qi, x, (σu, σd), (u, d)) and domain Dom ⊆ qi×R
n, neither of which are shown on the diagram.

For illustrative purposes, we consider only one step of our algorithm applied in state q1, from which

there exist transitions to states q2 and q3 (shown in diagram 2). We initialize with the unsafe target

sets (shown as sets in q1 and q2 in diagram 3), and sets which are known to be safe (shown as the

“safe” set in q3 in diagram 4). We augment the unsafe target set in q1 with states from which there

exists an uncontrolled transition to the unsafe set in q2 (which is represented as a dashed arrow

on diagram 5). Uncontrolled transitions may be caused by reset relations affected by disturbance

actions. In the absence of other transitions out of state q1, the set of states backwards reachable

from the unsafe target set in q1 may be computed using the reachable set algorithm of Section 3

on the dynamics ẋ = f(qi, x(t), (σu(t), σd(t)), (u(t), d(t))) (diagram 6). However, there may exist

regions of the state space in q1 from which controllable transitions exist – these transitions could

reset the system to a safe region in another discrete state. This is illustrated in diagram 7, with

the region in which the system may “escape” to safety from q1. Thus, the backwards reachable set

of interest in this case is the set of states from which trajectories can reach the unsafe target set,

without hitting this safe “escape” set first. We call this reachable set the reach-avoid set, and it is

illustrated in diagram 8.
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Figure 10: An illustration of our algorithm for computing reachable sets for hybrid systems.
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The algorithm illustrated above is implemented in the following way. The target set G0 ⊆ Q × R
n

can include different subsets of the continuous state space for each discrete mode:

G0 = {(q, x) ∈ Q × R
n|g(q, x) ≤ 0} (9)

for a level set function g : Q×R
n → R. We seek to construct the largest set of states for which the

control, with action/input pair (σu, u) can guarantee that the safety property is met despite the

disturbance action/input pair (σd, d).

For a given set K ⊆ Q×R
n, we define the controllable predecessor Preu(K) and the uncontrollable

predecessor Pred(K
c) (where Kc refers to the complement of the set K in Q × R

n) by

Preu(K) = {(q, x) ∈ K : ∃(σu, u) ∈ Σu × U ∀(σd, d) ∈ Σd ×D R(q, x, σu, σd, u, d) ⊆ K}

Pred(K
c) = {(q, x) ∈ K : ∀(σu, u) ∈ Σu × U ∃(σd, d) ∈ Σd ×D R(q, x, σu, σd, u, d) ∩ Kc 6= ∅} ∪ Kc

(10)

Therefore Preu(K) contains all states in K for which controllable actions (σu, u) can force the state

to remain in K for at least one step in the discrete evolution. Pred(K
c), on the other hand, contains

all states in Kc, as well as all states from which uncontrollable actions (σd, d) may be able to force

the state outside of K.

Consider two subsets G ⊆ Q×R
n and E ⊆ Q×R

n such that G∩E = ∅. The reach-avoid operator

is defined as:

Reach(G, E) = {(q, x) ∈ Q × R
n | ∀u ∈ U ∃d ∈ D and t ≥ 0 such that

(q, x(t)) ∈ G and (q, x(s)) ∈ Dom \ E for s ∈ [0, t]}
(11)

where (q, x(s)) is the continuous state trajectory of ẋ(s) = f(q, x(s), σu, σd, u(s), d(s)) starting at

(q, x).

Now, consider the following algorithm:

initialization: W 0 = Gc
0, W+1 = ∅, i = 0

while W i 6= W i+1 do

W i−1 = W i \ Reach
(

Pred((W
i)c), Preu(W i)

)

i = i − 1

end while

In the first step of this algorithm, we remove from Gc
0 (the complement of G0), all states from which

a disturbance forces the system either outside Gc
0 or to states from which a disturbance action

may cause transitions outside Gc
0, without first touching the set of states from which there is a

control action keeping the system inside Gc
0. Since at each step, W i−1 ⊆ W i, the set W i decreases

monotonically in size as i decreases. If the algorithm terminates, we denote the fixed point as W ∗.

The set W ∗ is used to verify the safety of the system. Recall once more from Figure 3: if the system

starts inside W ∗, then there exists a control law, extractable from our computational method, for
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Figure 11: Detail of the reach-avoid set from diagram 8 of Figure 10.

which the system is guaranteed to be safe.

Returning to our pictorial description of the algorithm in Figure 10, and concentrating on the result

of one step of the algorithm detailed in Figure 11, we note that, for iteration i: Pred((W
i)c) =

G1 ∪ G2, E1 ⊂ Preu(W i), and Reach
(

Pred((W
i)c), Preu(W i)

)

= G3.

To implement this algorithm, we need to compute Preu, Pred, and Reach. The computation of

Preu and Pred requires inversion of the transition relation R subject to the quantifiers ∃ and ∀;

existence of this inverse can be guaranteed subject to conditions on the map R. In our examples, we

perform this inversion by hand. The algorithm for computing Reach(G, E) is a direct modification

of the reachable set calculation of Section 3, the details are presented in [8]. Finally, we remark

that this algorithm is semi-decidable when the operators Preu, Pred, Reach are computable: when

the continuous state dynamics are constant and the guards and resets are polyhedra, then the

algorithm reduces to that for linear hybrid automata [68].

5 Flight Management System Example

In this section, we demonstrate our hybrid systems analysis on an interesting and current example,

the landing of a civilian aircraft. This example is discussed in detail in [9] and [10]. In addition

to the examples presented here, we have solved a range of multi-mode aircraft collision avoidance

examples. Please refer to [8, 73] for these examples.

The autopilots of modern jets are highly automated systems which assist the pilot in constructing

and flying four-dimensional trajectories, as well as altering these trajectories online in response to

Air Traffic Control directives. The autopilot typically controls the throttle input and the vertical

and lateral trajectories of the aircraft to automatically perform such functions as: acquiring a

specified altitude and then leveling, holding a specified altitude, acquiring a specified vertical climb

or descend rate, automatic vertical or lateral navigation between specified way points, or holding
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a specified throttle value. The combination of these throttle-vertical-lateral modes is referred to as

the flight mode of the aircraft. A typical commercial autopilot has several hundred flight modes

– it is interesting to note that these flight modes were designed to automate the way pilots fly

aircraft manually: by controlling the lateral and vertical states of the aircraft to set points for fixed

periods of time, pilots simplify the complex task of flying an aircraft. Those autopilot functions

which are specific to aircraft landing are among the most safety critical, as reliable automation is

necessary when there is little room for altitude deviations. Thus, the need for automation designs

which guarantee safe operation of the aircraft has become paramount. Testing and simulation may

overlook trajectories to unsafe states: “automation surprises” have been extensively studied [76]

after the unsafe situation occurs, and “band-aids” are added to the design to ensure the same

problem does not occur again. We believe that the computation of accurate reachable sets inside

the aerodynamic flight envelope may be used to influence flight procedures and may help to prevent

the occurrence of automation surprises.

5.1 Flap Deflection in a Landing Aircraft

In this example, we examine a landing aircraft, and we focus our attention on the flap setting choices

available to the pilot. While flap extension and retraction are physically continuous operations,

the pilot is presented with a button or lever with a set of discrete settings and the dynamic effect

of deflecting flaps is assumed to be minor. Thus, we choose to model the flap setting as a discrete

variable. The results in this section are taken from [51].

A simple point mass model for aircraft vertical navigation is used, which accounts for lift L, drag

D, thrust T , and weight mg (see [77] and references therein). We model the nonlinear longitudinal

dynamics







mV̇

mV γ̇

ḣ






=







−D(α, V ) + T cos α − mg sin γ

L(α, V ) + T sinα − mg cos γ

V sin γ






(12)

in which the state x = [V, γ, h] ∈ R
3 includes the aircraft’s speed V , flight path angle γ, and altitude

h. We assume the control input u = [T, α], with aircraft thrust T and angle of attack α. The mass

of the aircraft is denoted m. The functions L(α, V ) and D(α, V ) are modeled based on empirical

data [78] and Prandtl’s lifting line theory [79]:

L(α, V ) = 1
2ρSV 2CL(α), D(α, V ) = 1

2ρSV 2CD(α) (13)

where ρ is the density of air, S is wing area, and CL(α) and CD(α) are the dimensionless lift and

drag coefficients.

In determining CL(α) we will follow standard autoland procedure and assume that the aircraft

switches between three fixed flap deflections δ = 0◦, δ = 25◦ and δ = 50◦ (with slats either
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clean wing (0u) 0u → 25d 25 d 25d → 50d 50 d

Figure 12: Discrete transition diagram of flap deflection settings. Clean wing represents no deflection, 25 d

represents a deflection of 25◦, and 50 d, a deflection of 50◦. The modes 0u → 25d and 25d → 50d are timed modes
to reflect deflection time: if the pilot selects mode 25 d from clean wing, for example, the model will transition into
an “intermediate” mode for 10 seconds, before entering 25 d. Thus, the transitions from clean wing to 0u → 25d and
from 25 d to 25d → 50d are controlled transitions (σu) in our analysis, the others are uncontrolled transitions (σd).

extended or retracted), thus constituting a hybrid system with different nonlinear dynamics in

each mode. This model is representative of current aircraft technology; for example, in civil jet

cockpits the pilot uses a lever to select among four predefined flap deflection settings. We assume

a linear form for the lift coefficient CL(α) = hδ + 4.2α, where parameters h0◦ = 0.2, h25◦ = 0.8 and

h50◦ = 1.25 are determined from experimental data for a DC9-30 [78]. The value of α at which

the vehicle stalls decreases with increasing flap deflection: αmax
0◦ = 16◦, αmax

25◦ = 13◦, αmax
50◦ = 11◦;

slat deflection adds 7◦ to the αmax in each mode. The drag coefficient is computed from the lift

coefficient as [79] CD(α) = 0.041+0.045C2
L(α) and includes flap deflection, slat extension and gear

deployment corrections. Thus, for a DC9-30 landing at sea level and for all α ∈ [−5◦, αmax
δ ], the

lift and drag terms in (12) are given by

L(α, V ) = 68.6 (hδ + 4.2α)V 2 D(α, V ) = (2.7 + 3.08 (hδ + 4.2α)2)V 2

In our implementation, we consider three operational modes: 0u, which represents δ = 0◦ with

undeflected slats, 25d, which represents δ = 25◦ with deflected slats, and 50d, for δ = 50◦ with

deflected slats.

Approximately 10 seconds are required for a 25◦ degree change in flap deflection. For our im-

plementation, we define transition modes 0u → 25d and 25d → 50d with timers, in which the

aerodynamics are those of (12) with coefficients which interpolate those of the bounding opera-

tional modes. The corresponding discrete automaton is shown in Figure 12. Transition modes have

only a timed switch at t = tdelay, so controlled switches will be separated by at least tdelay time

units and the system is nonzeno. For the executions shown below, tdelay = 10 seconds.

The aircraft enters its final stage of landing close to 50 feet above ground level ([78, 80]). Restrictions

on the flight path angle, aircraft velocity and touchdown (TD) speed are used to determine the
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Figure 13: Maximally controllable safe envelopes for the multimode landing example. From left to
right the columns represent modes 0u, 25d and 50d.

initial safe set W0:































h ≤ 0 landing or has landed

V > V stall
δ faster than stall speed

V < V max slower than limit speed

V sin γ ≥ ż0 limited TD speed

γ ≤ 0 monotonic descent

∪































h > 0 aircraft in the air

V > V stall
δ faster than stall speed

V < V max slower than limit speed

γ > −3◦ limited descent flight path

γ ≤ 0 monotonic descent

(14)

We again draw on numerical values for a DC9-30 [78]: stall speeds V stall
0u = 78 m/s, V stall

25d = 61 m/s,

V stall
50d = 58 m/s, maximal touchdown speed ḣ0 = 0.9144 m/s, and maximal velocity V max = 83 m/s.

The aircraft’s input range is restricted to a fixed thrust at 20% of its maximal value T = 32KN ,

and α ∈ [0◦, 10◦].

The results of our fixed point computation are shown in Figures 13 and 14. The interior of the

surface shown in the first row of Figure 13 represents the initial envelopes W0 for each of the
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Figure 14: Slices through the reach and avoid sets for the hybrid analysis at a fixed altitude of
h = 5m. From left to right the columns represent modes 0u, 25d and 50d.

0u, 25d and 50d modes. The second row of the figure shows the maximally controllable subset

of the envelope for each mode individually, as determined by the reachable set computation for

continuous systems. The clean wing configuration 0u becomes almost completely uncontrollable,

while the remaining modes are partially controllable. The subset of the envelope that cannot be

controlled in these high lift/high drag configurations can be divided into two components. For

low speeds, the aircraft will tend to stall. For values of h near zero and low flight path angles γ,

the aircraft cannot pull up in time to avoid landing gear damage at touchdown. The third row

shows the results for the hybrid reachable set computation. Here, both modes 0u and 25d are

almost completely controllable, since they can switch instantaneously to the fully deflected mode

50d. However, no mode can control the states h near zero and low γ, because no mode can pull

up in time to avoid landing gear damage. Figure 14 shows a slice through the reach and avoid sets

for the hybrid analysis at a fixed altitude of h = 5m, for each of the 0u, 25d and 50d modes. Here,

the grey-scale represents the following: dark grey is the subset of the initial escape set that is also

safe in the current mode, mid-grey is the initial escape set, light grey is the known unsafe set, and

white is the computed reach set, or those states from which the system can neither remain in the

same mode nor switch to safety.

5.2 Take Off / Go Around Analysis

We now examine another aircraft landing example with the goal of using hybrid system verification

in order to prove desirable qualities about the pilot’s display. Naturally, only a subset of all

information about the aircraft is displayed to the pilot – but how much information is enough?

When the pilot does not have the required information at his disposal, automation surprises and

mode confusion can occur. Currently, extensive flight simulation and testing are used to validate

autopilot systems and their displays. However, discovering design errors as early as possible in the

design process is important, and hybrid verification tools can aid in this process. The results in

this section are taken from [10], which uses the same form of longitudinal dynamic model (12) as
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i CL0
CD0

K Flaps Landing
Setting Gear

1 0.4225 0.024847 0.04831 Flaps-20 Down
2 0.7043 0.025151 0.04831 Flaps-25 Down
3 0.8212 0.025455 0.04831 Flaps-30 Down
4 0.4225 0.019704 0.04589 Flaps-20 Up
5 0.7043 0.020009 0.04589 Flaps-25 Up
6 0.8212 0.020313 0.04589 Flaps-30 Up

Table 1: Aerodynamic constants for autoland modes indexed by ẋ = fi(x, u).

Toga-Max Toga-Up Altitude

T ∈ [0, Tmax]T ∈ [0, Tmax]T = Tmax

ẋ = f1(x, u) ẋ = f4(x, u) ẋ = f1(x, u)

ḣ ≥ 0 h ≥ halt

Flare

ẋ = f3(x, u)

T = 0

Rollout

ẋ = 0
T = 0

σTOGA

h = 0

Figure 15: Hybrid procedural automaton Hprocedure. The dynamics fi(x, u) = f(qi, x, u) differ in
the values of aerodynamic coefficients affecting lift and drag.

the previous section, with new parameters for a large commercial aircraft.

In modeling CL(α) and CD(α) as in (13), we define CL(α) = CL0 + CLα
α and CD(α) = CD0 +

KC2
L(α). The constants CL0 , CD0 , and K represent a particular aircraft configuration, as indicated

in Table 1. CLα
= 5.105 in all modes. The aircraft has mass m = 190000 kg, wing surface area

S = 427.80 m/s2, and maximum thrust Tmax = 686700 N.

The model for this example also varies from the previous example in that we directly account for

the user’s actions in the hybrid system. We assume that the pilot operates the aircraft according

to strict procedure, shown in Figure 15. During landing, if for any reason the pilot or air traffic

controller deems the landing unacceptable (debris on the runway, a potential conflict with another

aircraft, or severe wind shear near the runway, for example), the pilot must initiate a go-around

maneuver. A go-around can be initiated at any time after the glideslope has been captured and

before the aircraft touches down. Pushing the go-around button engages a sequence of events

designed to make the aircraft climb as quickly as possible to a preset missed-approach altitude,

halt = 2500 feet.

The initial state of the procedural model Hprocedural (Figure 15) is Flare, with flaps at Flaps-30 and

thrust fixed at idle. When a pilot initiates a go-around maneuver (often called a “TOGA” due to

the “Take-Off/Go-Around” indicator on the pilot display), the pilot changes the flaps to Flaps-20

and the autothrottle forces the thrust to Tmax (Toga-Max). When the aircraft obtains a positive

rate of climb, the pilot raises the landing gear, and the autothrottle allows T ∈ [0, Tmax] (Toga-Up).
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Mode V [m/s] γ [degrees] α [degrees]
Flare [55.57, 87.46] [−6.0◦, 0.0◦] [−9◦, 15◦]

Toga-Max [63.79, 97.74] [−6.0◦, 0.0◦] [−8◦, 12◦]
Toga-Up [63.79, 97.74] [0.0◦, 13.3◦] [−8◦, 12◦]
Altitude [63.79, 97.74] [−0.7◦, 0.7◦] [−8◦, 12◦]

Table 2: State bounds for autoland modes of Hprocedural.

The aircraft continues to climb to the missed approach altitude, halt, then automatically switches

into an altitude-holding mode, Altitude, to prepare for the next approach (with the landing gear

down). If a go-around is not initiated from Flare, the aircraft switches to Rollout when it lands.

(We do not model the aircraft’s behavior after touchdown.)

Although go-arounds may be required at any time during the autoland prior to touchdown, we

model σTOGA as a controlled transition because the pilot must initiate the go-around for it to

occur. Certain events occur simultaneously: changing the flaps to Flaps-30 and event σTOGA,

raising the landing gear and ḣ ≥ 0, and lowering the landing gear and h ≥ halt.

Each mode in the procedural automaton is subject to state and input bounds, due to constraints

arising from aircraft aerodynamics and desired aircraft behavior. These bounds, shown in Table 2,

form the boundary of the initial envelope W0. Bounds on V and α are determined by stall speeds

and structural limitations for each flap setting. Bounds on γ and T are determined by the desired

maneuver [81]. Additionally, at touchdown, θ ∈ [0◦, 12.9◦] to prevent a tail strike, and ḣ ≥ −1.829

m/s to prevent damage to the landing gear.

We separate the hybrid procedural model (Figure 15) across the user-controlled switch σTOGA, into

two hybrid subsystems: HF and HT. HF encompasses Flare and Rollout, HT encompasses Toga-

Max, Toga-Up, and Altitude. Computationally, automatic transitions are smoothly accomplished

by concatenating modes across automatic transitions, so that the change in dynamics across the

switching surface is modeled as another nonlinearity in the dynamics. Additionally, we assume in

HT that if the aircraft leaves the top of the computational domain (h = 20 m) without exceeding

its flight envelope, it is capable of reaching Altitude mode, which we consider to be completely safe.

The initial flight envelopes for HF and HT, (WF)0 and (WT)0, are determined by state bounds on

each mode given in Table 2. We perform the reachable set computation on HF and HT separately

to obtain the safe flight envelopes WF and WT . Figure 16 shows WF, and Figure 17 shows WT in

Toga-Up and Toga-Max modes. (Note that the boundary of WF along γ = 0 corresponds with the

transition boundary of WT between Toga-Up and Toga-Max, ḣ = 0.)

Figure 18 shows the continuous region WF ∩WT from which we can guarantee both a safe landing

and a safe go-around. Notice that this set is smaller than WF, the region from which a safe landing

is possible: the pilot is further restricted in executing a go-around. There are states from which a

safe landing is possible, but a safe go-around is not.

Verification within a hybrid framework allows us to account for the inherently complicated dynamics
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Figure 16: Safe region WF ; the outer box is
(WF )0.

Figure 17: Safe region WT : the outer box is
(WT )0.

Figure 18: The solid shape is the safe region WF ∩WT , from which safe landing and safe go-around
is possible. The meshes depict WF and WT.

underlying the simple, discrete representations displayed to the pilot. In this example, in order to

safely supervise the system, the pilot should have enough information to know before entering a

go-around maneuver whether or not the aircraft will remain safe: thus the pilot could respond to

this information by increasing speed, decreasing ascent rate, or decreasing angle of attack.

6 Summary

We have presented a method and algorithm for hybrid systems analysis, specifically, for the verifi-

cation of safety properties of hybrid systems. We have also given a brief summary of other available

methods. All techniques rely on the ability to compute reachable sets of hybrid systems, and they

differ mainly in the assumptions made about the representation of sets, and evolution of the con-

tinuous state dynamics. We have described and demonstrated our algorithm, which represents

a set implicitly as the zero sublevel set of a given function, and computes its evolution through

the hybrid dynamics using a combination of constrained level set methods and discrete mappings
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through transition functions.

Many directions for further work are available, and we are pursuing several of them. Our algorithm

is currently constrained by computational complexity: examples with four continuous dimensions

take several days to run on our standard desktop computers, five dimensions takes weeks. We

are working on a variant of our algorithm which first projects the high dimensional target into

a set of lower dimensional subspaces of the state space, computes the reachable sets of these

projections (quickly, as they are in low dimensions), and then “backprojects” these sets to form, in

high dimensions, an overapproximation of the actual reachable set. The actual reachable set need

never be computed, and overapproximations of unsafe sets can be used to verify safety. Our initial

algorithmic and experimental results are presented in [52], in which we show that a fairly tight

overapproximation of the set shown in Figure 6 may be computed in less than a minute (compared

to 15 minutes for the full set). We are also developing methods to compute tight polyhedral

overapproximations of the reachable set for general nonlinear hybrid systems [38] – these methods

scale well in continuous dimension, as they do not require gridding the state space.

Perhaps more exciting are the applications that we are currently working on: we have used reachable

set computations to design safe emergency escape maneuvers for dual aircraft closely spaced parallel

approaches [82], and we are currently working with Boeing St. Louis on a real-time application of

our pursuit-evasion game (under the DARPA Software Enabled Control program). Also, we believe

that these algorithms have great potential for human-automation interface design.
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