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Abstract— In this paper, an optimal coordinated motion
planning problem is formulated where multiple agents have to
reach given destination positions starting from given initial po-
sitions, subject to constraints on the admissible formation pat-
terns. Solutions to the problem are reinterpreted as distance-
minimizing geodesics on a certain manifold with boundary. A
geodesic on this manifold that possesses conjugate points will
not be distance-minimizing beyond its first conjugate point. We
study a particular instance of the problem, where a number
of initially aligned agents tries to switch positions by rotating
around their common centroid. We characterize analytically
the complete set of conjugate points of a geodesic that naturally
arises as a candidate solution. This allows us to prove that the
geodesic does not correspond to an optimal coordinated motion
when the angle of rotation exceeds a threshold that decreases to
zero as the number of agents increases. Moreover, infinitesimal
perturbations that improve the performance of the geodesic
after it passes the conjugate points are characterized by a
family of orthogonal polynomials.

I. INTRODUCTION

In this paper, we formulate an optimal coordinate motion
planning problem for multiple agents under formation con-
straints. Multi-agent coordinated motion planning problems
arise in various contexts, such as Air Traffic Management
(ATM [1]), robotics ([2]), and Unmanned Aerial Vehicles
(UAVs [3], [4], [5]). In most cases, certain separation
constraints between the agents have to be guaranteed due to
physical, safety, or efficiency reasons. For example, in ATM
systems, aircraft flying at the same altitude are required to
maintain a minimal horizontal separation of 5 nautical miles
(nmi) in en-route airspace and 3 nmi close to airports. When
multiple mobile robots are performing a coordinated task
such as lifting a common object, specific formations have
to be kept by the robots throughout the operation. For UAVs,
flying in formation may reduce the fuel expenditure and the
communication power needed for information exchange.

In our formulation, we consider all the coordinated
motions that lead a group of agents from some initial
positions to some destination positions within a given time
horizon, while satisfying the additional constraint that the
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formation patterns of the agents during the time interval of
interest belong to a prescribed set. Among the coordinated
motions in this restricted set, we try to find the ones that
minimize a weighted sum of the energy functions of the
individual agents’ motions, with the weights representing
agent priorities. In this formulation, we use simple kinetic
models for the agent dynamics, and consider only holo-
nomic constraints, as opposed to contributions dealing with
nonholonomic constraints (e.g. [6], [7]). See, e.g., [8], [9],
[10], for relevant works on the problems of stable and
optimal coordinated control of vehicle formations.

A geometric interpretation of the considered optimal
coordinated motion planning problem is given in this paper.
According to this interpretation, a solution to the problem
is a shortest curve with constant speed between two fixed
points in a certain manifold with boundaries: the fixed
points represent the starting and destination positions of the
agents, whereas the boundaries are determined by the feasi-
ble formation patterns. Note that such a globally distance-
minimizing curve is also a locally distance-minimizing one,
i.e., a curve whose sufficiently short segments are distance-
minimizing between their respective end points. Locally
distance-minimizing curves parameterized with constant
speed are called geodesics. Thus a solution to the problem
necessarily corresponds to a geodesic of the manifold.

Conversely, however, a geodesic of the manifold may fail
to be globally distance-minimizing for various reasons, so
that the corresponding constant speed coordinated motion
fails to be a solution to the multi-agent optimal coordination
problem. The aim of this paper is to study through a con-
crete example the loss of optimality due to the occurrence
of conjugate points, which so far has been largely ignored
in the literature on multi-agent coordination.

Traveling along a geodesic from a fixed starting point,
a conjugate point is one at which there exists a non-trivial
Jacobi field along the geodesic vanishing at both the starting
point and that particular point [11], or less rigorously,
where there exists infinitesimally more than one geodesic
connecting the starting point to that point. For a simple
example, consider the sphere. Geodesics on the sphere are
great circles; and conjugate points along a great circle occur
at the anti-podal point of its starting point. It is a well
known fact in Riemannian geometry that a geodesic will
not be distance minimizing once it passes its first conjugate
point [11], as one can then infinitesimally perturb it to
obtain a shorter curve with the same end points.

It is in general difficult, if not impossible, to characterize
the conjugate points of a geodesic analytically. In this
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Fig. 1. A five-agent example

paper, we shall focus on a special instance of the formation
constrained optimal coordination problem, namely, a group
of initially aligned agents switching positions by rotating
around their common centroid. We shall show that the
conjugate points of a geodesic that arises naturally when
solving this particular problem admit nice analytic formulae.
We shall also determine the infinitesimal perturbations that
can shorten the geodesic with various efficiencies once it
passes its conjugate points, and characterize them using
a certain family of orthogonal polynomials. Our results
can be given the geometric interpretation of how long one
can travel along the outer edge of a (high-dimensional)
“donut” before the resulting curve is no longer distance-
minimizing, or the mechanical interpretation of how a
multi-segment snake-like robot should turn on the ground
optimally starting from the configuration in which all its
segments are aligned in a straight line. See [12] for more
details. The result for the three agent case (k = 3 in the
notation of Section II) was first proved in [13].

As a preview of the results and a specific example, see
Fig. 1, where five helicopters initially flying in a straight
line try to reach new positions by rotating counterclockwise
around their centroid, i.e., the middle helicopter, at the same
angular velocity during the time horizon [0, 1] (thus the five
helicopters form a straight line at all times). The results in
this paper will show that this joint maneuver is optimal in
the sense of minimizing a cost function defined as the sum
of energy of individual helicopter’s maneuvers only if the
angle τ of rotation is small, and that it is not optimal if
τ > π

3 . Indeed, if for example τ = π, then one can find
better maneuvers than the one in Fig. 1. In Fig. 2 we plot
columnwise three such maneuvers, where in each column
the five figures from top to bottom represent the snapshots
of the maneuver at time t = 0, 1

4 , 1
2 , 3

4 , 1, respectively. In
terms of performance, we shall show that maneuver (c) is
the best of the three; maneuver (a) is the worst of the three,
but still better than the original joint maneuver in Fig. 1.

The paper is organized as follows. In Section II the
formation patterns of a group of agents are defined and the
problem of formation constrained optimal multi-agent co-
ordination is formulated. In Section III the conjugate points
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Fig. 2. Three joint maneuvers with increasingly lower cost than the one
shown in Fig. 1 when τ = π. Left column: maneuver (a); middle column:
maneuver (b); right column: maneuver (c). From top to bottom: snapshots
at time t = 0, 1

4
, 1

2
, 3

4
, 1, respectively.

of the geodesic arising in a particular instance of the multi-
agent coordination problem are characterized analytically.
Infinitesimal perturbations that improve the performance of
the geodesic beyond its conjugate points are determined.
Finally, some conclusions are drawn in Section IV.

II. FORMATION CONSTRAINED OPTIMAL

MULTI-AGENT COORDINATION

A. Problem Formulation

Denote by 〈qi〉ki=1 = (q1, . . . , qk) an (ordered) k-tuple of
points in the Euclidean space R

n for some integer k > 0.
We say that 〈qi〉ki=1 satisfies the r-separation condition
for some r > 0 if d(qi, qj) = ‖qi − qj‖ ≥ r for all
i �= j, i.e., if the minimum pairwise distance among the k
points is at least r. Given 〈qi〉ki=1 satisfying the r-separation
constraint, the undirected graph (V , E) with set of vertices
V = {1, . . . , k} and with set of edges E = {(i, j) :
‖qi − qj‖ = r} is called the formation pattern of the k-
tuple 〈qi〉ki=1. (V , E) encodes information on which pairs
of points are at the minimal allowed distance r. Denote by
F the set of all possible formation patterns.

Consider k agents moving in R
n. Suppose that they start

at time 0 from the initial positions a1, . . . , ak ∈ R
n and

1872



must reach the destination positions b1, . . . , bk ∈ R
n at time

tf . Denote the joint trajectory of the agents by a k-tuple of
curves γ = 〈γi〉ki=1, where the trajectory of agent i during
the time interval [0, tf ] is modeled as a continuous and
piecewise C1 curve γi : [0, tf ] → R

n such that γi(0) = ai

and γi(tf ) = bi. γ is said to be collision-free if for all
t ∈ [0, tf ] the k-tuple 〈γi(t)〉ki=1 satisfies the r-separation
condition, or equivalently, if the distance between any two
agents is at least r at all times during [0, tf ]. We assume that
both 〈ai〉ki=1 and 〈bi〉ki=1 satisfy the r-separation condition.
The formation pattern of a collision-free joint trajectory γ
at time t ∈ [0, tf ] is the formation pattern of 〈γi(t)〉ki=1.

Define the cost of the joint trajectory γ as

J(γ) =

k∑
i=1

µiE(γi), (1)

where µ1, . . . , µk are positive numbers representing the
priorities of the agents, and

E(γi) =
1

2

∫ tf

0

‖γ̇i(t)‖2 dt (2)

is the standard energy of γi as a curve in R
n, for i =

1, . . . , k. Denote by L(γi) =
∫ tf

0
‖γ̇i(t)‖ dt the arc length

of γi. Then E(γi) ≥ 1
2L2(γi)/tf (see [14]), where equality

holds if and only if ‖γ̇i(t)‖ is constant for t ∈ [0, tf ].
The problem of formation constrained optimal multi-

agent coordination can now be formulated as follows.

Problem 1 Among all the collision-free joint trajectories γ
that start from 〈ai〉ki=1 at time 0 and end at 〈bi〉ki=1 at time
tf , find the ones that minimize the cost J(γ) and satisfy
the constraint that the formation pattern of γ at any time
t ∈ [0, tf ] belongs to some prescribed subset F̃ of F . F̃ is
called the set of admissible formations, and is assumed to
contain the formation patterns of both 〈ai〉ki=1 and 〈bi〉ki=1.

Problem 1 is formulated in Euclidean spaces. Extension to
general Riemannian manifolds can be found in [15].

B. Geometric Interpretation

A geometric interpretation of Problem 1 can be given as
follows. Each k-tuple 〈qi〉ki=1 of points in R

n corresponds
to a single point q = (q1, . . . , qk) in R

nk = R
n × · · · ×

R
n (k times). Thus each joint trajectory 〈γi〉ki=1 of the k

agents corresponds to a curve γ in R
nk starting from a =

(a1, . . . , ak) at time 0 and ending at b = (b1, . . . , bk) at time
tf . The collision-free condition is equivalent to γ avoiding

W � ∪i�=j{(q1, . . . , qk) ∈ R
nk : ‖qi − qj‖ < r}, (3)

or equivalently, γ lying in R
nk \ W , a manifold with

boundary. To satisfy the admissible formation constraint,
γ should further lie in a subset P of R

nk \ W obtained
by piecing together cells of various dimensions, one for
each admissible formation pattern in F̃ . By assumption, P
contains both a and b.

If µ1 = · · · = µk = 1, the cost J(γ) in (1) is the
standard energy of γ as a curve in R

nk. For general 〈µi〉ki=1,
J(γ) is the standard energy of γ as a curve in R

nk after
appropriately scaling the coordinate axes.

From the above discussions, we conclude that the solu-
tions to Problem 1 are energy-minimizing curves in P from
a to b. It is well known [11] that such curves are necessarily
the shortest curves in P parameterized with constant speed.
Therefore, Problem 1 is equivalent to finding the geodesics
from a to b in P that are also globally distance-minimizing.

C. Conservation Law for the Solutions

Proposition 1 ([15]) Suppose that γ = 〈γi〉ki=1 is a solu-
tion to Problem 1. Then the quantities

k∑
i=1

µiγ̇i(t),

k∑
i=1

µi

(
γi(t)γ̇

T

i (t) − γ̇i(t)γ
T

i (t)
)

(4)

are constant for all t ∈ [0, tf ].

If one thinks of each agent i as a point in R
n with

mass µi, then Proposition 1 implies that the linear and
(generalized) angular momenta of the k-point mass system
are conserved along the solutions to Problem 1. As a result,
for a solution γ = 〈γi〉ki=1 to Problem 1, if both a and b are
µ-aligned, i.e., if

∑k
i=1 µiai =

∑k
i=1 µibi = 0, then so is

any k-tuple 〈γi(t)〉ki=1, t ∈ [0, tf ], namely,
∑k

i=1 µiγi ≡ 0.
Thus γ as a curve in R

nk must lie in a subspace V of R
nk

defined as V = {(q1, . . . , qk) ∈ R
nk :

∑k
i=1 µiqi = 0}.

This reduces the dimension of the state space by n.

III. AN INTERESTING EXAMPLE

Consider Problem 1 on R
2 with the k agents having the

same priority µ1 = · · · = µk = 1 and the minimal allowed
separation r = 1. Suppose that the starting positions 〈ai〉ki=1

of the agents are given by 〈(2i−k−1
2 , 0)〉ki=1. In other words,

at time t = 0, the k agents are aligned on the x-axis with
common centroid at the origin and with consecutive agents
at the minimal allowed separation. For each t ≥ 0, denote
by Rt : R

2 → R
2 the counterclockwise rotation of R

2 by
an angle t in radians. Suppose that the destination positions
are 〈bi〉ki=1 = 〈Rtf

(ai)〉ki=1. Both the initial and destination
positions have the same formation pattern (V , E), where
V = {1, . . . , k} and E = {(i, i + 1) : i = 1, . . . , k − 1}.
Choose the admissible formation pattern set F̃ to consist of
this formation pattern only. Thus, in considering Problem 1,
we require that agents i and i + 1 are kept at constant
distance r throughout [0, tf ] for i = 1, . . . , k − 1, and all
other pairs of agents maintain a distance greater than r.

Due to the admissible formation pattern set F̃ , a solution
γ = 〈γi〉ki=1 to Problem 1 as a curve in R

2k \ W lies in a
subset P of R

2k \ W given by

P = {(q1, . . . , qk) ∈ R
2k : ‖qi − qi+1‖ = 1, 1 ≤ i ≤ k − 1,

‖qi − qj‖ > 1, ∀j > i + 1}.
Since 〈ai〉ki=1 and 〈bi〉ki=1 are µ-aligned, by the discus-
sion at the end of Section II-C, γ lies in the subspace
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V = {(q1, . . . , qk) ∈ R
2k :

∑k
i=1 qi = 0}. Solutions

to Problem 1 are then distance-minimizing geodesics in
N = P ∩V between a = (a1, . . . , ak) and b = (b1, . . . , bk).

In this section, we shall consider γ∗ = 〈Rt(ai)〉ki=1,
t ∈ [0, tf ], as a natural candidate solution to Problem 1.
According to γ∗, the k agents rotate counterclockwise at
constant unit angular velocity around the origin. We shall
show that γ∗ is a geodesic in N ; hence γ∗ is optimal for tf
small enough. We shall also show that the first conjugate
point along γ∗ occurs at a time t = τk; hence γ∗ is not
optimal if tf > τk. We shall derive the analytical expression
of τk, and show that τk ∼ 1

k
→ 0 as k → ∞.

A. Geometry of the Manifold N

We start by studying the geometry of N . First of all, N
is a (k − 1)-dimensional smooth submanifold of R

2k, and
admits global coordinates (θ1, . . . , θk−1), where θi is the
angle qi+1 − qi ∈ R

2 makes with respect to the positive x-
axis (see Fig. 3). The coordinate map f : (θ1, . . . , θk−1) �→
(q1, . . . , qk) ∈ N is defined by

qi = q1 +

i−1∑
j=1

[
cos θj

sin θj

]
, i = 2, . . . , k, (5)

where q1 is chosen such that
∑k

i=1 qi = 0, namely,

q1 = −1

k

k−1∑
j=1

(k − j)

[
cos θj

sin θj

]
. (6)

γ∗ then corresponds to θi(t) = t, t ∈ [0, tf ], 1 ≤ i ≤ k−1.
At any q ∈ N , ∂

∂θ1

, . . . , ∂
∂θk−1

form a basis of TqN ,
the tangent space of N at q. In this basis, the Riemannian
metric 〈·, ·〉 that N inherits from R

2k as a submanifold is

gij � 〈 ∂

∂θi

,
∂

∂θj

〉 = 〈 ∂f

∂θi

,
∂f

∂θj

〉R2k , 1 ≤ i, j ≤ k − 1. (7)

Here f is the map defined in (5) and (6), and each ∂f
∂θi

is
a vector in R

2k. 〈·, ·〉R2k is the standard inner product on
R

2k. Under this metric, the map f becomes an isometry,
and the cost of a joint trajectory γ of the k-agent system
given by (1) can be expressed in two equivalent ways:

J(γ) =

{
1
2

∫ tf

0

∑k
i=1 ‖q̇i‖2 dt in (q1, . . . , qk) coord.,

1
2

∫ tf

0

∑k−1
i,j=1 gij θ̇iθ̇j dt in (θ1, . . . , θk) coord.

After some careful computation, (7) in our case yields

gij = ∆ij cos(θi − θj),

where ∆ij are constants given by

∆ij =

{
i(k−j)

k
if i ≤ j,

(k−i)j
k

if i > j.
(8)

The following lemma can be verified directly.

Lemma 1 Let ∆ = (∆ij)1≤i,j≤k−1 ∈ R
(k−1)×(k−1) be

the symmetric matrix defined in (8). Then

∆−1 =

⎡
⎢⎢⎢⎢⎢⎣

2 −1
−1 2 −1

. . .
. . .

. . .
−1 2 −1

−1 2

⎤
⎥⎥⎥⎥⎥⎦ . (9)

Denote by (gij)1≤i,j≤k−1 the inverse matrix of
(gij)1≤i,j≤k−1. The covariant derivative with respect to the
Levi-Civita connection on N is given by [11]

∇ ∂
∂θi

∂

∂θj

=

k−1∑
m=1

Γm
ij

∂

∂θm

, (10)

where Γm
ij are the Christoffel symbols defined as

Γm
ij =

1

2

k−1∑
l=1

{∂gjl

∂θi

+
∂gli

∂θj

− ∂gij

∂θk

}glm, 1 ≤ i, j, m ≤ k−1.

A curve γ in N is a geodesic if and only if ∇γ̇ γ̇ ≡ 0.
By definition (10), this equation (known as the geodesic
equation) can be written in the (θ1, . . . , θk−1) coordinates
as a group of second order differential equations:

θ̈m =

k−1∑
i,j=1

Γm
ij θ̇iθ̇j , m = 1, . . . , k − 1. (11)

In our case, we can compute that, for 1 ≤ i, j, m ≤ k−1,

Γm
ij =

{
0 if i �= j,∑k−1

l=1 ∆il sin(θl − θi)g
lm if i = j.

(12)

Note that along γ∗ we have θ1 = · · · = θk−1. Therefore,

Lemma 2 Along γ∗ we have Γm
ij = 0 for all i, j, m, hence

∇ ∂
∂θi

∂
∂θj

= 0 for all i, j.

Since γ̇∗ = ∂
∂θ1

+ · · · + ∂
∂θk−1

, by Lemma 2 and the
linearity of covariant derivatives,

∇γ̇∗ γ̇∗ =
k−1∑
i,j=1

∇ ∂
∂θi

∂

∂θj

= 0.

This is exactly the condition for γ∗ to be a geodesic in N .

Corollary 1 γ∗ is a geodesic in N .

Since a geodesic is locally distance-minimizing, γ∗ is a
solution to Problem 1 for tf small enough.
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B. Conjugate Points along γ∗

The curvature tensor of N is defined by [11]

R(
∂

∂θi

,
∂

∂θj

)
∂

∂θl

=
k−1∑
m=1

Rm
ijl

∂

∂θm

, (13)

where Rm
ijl are defined from the Christoffel symbols as

Rm
ijl =

k−1∑
β=1

Γβ
ilΓ

m
jβ −

k−1∑
β=1

Γβ
jlΓ

m
iβ +

∂Γm
il

∂θj

− ∂Γm
jl

∂θi

. (14)

A Jacobi field X along γ∗ is a vector field along γ∗

satisfying the Jacobi equation

∇γ̇∗∇γ̇∗X + R(γ̇∗, X)γ̇∗ = 0. (15)

A conjugate point γ∗(τ) along γ∗ occurs at time t = τ if
there is a non-trivial Jacobi field X along γ∗ that vanishes at
both time 0 and τ , i.e., X(0) = X(τ) = 0. We next compute
the conjugate points of γ∗ starting from γ∗(0) = a.

Write a vector field X along γ∗ in coordinates as X =∑k−1
i=1 xi

∂
∂θi

for some C2 functions xi : [0, tf ] → R,
which represents X as a vector x = (x1, . . . , xk−1) in
R

k−1 that varies with time t ∈ [0, tf ]. Then ∇γ̇∗X =

∇γ̇∗

∑k−1
m=1 xm

∂
∂θm

=
∑k−1

m=1 ẋm
∂

∂θm
, and similarly,

∇γ̇∗∇γ̇∗X =
∑k−1

m=1 ẍm
∂

∂θm
. On the other hand, since R

defined in (13) is a trilinear tensor, by expansion we have

R(γ̇∗, X)γ̇∗ =

k−1∑
i,j,l,m=1

Rm
ijlxj

∂

∂θm

.

So the Jacobi equation (15) along γ∗ is reduced to

ẍm +

k−1∑
i,j,l=1

Rm
ijlxj = 0, m = 1, . . . , k − 1. (16)

Equations (16) can be written in matrix form as:

ẍ + Bkx = 0, (17)

where Bk = (bmj)1≤m,j≤k−1 ∈ R
(k−1)×(k−1) is a constant

matrix with components bmj =
∑k−1

i,l=1 Rm
ijl.

Calculation show that (see [12] for details)

Lemma 3 Bk = ∆−1Λ − Ik , where ∆−1 is given in (9),

Λ � diag(
k − 1

2
, . . . ,

i(k − i)

2
, . . . ,

k − 1

2
)1≤i≤k−1,

and Ik is the (k − 1)-by-(k − 1) identity matrix.

Solutions of equation (17) are closely related to the
spectral decomposition of Bk, as is summed up in the
following two lemmas. Their proofs can be found in [12].

Lemma 4 Bk has k − 1 distinctive eigenvalues λj =
j(j+1)

2 − 1, for j = 1, . . . , k − 1. Moreover, eigenvector
vj corresponding to λj is of the form

vj =

[
Pj

(
2 − k

k

)
, . . . , Pj

(
2i − k

k

)
, . . . , Pj

(
k − 2

k

)]T

for some polynomial Pj of degree j − 1 satisfying∑
x= 2i−k

k
, i=1,...,k−1

(1 − x2)Pl(x)Pj(x) = 0, ∀l �= j. (18)

Pj are the discrete version of some orthogonal polynomi-
als called the ultraspherical (or Gegenbauer) polynomials
C

(α)
j−1 with parameter α = 3

2 [16]. In particular, Pj is even
when j is odd, and odd when j is even.

Lemma 5 The first and last few eigenvectors of Bk are

• v1 = [1, . . . , 1]T ;
• v2 = [2 − k, . . . , 2i − k, . . . , k − 2]T ;
• vk−2 = [(2 − k)

(
k
1

)
, . . . , (−1)i+1(2i −

k)
(
k
i

)
, . . . , (−1)k(k − 2)

(
k

k−1

)
]T ;

• vk−1 = [
(
k
1

)
, . . . , (−1)i+1

(
k
i

)
, . . . , (−1)k

(
k

k−1

)
]T .

The eigenvectors v1, . . . , vk−1 of Bk form a basis of
R

k−1. Write x in this basis as x =
∑k−1

j=1 yjvj . Then
equation (17) becomes

ÿj + λjyj = 0, 1 ≤ j ≤ k − 1.

Assume that X , hence x, vanishes at t = 0. Then
y1(0) = · · · = yk−1(0) = 0. Non-trivial solutions to the
above equations with yj(0) = 0, 1 ≤ j ≤ k − 1, are

y1(t) = c1t,

yj(t) = cj sin(t
√

λj), j = 2, . . . , k − 1,

for some constants c1, . . . , ck−1 not identically zero. Con-
jugate points are encountered at those time epochs τ >
0 where yj(τ) = 0 for all j. This is possible only if
c1 = 0 and τ is an integer multiple of π/

√
λj for some

j ∈ {2, . . . , k − 1}. Therefore,

Theorem 1 The set of conjugate points along γ∗ is

{γ∗(τ) : τ = mπ/
√

λj , m ∈ N, 2 ≤ j ≤ k − 1}.
The first conjugate point along γ∗ occurs at time

τk �
π√
λk−1

=
π
√

2√
(k − 2)(k + 1)

. (19)

Note that τk ∼ 1
k

as k → ∞. A geodesic is no longer
distance-minimizing beyond its first conjugate point. Thus

Corollary 2 γ∗ is not optimal if tf > τk.

C. Infinitesimal Perturbations beyond the Conjugate Points

To find curves shorter than γ∗ with the same end points
once γ∗ surpasses its conjugate points, let {γ∗

s}−ε<s<ε be
a proper variation of γ∗ in N with variation field X �
∂γ∗

s

∂s

∣∣
s=0

. For each s, define E(s) as the energy of γ∗
s . By

the variation of energy formulas [11], E′(0) = 0 since γ∗

is a geodesic, and

E′′(0) = −
∫ tf

0

〈X,∇γ̇∗∇γ̇∗X + R(γ̇∗, X)γ̇∗〉 dt.
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Fig. 4. Perturbed shapes corresponding to vl, l = 2, . . . , k − 1 (k = 8).

Write X =
∑k−1

i=1 xi
∂

∂θi
in the basis ∂

∂θ1

, . . . , ∂
∂θk−1

along γ∗. Since {γ∗
s}−ε<s<ε is a proper variation, vector

x = (x1, . . . , xk−1) vanishes at time 0 and tf . In this
coordinate system, the above equation reduces to

E′′(0) = −
∫ tf

0

xT ∆(ẍ + Bkx) dt.

Suppose tf > π/
√

λj for some j ∈ {2, . . . , k−1}. Then,
by choosing {γ∗

s}−ε<s<ε such that x(t) = vj sin(πt/tf )
where vj is defined in Lemma 4, we have

E′′(0) = −(λj − π2

t2f
)(vT

j ∆vj)

∫ tf

0

sin2(πt/tf ) dt. (20)

Since vT

j ∆vj > 0 and λj −π2/t2f > 0, we have E′′(0) < 0.
Therefore, γ∗

s is shorter than γ∗ for s close to 0.
To sum up, the above analysis shows that if tf > π/

√
λj

for some j = 2, . . . , k − 1, a solution better than γ∗

can be obtained by infinitesimally perturbing γ∗ so that,
∀t ∈ [0, tf ], (θ1, . . . , θk−1) is incremented by an amount
of vj sin(πt/tf )ds. The linked-rod system (snake) formed
by connecting successive agents will then assume a shape
determined by the signs of the components of vj . For
example, the alternating signs of the components of vk−1

indicate a perturbation where the k − 1 rods first fold
into a saw-like shape during [0, tf/2], with the degree of
folding of the l-th rod from the edge proportional to

(
k
l

)
for

l = 1, . . . , k − 1, and then straighten up during [tf/2, tf ].
In contrast, v2 indicates the k − 1 rods to bend into a
bow-like shape, whereas the shape specified by vk−2 is a
mixing (product) of the bending specified by v2 and the
folding specified by vk−1. The maximal perturbation occurs
at t = tf/2. Fig. 4 plots the various shapes of the linked-
rod system at time t = tf/2 caused by the perturbations
vj sin(πt/tf ) when k = 8. Note that these shapes have
been rotated to align with the x-axis.

The efficiency of the perturbations specified by dif-
ferent vj , provided that tf > π/

√
λj , can be studied

by comparing the respective E′′(0) under the require-
ment that

∫ tf

0
‖X‖2 dt is constant. Since

∫ tf

0
‖X‖2 dt =

(vT

j ∆vj)
∫ tf

0
sin2(πt/tf ) dt, we can conclude by (20) that

the larger the eigenvalue λj , the more efficient the pertur-
bation specified by its corresponding eigenvector vj . Thus
the most efficient perturbation is the one given by vk−1.

IV. CONCLUSIONS

In this paper, we formulate an optimal formation con-
strained multi-agent coordination problem and characterize
analytically the conjugate points of a geodesic proposed as
a candidate solution for a special instance of the problem.
We find that this geodesic is optimal for sufficiently close
starting and destination positions, but no longer optimal
after surpassing its first conjugate point, which occurs from
the starting position at a distance that decreases to zero at
the same rate as 1/k as the number k of agents increases.
In this case, infinitesimally better coordinated motions are
determined through a family of orthogonal polynomials.
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