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Abstract: An adjoint-based algorithm for performing automatic parameter identifi-
cation on differential equation based models of biological systems is presented. The
algorithm solves an optimization problem, in which the cost reflects the deviation
between the observed data and the output of the parameterized mathematical
model, and the constraints reflect the governing parameterized equations them-
selves. Preliminary results of the application of this algorithm to a previously
presented mathematical model of planar cell polarity signaling in the wings of
Drosophila melanogaster are presented.

1. INTRODUCTION

A key problem in systems biology is the identifi-
cation of parameters in the mathematical models
that describe biological systems. This problem is
generally difficult due to both the number of state
variables and parameters, and the fact that the
governing equations are usually nonlinear func-
tions of these states and parameters. It is also
advantageous to perform the parameter identifi-
cation problem relatively quickly, since this allows
one to efficiently test the feasibility of different
mathematical models.
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In this paper, we present an algorithm for per-
forming automatic parameter identification on
differential equation based models of biological
systems. The algorithm attempts to minimize an
objective function which encodes the deviation
between the observed data of the system and
the output of the parameterized model, with the
governing parameterized equations forming the
constraints of this optimization problem. The al-
gorithm relies on the adjoint method, which cal-
culates the gradient of the objective function with
respect to the unknown parameters, essentially
describing analytically how to minimize the ob-
jective by varying the parameters. We augment
this gradient based method by using additional
information provided by the derivative of the gra-
dient to give well-conditioned optimization even
when the optimal parameter values are several



Fig. 1. Drosophila adult wing epithelium. Proxi-
mal edge is to the left, distal edge is to the
right.

Fig. 2. Diagram shows that each epithielial cell
constructs a hair that protrudes from its
distal vertex and points distally, creating a
virtually error free parallel array.

orders of magnitude different from each other. We
present preliminary results of this algorithm on a
previously described mathematical model (Amon-
lirdviman et al. (2005)) of the signaling network
regulating the planar cell polarity of Drosophila

wing epithelial cells orthogonal to their apical-
basal axes. This network is termed planar cell
polarity (PCP).

2. PLANAR CELL POLARITY (PCP)

In adult Drosophila, each epithelial cell on the
wing produces a single hair, or trichome. The hairs
grow from the distal edge (edge of the cell closest
to the wing tip) of each cell and all point in the
same direction, towards the wing tip, as shown
in Figures 1 and 2 (note that all images in this
paper follow the convention that the proximal
side of the cell/wing is to the left of the image,
distal is to the right). Genetic analyses have
identified a group of proteins that are required
to correctly polarize these arrays (Adler (2002),
Strutt (2002)), and the regular array of hairs is
caused by spatially asymmetric distributions of
these proteins in the plane of the epithelium.
The process by which the proteins controlling hair
polarization localize to different areas within each
cell during the development of the fly is called
planar cell polarity (PCP) signaling. The wing
epithelial cells aggregate in a hexagonal close-
packed array (Figure 2).

In the presence of cell clones mutant for some
PCP genes, the hair polarity in neighboring wild-
type cells is disrupted, a phenomenon termed
domineering non-autonomy. Domineering non-
autonomy reverses hair orientation on either the
proximal or distal side of the clone in a manner
characteristic to the particular mutant protein.
Based on the available biological data, a feedback
loop mechanism describing the interaction of a
group of PCP molecules was proposed to mediate
PCP signaling (Axelrod (2001), and Tree et al.
(2002)). The signaling diagram is drawn schemat-
ically in Figure 3, in which an arrow indicates a
positive influence, and a line indicates a negative
influence. The diagram describes the following:
Frizzled (Fz), a membrane protein, promotes the
localization of Disheveled (Dsh), a cytoplasmic
protein, to a membrane; Dsh stabilizes Fz loca-
tion; Fz promotes the localization of Van Gogh
(Vang), a membrane protein, and Prickle (Pk), a
cytoplasmic protein, on the membrane of a neigh-
boring cell; Pk and Vang inhibit the recruitment
of Dsh to a membrane. Experimentally, it has
been observed that, in steady state, Dsh and Fz
proteins localize to the distal edge and Pk and
Vang to the proximal edge of all cells in the array,
thus the large font indicates that the wild type
protein localizes at this location. It is believed
that the hair grows at the site of the highest
concentration of Dsh protein.

A mathematical model based on the feedback loop
model (Tree et al. (2002)) and a global directional
cue that biases the direction toward which the
feedback loop orients (Yang et al. (2002), Ma et al.
(2003)) was used to demonstrate, through simula-
tion, the feasibility of the model to reproduce all of
the most characteristic PCP phenotypes (Amon-
lirdviman et al. (2005)). The logic of the feedback
loop is encoded in the mathematical model by rep-
resenting interactions as binding to form protein
complexes. For example, the interaction between
Fz and Dsh is represented as a reaction form-
ing the complex DshFz, which can interact with
other proteins and complexes, and it can undergo
a backward reaction that separates it back into
its components Fz and Dsh. The mathematical
model includes the four original proteins, as well
as six complexes, the last four of which form
across the cell boundary with the adjacent cell:
DshFz, VangPk, FzVang, DshFzVang, FzVangPk,
DshFzVangPk. While positive influences are en-
coded by complex formation, negative influences
are through terms that aid the reverse reaction.
The state variables of the mathematical model
are the local concentrations of these proteins (for
example [Fz] represents the concentration of Fz)
which are assumed to be continuous. The math-
ematical model assumes that protein molecules
move by diffusion: Dsh and Pk diffuse within the



cell interior, while Vang, Fz, and all the complexes
diffuse only in the membrane (or shared mem-
branes).

The mathematical model is represented by ten
reaction-diffusion partial differential equations
(PDEs). All of the model parameters, includ-
ing reaction rates, diffusion constants and ini-
tial protein concentrations were not directly ob-
servable from the available data, so parameter
values were identified by being constrained to
result in the desired qualitative features of the
hair pattern phenotypes. The Nelder-Mead sim-
plex method (Nelder and Mead (1965)) was used
to attempt to minimize an objective function
composed of quadratic penalty functions corre-
sponding to these feature constraints to produce
a feasible solution set of parameters. The model
includes 37 parameters, and each evaluation of
the objective function required 13 runs of the
model simulation corresponding to each of the
experimental cases that the model was meant
to reproduce. The complete development of the
model and results of this analysis are available in
Amonlirdviman et al. (2005).

3. THE PARAMETER IDENTIFICATION
PROBLEM

In the current work, we strive to replace the sim-
plex method with a more efficient optimization
method. As we have described above, the gov-
erning equations for PCP consist of ten reaction-
diffusion equations describing the time and space
evolution of the concentrations of the four PCP
proteins and six of their complexes. If x(t, s) =
([Dsh], [Pk], [Fz], [Vang], [DshFz], [VangPk],
[FzVang], [DshFzVang], [FzVangPk],
[DshFzVangPk]) ∈ R

10 represents the vector of
all protein concentrations, and if s ∈ Ω = V × ∂V
represents all space variables (covering both the
cytoplasm V and the membrane ∂V), the gov-
erning equations can be written in the following
compact form:

Fig. 3. Four protein PCP signaling network.

∂x(t, s)

∂t
= P (s, x(t, s), θ)+µ(θ)∆x(t, s) , ∀s ∈ Ω

(1)

which means that the rate of change of each
protein concentration is equal to its net rate of
production P (s, x(t, s), θ), plus its rate of diffusion
µ(θ)∆x(t, s).
If protein i reacts with protein j to form complex
k, Pi is a function of the type Rixixj − λixk – it
includes more reaction terms if protein i is present
in more than one reaction. The forward rates of
reaction R and the backward rates of reaction λ

are stored in the parameter θ ∈ R
37, which has

to be estimated. Finally, µ(θ) is the constant of
diffusion of each protein and ∆ represents the
Laplacian operator.
Eight of the ten proteins diffuse in the membrane.
Therefore their reaction-diffusion equations are
specified on a periodic domain and do not require
boundary conditions. However, Dsh and Pk dif-
fuse in the interior of the cell, which is a finite do-
main, and therefore require boundary conditions
noted in compact form

µ(θ)∇sx(t, s) · n = CP (s, x(t, s), θ) , ∀s ∈ ∂Ω
(2)

in which n represents the unit normal vector to
the membrane. The matrix C is a 10× 10 matrix
with all zero entries, except the first two diagonal
elements (corresponding to Dsh and Pk) which are
equal to one. C filters the last eight proteins, for
which the diffusion across the membrane is zero.
For Dsh and Pk, the rate of diffusion across the
membrane is equal to their rate of production.

Experimental data consist of pictures of hair po-
larity which are provided at final time T , taken to
be at the end of the signaling process. In our PCP
model, hair polarity is predicted based on the Dsh
concentration in the cells and is stored in a vector
Y model comprising as many entries as simulated
cells, and calculated by

Y model =

∫

Ω

h(x(s, T ), s) ds , (3)

in which h is a differentiable function, which gives
a score of 1 to a cell with Dsh localization on the
distal side, -1 to a cell with Dsh localization on the
proximal side and 0 with no Dsh localization. Sim-
ilarly the data Y obs is a vector with entries ranging
from -1 to 1; -1 for cells with reverse polarity and 1
for cells with polarity. The problem of identifying
the unknown parameters is the one of finding,
among our parametrized set of PCP models, the
model which best explains the experimental data.
Therefore, it consists of minimizing the prediction
error, i.e., the deviation between the observed



data and the output of the parametrized model.
Mathematically, it reads

minimize J(θ) = ||Y model − Y obs||

subject to
∂x(t, s)

∂t
= P (s, x(t, s), θ)

+µ(θ)∆x(t, s)

(4)

Usually, the norm ||.|| is chosen as a quadratic
norm. Besides its mathematical convenience, such
a norm is often chosen because it recovers the
maximum likelihood criterion. Indeed, suppose
measurements are stochastic data consisting of
the sum of the true model outcome and normally
distributed noise:
Y obs =

∫

Ω
h(xtrue(s, T ), s)+v, where v is a normal

random variable with mean 0 and covariance Σ.
The likelihood of the observations is equal to

PDF(v = Y obs − Y model) =
1

(2π)NdetΣ

exp
(

−
1

2
(Y obs − Y model)Σ−1(Y obs − Y model)

)

(5)

where PDF refers to probability density function
and is a Gaussian in the present case. The pa-
rameter which maximizes the likelihood of the
observations is then given by

θ∗ = argmax{exp(||(Y obs − Y model)||2Σ−1)}
= argmin{||(Y obs − Y model)||2Σ−1}

(6)

We will assume, in the remainder of the paper,
that Σ is the identity matrix.

4. SOLUTION METHOD VIA OPTIMAL
CONTROL THEORY

The parameter identification problem consists of
an optimization program in which the variables
are constrained by a PDE. In this section, we will
show how to efficiently solve such a problem.

4.1 Gradient computation

Many optimization algorithms rely on descent
methods, which require the computation of the
gradient of the objective function. For the case
of PDE optimization programs, calculating the
gradient can be efficiently done via a version of the
adjoint method, which was developed by Jameson
(1998) largely for use in nonlinear aerodynamic
optimization problems. We will first review the
adjoint method.

4.1.1. Adjoint method Let us consider an objec-
tive function J given by

J(θ) = f(x, θ) (7)

where f is a differentiable function and x is the
solution of a differential equation (DE), noted

D(x, θ) = 0 (8)

Under technical conditions (see Lions (1971) for
more details), the function J is differentiable and

lim
h→0

J(θ + hθ̃) − J(θ)

h
= ∇xf(x, θ)x̃

+ ∇θf(x, θ)θ̃
(9)

in which x̃ is the solution of the linearized form of
the original differential equation (8)

∇xD(x, θ)x̃ + ∇θD(x, θ)θ̃ = 0 (10)

At this stage, computing the derivative in each
direction, θ̃, requires one to solve the DE (10)
for each of these directions and then form the
derivative according to (9).
The adjoint method allows one to obtain the
derivative in all directions – in other words, the
gradient, by computing the solutions to only two
DEs. It proceeds as follows: taking the inner
product with an arbitrary costate q (lying in the
same function space as x), we obtain

q · ∇xD(x, θ)x̃ + q · ∇θD(x, θ)θ̃ = 0 (11)

Adding this term to the derivative, we obtain,

lim
h→0

J(θ + hθ̃) − J(θ)

h
= (∇xf(x, θ)+

q · ∇xD(x, θ))x̃ + (∇θf(x, θ) + q · ∇θD(x, θ))θ̃
(12)

Choosing q so as to cancel the effect of the state
perturbation

∇xf(x, θ) + ∇xD(x, θ) · q = 0 , (13)

the derivative in any direction θ̃ is
(

∇θf(x, θ) +

q.∇θD(x, θ)
)

θ̃ and therefore the gradient is

∇J(θ) = ∇θf(x, θ) + q · ∇θD(x, θ) (14)

With the gradient in hand, it is now possible
to perform a descent algorithm, called the quasi-
Newton method, for which we will see an effective
illustration in section 4.2.



4.1.2. Adjoint equations for PCP The method
presented in the previous section is systematic
and can be followed step by step for the PCP
model. The regularity of the PCP partial differ-
ential equations (PDEs) provides us with enough
technical conditions to compute the derivative of
J as follows

lim
h→0

J(θ + hθ̃) − J(θ)

h
= 2

(

∫

Ω

h(x(s, T ), s) ds

−Y obs
)T

∫

Ω

∇xh(x(s, T ), s)x̃(s, T ) ds ;

(15)

in which x̃ is the solution of the following linear
PDE

∂x̃

∂t
(t, s) = ∇xP (s, x(t, s), θ)x̃(t, s) + µ(θ)∆x̃(t, s)

+
(

∇θP (s, x(t, s), θ) + ∆x(t, s)∇µ(θ)
)

θ̃

(16)

With linear boundary conditions

∇µ(θ)θ̃∇s x(t, s) · n + µ(θ)∇s x̃(t, s) · n

= C
(

∇xP (s, x(t, s), θ)x̃(t, s) + ∇θP (s, x(t, s), θ)θ̃
)

(17)

Taking the inner product of this linear PDE with
an arbitrary costate q

∫

Ω

∫ T

0

qT ∂x̃

∂t
(t, s) =

∫

Ω

∫ T

0

qT
(

∇xP x̃

+µ(θ)∆x̃(t, s)
)

+

∫

Ω

∫ T

0

qT (∇θP + ∆x∇µ(θ))θ̃

(18)

Integrating by parts,

∫

Ω

qT x̃(T ) =

∫

Ω

∫ T

0

x̃T (
∂q

∂t
+ ∇xP T q + µ(θ)∆q)

+

∫

Ω

∫ T

0

qT (∇θP + ∆x∇µ(θ))θ̃

+

∫

∂Ω

∫ T

0

x̃T (∇xP T CT q − µ(θ)∇s q · n)

+

∫

∂Ω

qT (∇θP −∇s x · n∇µ(θ))θ̃

(19)

We are now in a position to extract the gradient
of J . Provided that q solves the following linear
PDE

−
∂q

∂t
= ∇x P T q + µ(θ)∆q (20)

with boundary conditions

µ(θ)∇sq · n = ∇x P T DT q (21)

and terminal condition

q(s, T ) = 2
(

∫

Ω

h(x(s, T ), s) − Y obs
)T

∇xh(x(s, T ), s)
(22)

the gradient is

∇J =

∫

Ω

∫ T

0

(∇θP + ∆x∇µ(θ))T q

+

∫

∂Ω

(∇θP −∇s x · n∇µ(θ))T qθ̃

(23)

4.2 Second order method

The gradient algorithm is numerically efficient
when the problem is well conditioned, meaning
that the derivatives in all the directions have
the same order of magnitude. In the case of
PCP, the parameters are unknown and may range
over several orders of magnitude. Therefore the
problem is likely to be poorly conditioned, in
which case a second order method is preferable. A
second order method, such as the Newton method,
rescales the variables so that in the new system
of variables the problem is well conditioned and
consequently the descent algorithm is fast, yet no
tractable method currently exists for executing
the Newton method in optimization programs
involving general PDEs. However, it is possible
to implement a quasi-Newton method (Gill et al.
(1999)), in which the second order derivative
of the objective function, called the Hessian, is
computed via finite differences on the gradient.

By doing so, we can form an approximate Hessian
H and the descent direction is taken as the one
which minimizes the quadratic approximation of
the objective function: δθ = −H−1∇J .

4.3 Summary of the algorithm

Algorithm 1. (2nd order adjoint based algo.).
Start with an initial guess for the parameters
θguess and an initial guess for the Hessian Hguess.
Repeat

(1) Solve the governing equation (1) for x, using
the current parameter vector θ.

(2) Solve the adjoint equation (20) for q, using
the current θ and x.

(3) Determine the gradient ∇J according to
equation (23).

(4) Update the Hessian H via finite difference
between the current gradient and the previ-
ous ones.

(5) Form the descent direction ∆θ = −H−1∇J .



(6) Line search: compute β > 0 so that J(θ +
β∆θ) is minimized.

(7) Update θ := θ + β∆θ.

Terminate when ∇JT H∇J is small
Return θ∗ = θ.

4.4 Computational complexity

The adjoint method drastically reduces the com-
plexity of the gradient computation. It only re-
quires two PDE calculations, whereas calculat-
ing the gradient via finite difference would have
required at least d + 1 PDE computations, in
which d is the number of parameters to estimate
(d = 37 in our PCP model). Each iteration of
the algorithm moreover consists of a coarse one-
dimensional minimization (line search), which is
typically terminated after three to six PDE (1)
computations. In total and from a conservative
view-point, each iteration requires eight to ten
times the computational time of running the gov-
erning PDE (1). Finally, in terms of convergence,
the algorithm generally terminates after 50 iter-
ations; therefore the algorithm requires on the
order of 50× 10 objection function evaluations.

5. PRELIMINARY SIMULATION RESULTS

An important validation of the algorithm is to
make sure that it efficiently searches the parame-
ter space. For this purpose, we present preliminary
simulation results for the wild type case. For this
simulation, we used a simplified version of the
PDE model presented in Amonlirdviman et al.
(2005), which assumes that the diffusion terms
in the equations can be replaced by their quasi-
steady-state solutions. This assumption permits
elimination of the diffusion terms from the original
PDEs, reducing the model to a system of ordinary
differential equations (ODEs) in which the num-
ber of parameters to identify is reduced from 37
to 27. The complete ODE model development is
presented in Amonlirdviman (2005) and Ma et al.
(2005). The adjoint method and quasi-Newton
algorithm applied is that presented in the previous
section.

In these simulations, we assume some true values
of the parameters, which are believed to gener-
ate a phenotype consistent with the characteristic
PCP phenotypes (termed “true”). Then, we devi-
ate from these parameters and we verify that the
output of the search algorithm recovers the true
phenotype, which we want to match. In practice,
we set θguess = θtrue(1+σN (0, 1)) with σ = 1 and
we first run a simplex algorithm, not taking ad-
vantage of any gradient information, and second,
our quasi-Newton method. The results are shown

in Figure 4. In this Figure, we display concen-
trations of Dsh protein, with “cool” colors repre-
senting relatively low concentrations, and “warm”
colors representing relatively high concentrations.
This result indicates that given the same amount
of computational effort, the adjoint-based quasi-
Newton method has almost recovered the true
phenotype, whereas the simplex method is still
far from converging.

For the quasi-Newton method, the computation
involved for 30 function evaluations is 60 ODE cal-
culations. We note that here, we are only match-
ing the wild type phenotype. To match wild type
and all mutant phenotypes as in Amonlirdviman
et al. (2005), we would parallelize the compu-
tation; and the total computational time would
be equal to the number of ODE computations
multiplied by the time to compute the slowest
phenotype.

This is the subject of our current work.
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Fig. 4. Comparison between the simplex method and the quasi-Newton method described here for the
parameter identification problem. After 30 iterations, the quasi-Newton method has almost recovered
the true phenotype.


