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In earlier work, we showed that the set of states which can reach a target set of a
continuous dynamic game is the zero sublevel set of the viscosity solution of a time
dependent Hamilton-Jacobi-Isaacs (HJI) partial differential equation (PDE). We have
developed a numerical tool—based on the level set methods of Osher and Sethian—
for computing these sets, and we can accurately calculate them for a range of con-
tinuous and hybrid systems in which control inputs are pitted against disturbance
inputs. The cost of our algorithm, like that of all convergent numerical schemes,
increases exponentially with the dimension of the state space. In this paper, we devise
and implement a method that projects the true reachable set of a high dimensional
system into a collection of lower dimensional subspaces where computation is less
expensive. We formulate a method to evolve the lower dimensional reachable sets
such that they are each an overapproximation of the full reachable set, and thus their
intersection will also be an overapproximation of the reachable set. The method uses
a lower dimensional HJI PDE for each projection with a set of disturbance inputs
augmented with the unmodeled dimensions of that projection’s subspace. We illus-
trate our method on two examples in three dimensions using two dimensional projec-
tions, and we discuss issues related to the selection of appropriate projection
subspaces.
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1. INTRODUCTION

Of fundamental importance in the safety verification of embedded control systems
is the ability to compute reachable sets of states. If one can accurately determine the
set of states from which a system may inadvertently step or be pushed into an
unsafe configuration, then system safety can be verified by ensuring that the system
state remains outside of this set. Consider, for example, the automatic control laws
proposed for ensuring separation between aircraft in civilian air traffic control [1],



Fig. 1. The difference between backwards and forwards reachability.

in which unsafe configurations are those in which the distance between any pair of
vehicles is less than a required minimum. We would like to guarantee that these
control laws never allow two aircraft into a situation where loss of separation is
inevitable, and reachable set analysis is an appropriate tool for this task.

There are two basic types of reachable sets, depending on whether an initial or
a final condition is specified. For a forwards reachable set, we specify the initial
conditions and seek to determine the set of all states that can be reached along
trajectories that start in that set. Conversely, for a backwards reachable set we
specify a final or target set of states and seek to determine the set of states from
which trajectories start that can reach this target set (see Fig. 1). In this paper, we
will primarily discuss backwards reachable sets. For autonomous systems with no
inputs the two computations may be used interchangeably, but it is an as yet
unresolved question how the computation of the two reachable sets compares for
general continuous dynamical control systems.

Computing reachability for safety specifications has been studied in the control
and computer aided verification communities for many years. While efficient algo-
rithms have been designed for reachability computation in discrete state spaces [2],
the computation of reachable sets for continuous systems whose state dimension
exceeds four or five remains an open problem. In our previous work [3–5], we have
developed a method for computing backwards reachable sets based on level set
techniques [6–8] and viscosity solutions [9, 10], using the ideas presented in
[11, 12]. We allow for both control and disturbance inputs in our problem formula-
tion, we represent a reachable set as the zero sublevel set of an appropriate func-
tion, and the boundary of this set is propagated under a nonlinear flow field using a
validated numerical approximation of a time dependent Hamilton-Jacobi-Isaacs
(HJI) partial differential equation (PDE). Our numerical methods compare
favorably in efficiency and accuracy to other methods based on solutions to static
Hamilton-Jacobi equations [13, 14] and to techniques from viability theory [15].

Unfortunately, while these methods can find accurate approximations to the
reachable set for systems with complicated nonlinear dynamics, their computational
cost scales exponentially with the system’s state space dimension. A number of
more efficient methods for computing reachable sets have been developed [16–26],
but to achieve their efficiency they are forced to specialize in the types of dynamics
and/or shapes of reachable sets with which they can operate.

In this paper, we present our own attempt to tackle the ‘‘curse of dimensional-
ity.’’ Instead of computing the true reachable set in the system’s full state space,
we work in a collection of lower dimensional subspaces to compute an over-
approximation. We present the technique in the context of our time dependent
Hamilton-Jacobi formulation of reachability, but it could be applied to any of the
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reachability methods mentioned above that can handle systems with disturbance
inputs. The basic idea is simple: in each projection we calculate the reachable set
assuming that the projection’s unmodeled dimensions are added to the collection of
disturbance inputs. We conjecture that each lower dimensional reachable set is
provably an overapproximation of the projection of the true reachable set, so that
the intersection of the back projections of the lower dimensional sets will also be an
overapproximation. As such, we gain significant computational savings for high
dimensional systems, at the expense of overapproximation. However, because we
are interested in verifying system safety, computing an overapproximation of the set
of states which evolve into an unsafe set and then proving that the system never
enters that overapproximation is sufficient.

Our work is inspired by the ideas of [27, 28] for continuous systems and those
of [29–31] for discrete systems, as well as research which uses intersections and
projections to treat curves [32] and geometric optics [33, 34].

The outline of this paper is as follows. In Sec. 2, we define the reachability
problem and its solution, and we present an example derived from aircraft collision
avoidance. In Sec. 3, we describe our reachability technique based on projections;
for clarity, we explain the method with a simple linear rotation example in three
dimensions using projections into two dimensional subspaces. The method is then
demonstrated on the aircraft collision avoidance example, for which we achieve a
significant savings in computation time. We conclude the paper with a discussion of
issues that remain to be investigated.

2. REACHABLE SETS

In this section we define backwards reachable sets, explain how they can be
represented as the solution of an HJI PDE, and review computational techniques
for their approximation. Our methods will be applicable to linear and nonlinear
systems, whose dynamics are modeled by differential equations depending on
control and disturbance parameters. For the kinds of practical systems in which we
are interested, the controls represent parameters which may be manipulated to force
the system to satisfy a property or achieve a goal, while the disturbances represent
uncertainties in the system, environmental disturbances or unknown actions of a
component or subsystem. We are interested in formulating control strategies which
will achieve the goal, despite the worst possible disturbance action. Hence, we use
the framework of optimal control and differential games. We will first introduce an
example of a system for which we would like to compute a reachable set, in order to
make the subsequent informal discussion more concrete. A formal presentation of
reachable set computation can be found in [3].

Throughout the discussion that follows, we use the notation xi to refer to the
ith component of the vector x.

2.1. Collision Avoidance Example

As our demonstration example we will adopt a classical pursuit evasion game
involving two identical vehicles moving in the plane (see [35, 36] for more details).
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If the vehicles get too close together, a collision occurs. One of the vehicles (the
pursuer) wants to cause a collision, while the other (the evader) wants to avoid one.
Each vehicle has a three dimensional state consisting of a location in the plane and
a heading. The model for an individual vehicle is

d
dt
rz1

z2

z3

s=rv cos z3

v sin z3

w

s , (1)

where [z1 z2]T ¥ R2 is the vehicle’s location in the plane, z3 ¥ [0, 2p] is its heading,
v \ 0 is its linear velocity and w is its angular velocity. We draw our vehicles as
airplanes, although as a simple kinematic model, (1) is equally applicable to a car or
even a unicycle. We have used the solution to this example as inspiration for verify-
ing two-aircraft tactical conflict avoidance strategies in air traffic control, in which
the logic within each aircraft may be uncertain about the possible actions of the
other aircraft [1].

In order for the two vehicles to pursue their respective goals, they must be able
to affect their vehicles’ dynamic evolution in some manner. We use the term inputs
to refer to the free parameters in a system’s ODE that can be modified to achieve
some goal. For this particular game we allow each player to choose an angular
velocity w ¥ [ − 1, +1]. To distinguish between the two players’ inputs, we replace
the variable w by a ¥ A=[ − 1, +1] for the evader’s input angular velocity and by
b ¥ B=[ − 1, +1] for the pursuer’s input angular velocity. The remaining param-
eters are fixed; for the visualizations shown below their values are linear velocity
v=5 and collision distance dc=5.

Because we are not interested in the absolute location of a collision, but only in
whether or not one will occur, we study the problem in relative coordinates (see
Fig. 2). Fixing the evader at the planar origin and facing to the right, the model
becomes:

ẋ=
d
dt
rx1

x2

x3

s=r − v+v cos x3+ax2

v sin x3 − ax1

b − a

s=f(x, a, b), (2)

where the three state dimensions are relative planar location [x1 x2]T ¥ R2 and
relative heading x3 ¥ [0, 2p]. A collision occurs if `x2

1+x2
2 [ dc for any value of

x3—in R3 this collision set is a cylinder of radius dc centered on the x3 axis. To
solve this pursuit evasion game, we would like to determine the set of initial states
from which the pursuer can cause a collision despite the best efforts of the evader.

2.2. Defining the Reachable Set

As was discussed previously, the backwards reachable set is the set of initial
conditions giving rise to trajectories that lead to some target set. More formally, let
G0 be the target set, G(y) be the backwards reachable set over finite horizon y < .,
x( · ) denote a trajectory of the system, and x(y) be the state of that trajectory at
time y. Then G(y) is the set of x(0) such that x(s) ¥ G0 for some s ¥ [0, y] (see
Fig. 3).
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(Player II)
Evader Pursuer

(Player I)

a

v

dc

x3

v

x1

x2

b

Fig. 2. Coordinate system for the collision avoidance example.

We partition any input parameters in the system’s dynamics into two subsets:
those inputs trying to reach the target set, and those inputs trying to avoid it. The
names we give these two subsets are based on the fact that in our examples the
target set is usually a set of dangerous states. The control inputs are those whose
values we can choose to drive the system away from the target set, while the distur-
bance inputs are those we conservatively assume will take on a worst case value and
drive the system toward the target set. Control inputs will be designated by a (such
as the evader’s input) and disturbance inputs will be designated by b (such as the
pursuer’s input).

The choice of input values over time influences how a trajectory x( · ) evolves.
For systems with inputs, the backwards reachable set G(y) is the set of x(0) such
that for every possible control input a there exists a disturbance input b that results
in x(s) ¥ G0 for some s ¥ [0, y].3

3 The control and disturbance inputs are technically signals over time, but here we refer interchange-
ably to the signal over time and its instantaneous value. A formal discussion of the admissible non-
anticipative input sets and strategies is provided in [3].

The solution to the pursuit evasion game described in Sec. 2.1 is a backwards
reachable set. Let the target set be the collision set

G0={x ¥ R3 | `x2
1+x2

2 [ dc}. (3)

Then G(y) is the set of initial configurations such that for any possible control input
chosen by the evader, the pursuer can generate a disturbance input that leads to a
collision within y time units.

2.3. Computing the Reachable Set

Analytic determination of a reachable set is only possible in rare instances;
consequently, we have developed a numerical method to find these sets. We have
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Fig. 3. Notation for system trajectories and the backwards reachable set.

chosen to use the very general implicit surface function representation for our
reachable sets. To demonstrate this representation, consider the cylindrical target
set (3) for the collision avoidance example. We represent this set as the zero sublevel
set of a scalar function f0(x) defined over the state space

f0(x)=`x2
1+x2

2 − dc,

G0={x ¥ R3 | f0(x) [ 0}.

In words, a point x is inside G0 if f0(x) is negative, outside G0 if f0(x) is positive,
and on the boundary of G0 if f0(x)=0.

Let the backwards reachable set G(y)=Sy(G(0))=Sy(G0), where the Sy( · )
operator computes the backwards reachable set of its set valued argument over time
y. In [3] we proved that Sy( · ) can be accomplished on sets represented by an
implicit surface function by solving the modified HJI PDE

“f(x, t)
“t

+min[0, H(x, Nf(x, t))]=0, (4)

with t=−y, Hamiltonian

H(x, p)=max
a ¥ A

min
b ¥ B

p · f(x, a, b), (5)

and terminal conditions

f(x, 0)=f0(x). (6)

If G0 is the zero sublevel set of f0(x), then the zero sublevel set of the viscosity
solution f(x, t) to (4)–(6) specifies the backwards reachable set as

G(y)={x ¥ R3 | f(x, −y) [ 0}. (7)

Notice that (4) is solved from time t=0 backwards to some t=−y [ 0.
There are several interesting points to make about the HJI PDE (4)–(6). First,

the min[0, H] formulation in (4) ensures that the reachable set only grows as y

increases; thus, states labeled unsafe cannot become safe at some later time. Second,
the ‘‘maxmin’’ operation in the Hamiltonian (5) may give a slight advantage to the
disturbance, since it chooses a value second and hence may observe the action of
the control. In the examples presented here the inputs are independent, but this
choice of order is conservative in those cases where order matters. Third, we show
in [3] that the viscosity solution is the correct weak solution of (4)–(6) to generate
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Fig. 4. Growth of the reachable set (animation at [44]).

an implicit surface representation of the reachable set. Therefore, we can draw on
the well developed numerical schemes of the level set literature to compute accurate
approximations of f(x, t). Finally, the solution f(x, t) can be used to create a
weakest safe controller: if the state is outside the reachable set, any control policy
for input a is safe, but on the boundary the control must choose the optimal a
from (5) to ensure that the system remains outside the reachable set and hence to
guarantee safety. In practice, we gradually introduce input constraints as the system
approaches the boundary to avoid a chattering controller, using the distance and
gradient information in f(x, t).

To compute numerical approximations of the viscosity solution to (4)–(6), we
have developed a C++implementation based on high resolution level set methods
(an excellent introduction to these schemes can be found in [8]). To approximate
Nf(x, t) we rely primarily on a fifth order accurate weighted, essentially non-
oscillatory (WENO) stencil [37, 7], although we have also implemented a basic first
order scheme for speed [6, 38]. While upwinding would be the least dissipative way
to numerically approximate the Hamiltonian (5), the optimizations over a and b
make it difficult to implement. Instead, we use the well studied Lax-Friedrichs (LF)
approximation [39, 40]. We have considered the Local Lax-Friedrichs and Roe
with entropy fix numerical approximations of the Hamiltonian [7], but neither
demonstrated a significant reduction in dissipation for our problems. We suspect
that regular reinitialization of the level set function and the switching nature of the
optimal inputs a and b in (5) effectively reduces these more involved approxima-
tions to the basic LF approximation in those regions where dissipation must be
introduced for stability (near shocks), while away from these regions none of the
schemes introduce significant dissipation. Finally, we treat the time derivative in (4)
with the method of lines and a second order total variation diminishing (TVD)
Runge-Kutta scheme [41]. Although TVD schemes of higher order are available,
we found this one to be sufficiently accurate for our purposes.

2.4. Collision Avoidance Example Results

We can apply this code to the collision avoidance problem. In Fig. 4, the colli-
sion cylinder/target set G0 for the example appears on the far left; the remaining
images show how G(y) grows as y increases from zero. For the parameters chosen
in Sec. 2.1, the reachable set converges to a fixed point for y N 2.6. Figure 5 shows

Fig. 5. Other views of the reachable set (animation at [44]).
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several views of this fixed point. Should the pursuer start anywhere within this
reachable set, it can cause a collision by choosing an appropriate input b, no matter
what input a the evader might choose. Conversely, if the pursuer starts outside this
reachable set, then there exists an input a that the evader can choose that will avoid
a collision no matter what input b the pursuer might choose.

We can build some intuition for the shape of the reachable set in Fig. 5 by
considering a few horizontal slices through it. The relative heading coordinate x3 is
the vertical coordinate in these images. The largest horizontal slice of the reachable
set lies at the vertical midpoint x3=p, which is when the two aircraft are flying in
opposite directions. The horizontal slice at top x3=0 or bottom x3=2p (which are
equivalent) represents the case in which the aircraft are flying in the same direction;
this slice is nothing more than the initial collision set.

Figure 6 shows an annotated frame from an animation of the collision system,
and a series of frames from that animation are shown in Fig. 7. The evader starts
on the left surrounded by the solid collision circle, while the pursuer starts on the
right. The dotted shape surrounding the evader is the slice of the reachable set for
the current relative heading of the two vehicles; for example, in the leftmost figure
the vehicles have relative heading x3 % p and so the horizontal midplane slice of the
reachable set is shown. By choosing an appropriate input, the evader keeps the
pursuer from entering the reachable set and thus from causing a collision as time
progresses from left to right. Figure 8 shows a sequence in which the pursuer starts
within the reachable set and causes a collision.

The numerical techniques described here can be applied to general asymmetric
versions of this game; for example, cases in which the two vehicles’ linear velocities
and/or their range of angular velocities are not identical. For the special case of
identical vehicles examined above, we can find an analytic solution for points on
the boundary of the reachable set. We have used this solution to show convergence
of our numerical approximation as the computational grid is refined, and thus
validate our implementation. For more details, see [36].

3. REACHABILITY COMPUTATION IN PROJECTIONS

The Hamilton-Jacobi-Isaacs formulation and level set solution described in
the previous section provide a computationally elegant method to determine the set
of reachable states of a continuous dynamic game. The main problem with this
method is the expense of computing the full reachable set. To reduce this cost, we

Fig. 6. Annotated frame from collision avoidance example animation.
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Fig. 7. Evader keeps pursuer from entering reachable set, and hence avoids collision (animation
at [44]).

wish to represent a high dimensional reachable set as the intersection of a collection
of lower dimensional reachable sets. If we can formulate a way to evolve the lower
dimensional reachable sets—called the projections—such that they are each an
overapproximation of the full reachable set, then their intersection will also be an
overapproximation. The key is to evolve the projections without referring explicitly
to the full dimension reachable set. It turns out that the HJI formulation provides
this for free: in any projection, we simply augment the space of disturbances with
the unmodeled dimensions and form a new HJI PDE in a lower dimensional space.

Throughout the remainder of the paper, we will consider for clarity the specific
case in which the true reachable set is of dimension three, and we will work with a
set of projections in two dimensional spaces spanned by subsets of the coordinate
axes. The generalization both to higher dimension, as well as to projections of dif-
ferent dimension, is not theoretically difficult, yet issues regarding the selection of
projective subspaces are important, and will be discussed following the presentation
of an example.

3.1. Subspaces and Projections

We consider as state space R3 spanned by its coordinate axes e1, e2 and e3. Let
Yi be the subspace spanned by coordinate axis ei, and Yij the subspace spanned by
coordinate axes ei and ej. Note that Y123=R3.

Define the projection operators:

• pi[x], which projects a point x ¥ R3 into the subspace Yi, defined as:

pi[x]=xi.

• pij[x], which projects a point x ¥ R3 into the subspace Yij, defined as:

pij[x]=rxi
xj

s.

We will sometimes write the pair [xi xj]T as xij.

Fig. 8. Pursuer starts within the reachable set, and thus can cause a collision despite the best
efforts of the evader (animation at [44]).
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• p−1
ij [yij], which represents the back projection of the point yij ¥ Yij into R3,

defined as:

p−1
ij [yij]={x ¥ R3 | pij[x]=yij}.

Note that p−1
ij [yij] is a subset of R3.

We will sometimes abuse notation by applying these operators to sets instead of
points. For example, if X … R3, then the projection of X into Yij is represented as

pij[X]={yij ¥ Yij | ,x ¥ X with pij[x]=yij}.

As defined in (7), we represent the true, full dimensional reachable set G(t) as
the zero sublevel set of the scalar function f(x, t). In subsequent discussions we will
have reason to refer to sublevel sets other than the zero sublevel set. In those cases
we use a superscript to denote the particular sublevel set in which we are interested—
for some constant d ¥ R,

Gd(t)={x ¥ R3 | f(x, t) [ d}.

The projections’ reachable sets are represented by implicit surface functions defined
in their respective subspaces

Yij(t)={yij ¥ Yij | fij(yij, t) [ 0},

where fij: Yij × R Q R. The intersection of the projections is given by

X(t)=3
3

i=1
3

3

j=i+1
p−1

ij [Yij(t)]

={x ¥ R3 | pij[x] ¥ Yij(t) for i, j ¥ {1, 2, 3}, j > i},

={x ¥ R3 | fij(pij[x], t) [ 0 for i, j ¥ {1, 2, 3}, j > i}. (8)

Notice that p−1
ij [Yij(t)] will be a prism in R3 whose cross section is Yij(t); for

example, p−1
12 [Y12(t)] is a prism aligned with the e3 axis whose cross section in the

e1-e2 plane is Y12(t). Therefore, X(t) from (8) is simply the intersection of three
orthogonal prisms.

We overload the projection operators to apply them to implicit surface func-
tions. First, define the depth of a point yij ¥ Yij as

D(yij, t)= min
x ¥ p

− 1
ij [yij]

f(x, t).

There are a number of possible ways to define a projection of the full dimensional
function f(x, t), but we will use the depth operator:

pij[f]: Yij × R Q R, pij[f](yij, t)=D(yij, t). (9)

With this definition,

G(t)={x ¥ R3 | f(x, t) [ 0} 2 pij[G(t)]={yij ¥ Yij | pij[f](yij, t) [ 0}.
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The inverse projection for the implicit surface function of a subspace is easier to
define

p−1
ij [fij] : R3 × R Q R, p−1

ij [fij](x, t)=fij(pij[x], t). (10)

Under this definition, p−1
ij [fij](x, t) is an implicit surface function in R3 for the

prism p−1
ij [Yij] aligned normal to the ei-ej plane whose cross section is Yij(t).

3.2. The Linear Rotation Example

To illustrate these definitions and the projection evolution procedure, we use a
simple example involving purely rotational dynamics (about the e3 axis) and no
inputs. The dynamics are given by the linear rigid body rotation

ẋ=Ax=f(x), (11)

with x ¥ R3 and A ¥ R3 × 3

A=p r0 − 1 0
1 0 0
0 0 0

s .

For this example, we will compute the forward evolution of the initial set under the
rotation rather than a forwards or backwards reachable set, because it is easier to
visualize the progress of this evolution and its projections. The entire region swept
out by this evolution would be the forwards reachable set. If the initial set is repre-
sented implicitly by f0(x), we can compute the evolution of this initial set by
solving a regular HJI PDE forward in time (note that t \ 0 in this case)

“f(x, t)
“t

+H(x, Nf(x, t))=0,

f(x, 0)=f0(x),

H(x, p)=p · f(x).

(12)

The projection based overapproximation method outlined below will assume that
St( · ) set evolution is accomplished with the forward time PDE (12). The method
can be directly adapted to the computation of regular reachable sets by instead
using (4)–(6) for Sy( · ) set evolution.

For the purposes of this example, let G0 be our initial set and G(t) be the same
set rotated under (11) for time t (in the future we will call G(t) a reachable set, even
though it is only a forward time evolution in this particular example). The dynamics
are scaled such that G(2)=G(0)=G0. Ideally, we would like G0 to be a sphere of
radius r=0.30 centered at the point c=[0.00 0.55 0.00]T. Solving for the viscosity
solution f(x, t) of (12) with f(x) from (11) and

f0(x)=`(x1 − c1)2+(x2 − c2)2+(x3 − c3)2 − r (13)

would generate an implicit surface representation of G(t), but would require sol-
ving (12) over three spatial dimensions. To reduce computational costs, we will
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instead seek a method of overapproximating G0 and G(t) that requires solving
PDEs in only two spatial dimensions.

We work on three separate two dimensional projections into the subspaces Y12,
Y13, and Y23. The corresponding reachable sets are Y12(t), Y13(t), and Y23(t). The
initial sets Yij(0) for each of these subspace reachability problems are constructed
by projecting the full dimensional initial sphere G0 down into the subspace as
Yij(0)=pij[G0]. These Yij(0) and their intersection X(0) are shown in Fig. 9. Since
X(0) is restricted by our projective geometry to be the intersection of three axis
aligned prisms, it is unavoidably an overapproximation of the initial sphere G0.

3.3. Evolving a Projection

Our goal in this section is to develop an HJI PDE which can be applied in a
lower dimensional subspace to evolve an overapproximative projection of the true
reachable set, thus avoiding the need to solve an expensive full dimensional PDE.
First, however, we look at how to evolve an overapproximative projection using a
PDE defined over the full dimensional space.

Focus on a single projection whose index is ij, and denote the index of the
unmodeled dimension as k. If Yij(t) is an overapproximative projection of G(t),
then G(t) ı p−1

ij [Yij(t)]. Conceptually, Yij(t) could be evolved by an inverse
projection into R3, evolution by dt and projection back down into Yij, written as

Yij(t+dt)=pij[Sdt(p
−1
ij [Yij(t)])]. (14)

Fig. 9. Initial projection sets.
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Then

G(t) ı p−1
ij [Yij(t)] 2 Sdt(G(t)) ı Sdt(p

−1
ij [Yij(t)]),

2 pij[G(t+dt)] ı Yij(t+dt).

Consequently, we can ensure that Yij(t) remains an overapproximative projection
of G(t) provided that we can perform the three steps of (14) on our implicit surface
function representation fij(x, t) of Yij(t). Projection is accomplished by (9) and
inverse projection by (10). For this example Sdt( · ) is accomplished in R3 by sol-
ving (12). Let

p(x)=N(p−1
ij [fij](x, t)),

be the gradient of the projection’s implicit surface function, and pi(x), pj(x) and
pk(x) be its components. Since p−1

ij [Yij(t)] is a prism that lies parallel to the ek

coordinate axis in R3, pk(x)=0 for all x ¥ R3; furthermore, pi(x) and pj(x) are
independent of xk. Examining the Hamiltonian of (12) more closely

H(x, p(x))=p(x) · f(x),

=pi(xi, xj, xk) fi(xi, xj, xk)+pj(xi, xj, xk) fj(xi, xj, xk)

+pk(xi, xj, xk) fk(xi, xj, xk),

=pi(xi, xj) fi(xi, xj, xk)+pj(xi, xj) fj(xi, xj, xk).

Thus, the only dependence of the Hamiltonian (and thus the time evolution in
general) on dimension k is through the xk dependence in fi and fj. Geometrically,
this dependence will manifest itself as a rotation of the prism p−1

ij [Yij(t)] so that it
is no longer parallel to ek. When this rotated prism is projected back down into Yij,
the projection’s boundary will be determined by those parts of the prism that
rotated the most. Maximum rotation occurs where the flow field is most closely
aligned with the outward normal of the initial prism—precisely those states x where
p(x) · f(x) is minimized (the gradient p(x) points in the direction of the inward
normal).

From this argument, we deduce that using the modified Hamiltonian

HŒ(x, p(x))=min
xk

pi(xi, xj) fi(xi, xj, xk)+pj(xi, xj) fj(xi, xj, xk) (15)

in (12) for all x ¥ R3 will not modify the projection into Yij of the time evolved
prism. Although the time evolved prism itself would not be the same, in the end we
are only concerned with its projection.

The only reason that one would have to work with the projective
overapproximation in R3 would be the dependence of the time evolution operation
Sdt( · ) on the missing dimension xk. After substituting the Hamiltonian (15) into
the evolution PDE (12), Sdt( · ) no longer has any dependence on xk, and we can
therefore work entirely in the lower dimensional Yij.

The final concern is how to bound the range of xk when minimizing in (15).
We know that xk ¥ Yk, but minimizing over such an unbounded range could lead to
a negative value of arbitrarily large magnitude for (15). Fortunately, we have access
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to some sets within which all feasible reachable states should lie. If it were available,
G(t) would provide a tight bound on possible values of xk. In practice, we will have
to settle for the overapproximation X(t); however, expanding the interval of fea-
sible xk by using X(t) instead of G(t) can only cause the Hamiltonian (15) to be
more negative and hence Yij(t) to grow more than necessary during the time evolu-
tion step. Since Yij(t) was an overapproximative projection of G(t) to begin with,
further growth cannot cause the overapproximation to fail.

To formalize the bounds on xk, define the set valued slice function for some
M … R3 and yij ¥ Yij as

Fk(M, yij)={yk ¥ Yk | ,x ¥ M with pij[x]=yij and pk[x]=yk},

={pk[x] ¥ Yk | x ¥ p−1
ij [yij] 5 M}. (16)

In words, Fk(M, yij) is a slice through M along the subspace Yk at the point yij; its
value will therefore be an interval in Yk. If M is described by the zero sublevel set
of function fM: R3

Q R, then we can write a mathematical description of Fk

Fk(M, yij)={yk ¥ Yk | fM(yi, yj, yk) [ 0}. (17)

Given this definition, we can formulate a time evolution HJI PDE operating
entirely in Yij for the implicit surface function fij(yij, t) of the overapproximative
projection Yij(t). Instead of (12), use

“fij(yij, t)
“t

+H(yij, Nfij(yij, t))=0,

fij(yij, 0)=pij[f0](yij),
(18)

for those yij ¥ pij[M], with Hamiltonian

H(yij, p)= min
yk ¥ Fk(M, yij)

pi fi(yi, yj, yk)+pj fj(yi, yj, yk), (19)

where M is either G(t) or X(t).
The derivation above is informal, but its conclusion has a fascinating implica-

tion. Comparing (19) with (5), we see that the unmodeled dimension is in effect a
disturbance input to the dynamics in the lower dimensional subspace.

This observation leads to an alternative interpretation of (18) and (19). For the
linear rotation example, G(t) is the set of trajectory points x(t) for those trajectories
with initial points x(0) ¥ G0. If Yij(t) is to be a projective overapproximation of
G(t), then Yij(t) must contain pij[x(t)] for all these trajectories. Consider any time
s ¥ [0, t] and the point x(s) along the full dimensional trajectory. By choosing the
unmodeled dimension yk from the set Fk(G(s), yij), we allow yk=pk[x(s)]. There-
fore pij[ẋ(s)]=pij[f(pi[x(s)], pj[x(s)], pk[x(s)])] will be among the possible flow
fields for the subspace’s dynamics. Since s was arbitrary, pij[x( · )] is a feasible
trajectory of the subspace’s dynamic system, and so pij[x(t)] ¥ Yij(t).

Conjecture. Let G(t) be time evolved by some HJI PDE in R3 and Yij(t) by
some HJI PDE in Yij. If the unmodeled dimension xk ¥ Yk of the full dimensional
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system dynamics ẋ=f(x) is treated as a disturbance input to the subspace’s
dynamics, then

pij[G(t)] ı Yij(t),

where that input xk is drawn from a slice Fk(M, yij) of an appropriate M for points
yij ¥ Yij.

We initially formulated this conjecture based on our numerical success in
computing overapproximating projections. Sections 3.4 and 3.5 showcase some of
those results. In the remainder of this section we outline what might be required to
prove the conjecture, and then discuss some implementation details.

If M=G(t), proving the conjecture requires showing that Fk(G(t), yij) is a
valid set from which to draw disturbance inputs such that the viscosity solution of
the appropriate HJI PDE (either (18)–(19) or (4)–(6)) will still result in the reach-
able set in which we are interested. The problem is that the input constraint set
Fk(G(t), yij) depends on both time t and state yij. In [3] we turned the computa-
tion of backwards reachable sets into a terminal payoff differential game, and used
results in [10] to show that the differential game could be solved with an HJI PDE;
however, those results assumed that the control and disturbance input constraint
sets were constant. State dependent input constraints were investigated in [42], but
only for the optimal control case (no disturbance inputs). It is not clear whether a
differential game with time and state dependent input constraints would satisfy a
dynamic programming principle. Without satisfying such a principle, it is unlikely
that the viscosity solution of an HJI PDE would solve the differential game.

However, in practical terms, we do not have access to G(t) and must use
M=X(t). To prove the conjecture in this case would require the additional step of
showing that

G(t) ı X(t) 2 Sdt(G(t)) ı Sdt(X(t)).

While we investigate methods of proving or disproving the conjecture, we con-
tinue our efforts toward implementation of the projection technique, in order to
determine to what types of practical problems it can be applied. A number of
implementation details arise when solving (18) and (19), of which we briefly
describe the three most important.

• In practice, the unmodeled dimension should be chosen from a slightly
bloated version of X(t) to avoid the chance that Fk(X(t), yij)=” for some
yij on the boundary of Yij(t). Choosing d as a small multiple of the grid
spacing, we use Fk(Xd(t), yij) instead.

• The computational domain in Yij is always larger than Yij(t). Assuming
that d is chosen to be relatively small (to avoid excessive overapproxima-
tion), for those yij ¨ pij[Xd(t)], we will still get Fk(Xd(t), yij)=”. One way
of solving (18) and (19) in those cases is to use velocity extension [43] to
extend the vector flow field artificially into the complement of Xd(t).

• Some projections approximate the reachable set better than others;
however, each projection is individually an overapproximation of the
reachable set, so if pi[Yij(t)] … pi[Yik(t)], then we know that the extra
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range in pi[Yik(t)] is not actually feasible. Thus, we can clip Yik(t) along
dimension xi until pi[Yij(t)]=pi[Yik(t)]. More generally, we can safely clip
any portions of Yij(t) which lie outside of pij[X(t)]. Without this clipping
process, poorly behaved projections can quickly grow larger than practical
computational domains.

3.4. Evolving the Linear Rotation Example’s Projections

The presentation in the previous section was somewhat abstract, so in this
section we will apply the algorithm to the example from Sec. 3.2. Consider how to
evolve the initial projective overapproximation Y13(0). From (9) and (13)

f13(x1, x3, 0)=`(x1 − c1)2+(x3 − c3)2 − r,

which is a circle in Y13. We can evolve Y13(t) by solving the HJI PDE

“f13(x1, x3, t)
“t

+H 1x1, x3,
“f13(x1, x3, t)

“x1
,

“f13(x1, x3, t)
“x3

2=0, (20)

with Hamiltonian (using the dynamics (11))

H(x1, x3, p1, p3)= min
x2 ¥ F2(X(t), x1, x3)

p(−p1x2+p30). (21)

While F2(X(t), x1, x3) is a set valued function of x1 and x3, for illustration we can
describe its value (an interval of Y2) at a few points for t=0 based upon (9)
and (13)

F2(X(0), 0, 0)=[c2 − r, c2+r],

F2(X(0), r, 0)=[c2, c2].

Similar PDEs are used for Y12(t) and Y23(t).
Figure 10 shows the results of applying the projective evolution algorithm to

the linear rotation example. The upper left figure shows the initial conditions and is
the same as Fig. 9. The remaining subplots show the progress of the overapproxi-
mation through a half rotation of the dynamics. By t=1, the projection Y13(t) has
grown from its initial circle into a rectangle. This growth occurs because of the
freedom in choosing x2 in (21). Similar growth occurs in Y23(t) because there is
freedom in choosing x1 for the dynamics in Y23. In contrast, Y12(t) remains a circle,
because the free dimension x3 in Y12 has no effect on the dynamics (11). In fact,
Y13(t) and Y23(t) would grow larger than the squares shown were it not for the
clipping procedure mentioned in the previous section. Figure 11 compares X(t)
with the true reachable set G(t) at a variety of times in a closer view. As advertised,
G(t) ı X(t).

3.5. Solving the Collision Avoidance Example Projectively

In this section we examine the projective overapproximation algorithm’s
application to the reachable set problem from Sec. 2.1. We will use the single
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Fig. 10. Evolution of the linear rotation example’s projective overapproximations Yij(t) (contours
on the walls) and X(t) (solid object).

projection into the relative location plane Y12. Because the unmodeled dimen-
sion—the relative heading x3—is already restricted to Y3=[0, 2p], there is no need
to keep track of any other projections. We simply solve

“f12(y12, t)
“t

+min[0, H(y12, Nf12(y12, t))]=0,

with Hamiltonian

H(y12, p)=max
a ¥ A

min
b ¥ B

min
y3 ¥ Y3

p1 f1(y1, y2, y3, a, b)+p2 f2(y1, y2, y3, a, b)

(where f(x, a, b) is given by (2)) and terminal conditions

f(y12, 0)=`y2
1+y2

2 − dc.

The leftmost subplot of Fig. 12 shows the initial capture circle Y12(0), while the
remaining subplots show the growth of Y12(t) until it converges to a fixed point Y12
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Fig. 11. Comparing the projection based approximation X(t) (mesh) to the true reachable set G(t)
(solid) at several times.

in the rightmost for t N 2.6. Figure 13 compares the overapproximation of the
reachable set p−1

12 [Y12] to the true reachable set G from two angles. Although
p−1

12 [Y12] is significantly larger than G, in the left hand view it can be seen that to
within grid resolution, Y12=p12[G], which is the best that any projective represen-
tation could hope to achieve. The real payoff is computational time. While the full
dimensional reachable set G takes about 20 minutes to compute on a three dimen-
sional grid, the projective overapproximation Y12 takes less than one minute on a
higher resolution two dimensional grid.

Fig. 12. Growth of Y12(t) for the collision avoidance example.
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Fig. 13. Two views comparing the true reachable set G (solid) with the back projection p−1
12 [Y12] of

the approximation (mesh).

Figure 14 shows a series of frames from an animation of the collision avoi-
dance scenario when the evader uses the projective overapproximation Y12 of the
backwards reachable set. When comparing Fig. 14 to Fig. 7, notice that the slice of
reachable set in the frames of Fig. 14 does not depend on relative heading, since
that is the unmodeled dimension in the projection. By construction, the evader can
keep the pursuer from entering Y12, and as long as the pursuer does not enter a
collision is impossible. Using Y12 is a conservative strategy—it is an overapproxi-
mation of the true reachable set—but it is guaranteed to be safe, and in the event
that model parameters change, it can be recomputed much more rapidly than the
true three dimensional reachable set.

4. DISCUSSION

While the outline of the projective overapproximation algorithm above was
specific to projecting a three dimensional space into coordinate aligned two dimen-
sional subspaces, the power of this HJI based approach is that it can be generalized
so easily. Both the full dimensional space and the projection subspaces can be
higher dimensional. The projection subspaces need not be aligned with the coordi-
nate axes, nor need all subspaces be of the same dimension; in fact, there are
systems in which it might be useful to allow the projection subspaces to change
smoothly with time. In a projection with multiple unmodeled dimensions, all the
unmodeled dimensions would be treated as a disturbance input vector constrained
by the appropriate projection of X(t) into the subspace spanned by the unmodeled
dimensions. There is no theoretical reason to constrain the number of projec-
tions—for example, we could add to the linear rotation problem a projection into

Fig. 14. Evader keeps pursuer from entering the projective overapproximation Y12 of the reachable
set, and hence conservatively avoids collision.
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the subspace whose coordinate axes are e1+e3 and e1 − e3, if we thought that such
a projection would help restrict excessive overapproximation in X(t). The only
constraints are implementation complexity and computational resources.

All this flexibility in the choice of projections leads to the question of how to
choose appropriate projections for a particular system. For the linear rotation
example, the natural coordinate axis projections turned out to be very effective (see
Sec. 3.4). In particular, the Y12 projection captured the relevant system dynamics
and thus constrained the other two less effective projections through the clipping
procedure. We can simulate the effect of poorly chosen projections by using the
same three coordinate axis aligned projections, but rotating the system dynamics
counterclockwise by 45° around the e1 axis. To do that, replace the matrix A in (11)
by

AŒ=GAGT,

where

G=rcos h 0 − sin h

0 1 0
sin h 0 cos h

s ,

Fig. 15. Evolution of the linear rotation example with poorly chosen projections.
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and h=p/4. Figure 15 shows the growth of the projective reachable set X(t) for
this version of the linear rotation example. Comparing it with Fig. 10 we can see
how much greater the overapproximation becomes when none of the projections
capture the system’s dynamics.

There is also some concern, based on results from topology, that the projec-
tions’ evolution may be pathological even if the true reachable set is well behaved
under the system’s dynamics. While we believe that this problem is unlikely to occur
in practice when we are working with X(t)—which is an intersection of prisms
derived from the projections themselves—we are still investigating techniques for
identifying appropriate projections for general systems.

The idea of subspace projections works well when we are trying to over-
approximate reachable sets, because inverting these projections back up into
the full dimensional space generates a prism overapproximating the true reachable
set. There are problems in which we wish to underapproximate the reachable set;
for example, in aircraft envelope protection [5], safety requires that we stay within
the flight envelope. If we are going to approximate that envelope we need an
underapproximation, since an overapproximation would incorrectly mark as safe
some states outside the true envelope. Safe flight envelopes are just one example of
controlled invariant sets, and to compute these sets we need underapproximations of
the true reachable set.

The projection scheme outlined above cannot directly compute underapprox-
imations, since the back projected prisms are unbounded in the projection’s
unmodeled dimensions; thus, those prisms could never represent underapproxima-
tions of the true reachable set. We are instead investigating a coordinate inversion
that could turn overapproximations into underapproximations. Consider under-
approximating a circle centered at the origin in R2 by a pair of one dimensional
projections (intervals of R). Map x ¥ R2 to z ¥ R2 through the transformation

zi=
xi

||x||2
2

. (22)

While the circle stays a circle, this transformation could be applied to more general
shapes by transformation of their implicit surface function representation, provided
that the coordinate origin did not lie on the boundary of the shape (we could shift
the origin if it did). System dynamics can likewise be mapped through this non-
linear transformation, so that reachability could be calculated in the transformed
coordinates. Now build a projective overapproximation of the circle in z space,
using projections onto the coordinate axes. The left side of Fig. 16 shows the slabs
that are the inverse projections of the two overapproximating intervals. The inter-
section of these two slabs is a square overapproximating the circle. The key obser-
vation is that we can invert (22) back into the original coordinate frame, and in the
process the overapproximation in z space becomes an underapproximation in x
space—the square that was an intersection of slabs becomes a cloverleaf made from
a union of circles. The right side of Fig. 16 shows this underapproximation of the
circle. The gray points on the left side map to the gray points on the right, and lie in
the region of each state space that would be considered unsafe in an envelope pro-
tection problem. If the circle represents the true safe flight envelope, notice that the
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Fig. 16. A square overapproximating the unit circle in z space becomes a cloverleaf
underapproximating the same circle in x space.

projective safe region (no gray points) on the right is an underapproximation of
the true safe region.

Projective schemes based on Hamilton-Jacobi-Isaacs equations are a powerful
way to tackle Bellman’s ‘‘curse of dimensionality’’ and calculate approximations to
reachable sets for systems larger than dimension two or three. The goal of this
paper is to present motivation for and a gentle introduction to the computation of
reachable sets, and to outline the basic ideas behind projective approximation algo-
rithms. We continue to work on the many remaining theoretical and implementa-
tion details, and hope that this paper will stimulate further innovation in accurate,
scalable schemes for calculating approximations of reachable sets.
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