
Stereo Magnification: Learning view synthesis using multiplane images

TINGHUI ZHOU, University of California, Berkeley
RICHARD TUCKER, Google
JOHN FLYNN, Google
GRAHAM FYFFE, Google
NOAH SNAVELY, Google

YouTube
videos

TRAINING

Stereo photo
to lightfield

Camera motion
clips

Multiplane Images 
(MPIs)

STEREO MAGNIFICATION

~6.3cm

1.4cm

Fig. 1. We extract camera motion clips from YouTube videos and use them to train a neural network to generate a Multiplane Image (MPI) scene representation
from narrow-baseline stereo image pairs. The inferred MPI representation can then be used to synthesize novel views of the scene, including ones that
extrapolate significantly beyond the input baseline. (Video stills in this and other figures are used under Creative-Commons license from YouTube user
SonaVisual.)

The view synthesis problem—generating novel views of a scene from known

imagery—has garnered recent attention due in part to compelling applica-

tions in virtual and augmented reality. In this paper, we explore an intriguing

scenario for view synthesis: extrapolating views from imagery captured by

narrow-baseline stereo cameras, including VR cameras and now-widespread

dual-lens camera phones. We call this problem stereo magnification, and
propose a learning framework that leverages a new layered representation

that we call multiplane images (MPIs). Our method also uses a massive new

data source for learning view extrapolation: online videos on YouTube. Using

data mined from such videos, we train a deep network that predicts an MPI

from an input stereo image pair. This inferred MPI can then be used to syn-

thesize a range of novel views of the scene, including views that extrapolate

significantly beyond the input baseline. We show that our method compares

favorably with several recent view synthesis methods, and demonstrate

applications in magnifying narrow-baseline stereo images.

CCS Concepts: • Computing methodologies → Computational pho-
tography; Image-based rendering; Neural networks; Virtual reality;

Additional Key Words and Phrases: View extrapolation, deep learning

Authors’ addresses: Tinghui Zhou, University of California, Berkeley; Richard Tucker,

Google; John Flynn, Google; Graham Fyffe, Google; Noah Snavely, Google.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

0730-0301/2018/8-ART65

https://doi.org/10.1145/3197517.3201323

ACM Reference Format:
Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely.

2018. StereoMagnification: Learning view synthesis using multiplane images

. ACM Trans. Graph. 37, 4, Article 65 (August 2018), 12 pages. https://doi.org/
10.1145/3197517.3201323

1 INTRODUCTION
Photography has undergone an upheaval over the past decade. Cell-

phone cameras have steadily displaced point-and-shoot cameras,

and have become competitive with digital SLRs in certain scenarios.

This change has been driven by the increasing image quality of

cellphone cameras, through better hardware and also through com-

putational photography functionality such as high dynamic range

imaging [Hasinoff et al. 2016] and synthetic defocus [Apple 2016;

Google 2017b]. Many of these recent innovations have sought to

replicate capabilities of traditional cameras. However, cell phones

are also rapidly acquiring new kinds of sensors, such as multiple

lenses and depth sensors, enabling applications beyond traditional

photography.

In particular, dual-lens cameras are becoming increasingly com-

mon. While stereo cameras have been around for nearly as long as

photography itself, recently a number of dual-camera phones, such

as the iPhone 7, have appeared on the market. These cameras tend to

have a very small baseline (distance between views) on the order of

a centimeter. We have also seen the recent appearance of a number

of “virtual-reality ready” cameras that capture stereo images and

ACM Trans. Graph., Vol. 37, No. 4, Article 65. Publication date: August 2018.

https://doi.org/10.1145/3197517.3201323
https://doi.org/10.1145/3197517.3201323
https://doi.org/10.1145/3197517.3201323


65:2 • Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely

video from a pair of cameras spaced approximately eye-distance

apart [Google 2017a].

Motivated by the proliferation of stereo cameras, our paper ex-

plores the problem of synthesizing new views from such narrow-

baseline image pairs. While much prior work has explored the prob-

lem of interpolating between a set of given views [Chen andWilliams

1993], we focus on the problem of extrapolating views significantly

beyond the two input images. Such view extrapolation has many

applications for photography. For instance, we might wish to take a

narrow-baseline (∼1cm) stereo pair on a cell phone and extrapolate

to an IPD-separated (∼6.3cm) stereo pair so as to create a photo

with a compelling 3D stereo effect. Or, we might wish to take an

IPD-separated stereo pair captured with a VR180 camera and extrap-

olate to an entire set of views along a line say half a meter in length,

so as to enable full parallax with a small range of head motion. We

call such view extrapolation from pairs of input views stereo magni-
fication. The examples above involve magnifying the baseline by a

significant amount—up to about 8x the original baseline.

The stereo magnification problem is challenging. We have just

two views as input, unlike in common view interpolation scenarios

that consider multiple views. We wish to be able to handle challeng-

ing scenes with reflection and transparency. Finally, we need the

capacity to render pixels that are occluded and thus not visible in

either input view. To address these challenges, our approach is to

learn to perform view extrapolation from large amounts of visual

data, following recent work on deep learning for view interpola-

tion [Flynn et al. 2016; Kalantari et al. 2016]. However, our approach

differs in key ways from prior work. First, we seek a scene represen-

tation that can be predicted once from a pair of input views, then

reused to predict many output views, unlike in prior work where

each output view must be predicted separately. Second, we need a

representation that can effectively capture surfaces that are hidden

in one or both input views. We propose a layered representation

called a Multiplane Image (MPI) that has both of these properties.

Finally, we need training data that matches our task. Simply col-

lecting stereo pairs is not sufficient, because for training we also

require additional views that are some distance from an input stereo

pair as our ground truth. We propose a simple, surprising source

for such data—online video, e.g., from YouTube, and show that large

amounts of suitable data can be mined at scale for our task.

In experiments we compare our approach to recent view synthesis

methods, and perform a number of ablation studies. We show that

our method achieves better numerical performance on a held-out

test set, and also produces more spatially stable output imagery

since our inferred scene representation is shared for synthesizing

all target views. We also show that our learned model generalizes

to other datasets without re-training, and is effective at magnifying

the narrow baseline of stereo imagery captured by cell phones and

stereo cameras.

In short, our contributions include:

• A learning framework for stereo magnification (view extrap-

olation from narrow-baseline stereo imagery).

• Multiplane Images, a new scene representation for perform-

ing view synthesis.

• A new use of online video for learning view synthesis, and

in particular view extrapolation.

2 RELATED WORK
Classical approaches to view synthesis. View synthesis—i.e., tak-

ing one or more views of a scene as input, and generating novel

views—is a classic problem in computer graphics that forms the

core of many image-based rendering systems. Many approaches

focus on the interpolation setting, and operate by either interpolat-

ing rays from dense imagery (“light field rendering”) [Gortler et al.

1996; Levoy and Hanrahan 1996], or reconstructing scene geometry

from sparse views [Debevec et al. 1996; Hedman et al. 2017; Zitnick

et al. 2004]. While these methods yield high-quality novel views,

they do so by compositing the corresponding input pixels/rays, and

typically only work well with multiple (> 2) input views. View

synthesis from stereo imagery has also been considered, including

converting 3D stereoscopic video to multi-view video suitable for

glasses-free automultiscopic displays [Chapiro et al. 2014; Didyk

et al. 2013; Kellnhofer et al. 2017; Riechert et al. 2012] and 4D light

field synthesis from a micro-baseline stereo pair [Zhang et al. 2015],

as well as generalizations that reconstruct geometry from multiple

small-baseline views [Ha et al. 2016; Yu and Gallup 2014]. While we

also focus on stereo imagery, the techniques we present can also

be adapted to single-view and multi-view settings. We also target

much larger extrapolations than prior work.

Learning-based view synthesis. More recently, researchers have

applied powerful deep learning techniques to view synthesis. View

synthesis can be naturally formulated as a learning problem by

capturing images of a large number of scenes, withholding some

views of each scene as ground truth, training a model that predicts

such missing views from one or more given views, and comparing

these predicted views to the ground truth as the loss or objective

that the learning seeks to optimize. Recent work has explored a

number of deep network architectures, scene representations, and

application scenarios for learning view synthesis.

Flynn et al. [2016] proposed a view interpolation method called

DeepStereo that predicts a volumetric representation from a set

of input images, and trains a model using images of street scenes.

Kalantari et al. [2016] use light field photos captured by a Lytro

camera [Lytro 2018] as training data for predicting a color image

for a target interpolated viewpoint. Both of these methods predict a

representation in the coordinate system of the target view. Therefore,
these methods must run the trained network for each desired target

view, making real-time rendering a challenge. Our method predicts

the scene representation once, and reuses it to render a range of

output views in real time. Further, these prior methods focus on

interpolation, rather than extrapolation as we do.

Other recent work has explored the problem of synthesizing a

stereo pair [Xie et al. 2016], large camera motion [Zhou et al. 2016],

or even a light field [Srinivasan et al. 2017] from a single image, an

extreme form of extrapolation. Our work focuses on the increasingly

common scenario of narrow-baseline stereo pairs. This two-view

scenario potentially allows for generalization to more diverse scenes

and larger extrapolation than the single-view scenario. The recent

single-view method of Srinivasan et al., for instance, only considers

ACM Trans. Graph., Vol. 37, No. 4, Article 65. Publication date: August 2018.



Stereo Magnification: Learning view synthesis using multiplane images • 65:3

relatively homogeneous datasets such as macro shots of flowers,

and extrapolates up to the small baseline of a Lytro camera, whereas

our method is able to operate on diverse sets of indoor and outdoor

scenes, and extrapolate views sufficient to allow slight head motions

in a VR headset.

Finally, a variety of work in computer vision has used view syn-

thesis as an indirect form of supervision for other tasks, such as pre-

dicting depth, shape, or optical flow from one or more images [Garg

and Reid 2016; Godard et al. 2017; Liu et al. 2017; Tulsiani et al.

2017; Vijayanarasimhan et al. 2017; Zhou et al. 2017]. However,

view synthesis is not the explicit goal of such work.

Scene representations for view synthesis. A wide variety of scene

representations have been proposed for modeling scenes in view

synthesis tasks.We aremost interested in representations that can be

predicted once and then reused to render multiple views at runtime.

To achieve such a capability, representations are often volumetric or

otherwise involve some form of layering. For instance, layered depth
images (LDIs) are a generalization of depth maps that represent a

scene using several layers of depth maps and associated color val-

ues [Shade et al. 1998]. Such layers allow a user to “see around” the

foreground geometry to the occluded objects that lie behind. Zitnick

et al., represent scenes using per-input-image depth maps, but also

solve for alphamatted layers around depth discontinuities to achieve

high-quality interpolation [2004]. Perhaps closest to our represen-

tation is that of Penner and Zhang [2017]. They achieve softness

by explicitly modeling confidence, whereas we model transparency

which leads to a different method of compositing and rendering.

Additionally, whereas we build one representation of a scene, they

produce a representation for each input view and then interpolate

between them. Our representation is also related to the classic lay-

ered representation for encoding moving image sequences by Wang

and Adelson [1994], and to the layered attenuators of Wetzstein, et

al. [2011], who use actual physical printed transparencies to con-

struct lightfield displays. Finally, Holroyd et al [2011] explore a

similar representation to ours but in physical form.

The multiplane image (MPI) representation we use combines

several attractive properties of prior methods, including handling

of multiple layers and “softness” of layering for representing mixed

pixels around boundaries or reflective/transparent objects. Crucially,

we also found it to be suitable for learning via deep networks.

3 APPROACH
Given two images I1 and I2 with known camera parameters, our goal

is to learn a deep neural net to infer a global scene representation

suitable for synthesizing novel views of the same scene, and in

particular extrapolating beyond the input views. In this section,

we first describe our scene representation and its characteristics,

and then present our pipeline and objective for learning to predict

such representation. Note that while we focus on stereo input in

this paper, our approach could be adapted to more general view

synthesis setups with either single or multiple input views.

Layers at 
fixed depths, 
each is an 
RGBA image.

Reference viewpoint Novel viewpoint

Fig. 2. An illustration of the multiplane image (MPI) representation. An MPI
consists of a set of fronto-parallel planes at fixed depths from a reference
camera coordinate frame, where each plane encodes an RGB image and an
alpha map that capture the scene appearance at the corresponding depth.
The MPI representation can be used for efficient and realistic rendering of
novel views of the scene.

3.1 Multiplane image representation
The global scene representation we adopt is a set of fronto-parallel

planes at a fixed range of depths with respect to a reference coordi-

nate frame, where each plane d encodes an RGB color imageCd and

an alpha/transparency map αd . Our representation, which we call

a Multiplane Image (MPI), can thus be described as a collection of

such RGBA layers {(C1,α1), . . . , (CD ,αD )}, where D is the number

of depth planes. An MPI is related to the Layered Depth Image (LDI)
representation of Shade, et al. [Shade et al. 1998], but in our case

the pixels in each layer are fixed at a certain depth, and we use

an alpha channel per layer to encode visibility. To render from an

MPI, the layers are composed from back-to-front order using the

standard “over” alpha compositing operation. Figure 2 illustrates an

MPI. The MPI representation is also related to the “selection-plus-

color” layers used in DeepStereo [Flynn et al. 2016], as well as to

the volumetric representation of Penner and Zhang [2017].

We chose MPIs because of their ability to represent geometry

and texture including occluded elements, and because the use of

alpha enables them to capture partially reflective or transparent

objects as well as to deal with soft edges. Increasing the number

of planes (which we can think of as increasing the resolution in

disparity space) enables an MPI to represent a wider range of depths

and allows a greater degree of camera movement. Furthermore,

rendering views from an MPI is highly efficient, and could allow for

real-time applications.

Our representation recalls the multiplane camera invented at

Walt Disney Studios and used in traditional animation [Wikipedia

2017]. In both systems, a scene is composed of a series of partially

transparent layers at different distances from the camera.

3.2 Learning from stereo pairs
We now describe our pipeline (see Figure 3) for learning a neural net

that infers MPIs from stereo pairs. In addition to the input images

I1 and I2, we take as input their corresponding camera parameters

ACM Trans. Graph., Vol. 37, No. 4, Article 65. Publication date: August 2018.



65:4 • Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely

Plane	
sweep

Reference	source

MPI	Representation
…

Synthesized	views

f

Neural	Net

Background	color

Second	source

Blending	weights

Color	images

Alpha	images

Blend

Fig. 3. Overview of our end-to-end learning pipeline. Given an input stereo image pair, we use a fully-convolutional deep network to infer the multiplane
image representation. For each plane, the alpha image is directly predicted by the network, and the color image is blended by using the reference source and
the predicted background image, where the blending weights are also output from the network. During training, the network is optimized to predict an MPI
representation that reconstructs the target views using a differentiable rendering module (see Section 3.3). During testing, the MPI representation is only
inferred once for each scene, which can then be used to synthesize novel views with minimal computation (homography + alpha compositing).

c1 = (p1,k1) and c2 = (p2,k2), where pi and ki denote camera

extrinsics (position and orientation) and intrinsics, respectively.

The reference coordinate frame for our predicted scene is placed

at the camera center of the first input image I1 (i.e., p1 is fixed to

be the identity pose). Our training set consists of a large set of

⟨I1, I2, It , c1, c2, ct ⟩ tuples, where It and ct = (pt ,kt ) denote the

target ground-truth image and its camera parameters, respectively.

We aim to learn a neural network, denoted by fθ (·), that infers an
MPI representation using ⟨I1, I2, c1, c2⟩ as input, such that when the

MPI is rendered at ct it should reconstruct the target image It .

Network input. To encode the pose information from the second

input image I2, we compute a plane sweep volume (PSV) that repro-

jects I2 into the reference camera at a set of D fixed depth planes.
1

Although not required, we choose these depth planes to coincide

with those of the output MPI. This plane sweep computation results

in a stack of reprojected images {Î1
2
, . . . , ÎD

2
}, which we concatenate

along the color channels, resulting in a H ×W × 3D tensor Î2. We

further concatenate Î2 with I1 to obtain the input tensor (of size

H ×W ×3(D+1)) to the network. Intuitively, the PSV representation

allows the network to reason about the scene geometry by simply

comparing I1 to each planar reprojection of I2—the scene depth at

any given pixel is typically at the depth plane where I1 and the

reprojected I2 agree. Many stereo algorithms work on this principle,

but here we let the network automatically learn such relationships

through the view synthesis objective.

Network output. A straightforward choice of the network out-

put would be a separate RGBA image for each depth plane, where

the color image captures the scene appearance and the alpha map

encodes the visibility and transparency. However, such an output

1
For a rectified stereo pair, reprojected images would simply be shifted versions of I2 ,
though we consider more general configurations in our setup.

would be highly over-parameterized, and we found a more parsi-

monious output to be beneficial. In particular, we assume the color

information in the scene can be well modeled by just two images, a

foreground and a background image, where the foreground image

is simply the reference source I1, and the background image is pre-

dicted by the network, and is intended to capture the appearance

of hidden surfaces. Hence, for each depth plane, we compute each

RGB image Cd as a per-pixel weighted average of the foreground

image I1 and the predicted background image Îb :

Cd = wd ⊙ I1 + (1 −wd ) ⊙ Îb , (1)

where ⊙ denotes the Hadamard product, and the blending weights

wd are also predicted by the network. Intuitively, I1 would have a

higher weight at nearer planes where foreground content is dom-

inant, while Îb is designed to capture surfaces that are occluded

in the reference view. Note that the background image need not

itself be a natural image, since the network can exploit the alpha

and blending weights to selectively and softly use different parts

of it at different depths. Indeed, there may be regions of a given

background image that are never used in new views.

In summary, the network outputs the following quantities: 1) an

alpha map αd for each plane, 2) a global RGB background image

Îb and 3) a blending weight imagewd for each plane representing

the relative proportion of the foreground and background layers at

each pixel. If we predict D depth layers each with a resolution of

W ×H , then the total number of output parameters isWH · (2D + 3)
(vs.WH · 4D for a direct prediction of an MPI). These quantities can

then be converted to an MPI.

3.3 Differentiable view synthesis using MPIs
Given the MPI representation with respect to a reference frame, we

can synthesize a novel view Ît by applying a planar transformation

(inverse homography) to the RGBA image for each plane, followed

ACM Trans. Graph., Vol. 37, No. 4, Article 65. Publication date: August 2018.



Stereo Magnification: Learning view synthesis using multiplane images • 65:5

by a alpha-composition of the transformed images into a single

image in a back-to-front order. Both the planar transformation and

alpha composition are differentiable, and can be easily incorporated

into the rest of the learning pipeline.

Planar transformation. Here we describe the planar transfor-

mation that inverse warps each MPI RGBA plane onto a target

viewpoint. Let the geometry of the MPI plane to be transformed

(i.e. the source) be n · x + a = 0, where n denotes the plane normal,

x = [us ,vs , 1]
T
the source pixel homogeneous coordinates, and a

the plane offset. Since the source MPI plane is fronto-parallel to the

reference source camera, we have n = [0, 0, 1] and a = −ds , where
ds is the depth of the source MPI plane. The rigid 3D transforma-

tion matrix mapping from source to target camera is defined by

a 3D rotation R and translation t, and the source and target cam-

era intrinsics are denoted ks and kt , respectively. Then for each

pixel (ut ,vt ) in the target MPI plane, we use the standard inverse

homography [Hartley and Zisserman 2003] to obtain
us
vs
1

 ∼ ks

(
RT +

RT tnRT

a − nRT t

)
k−1t


ut
vt
1

 (2)

Therefore, we can obtain the color and alpha values for each target

pixel [ut ,vt ] by looking up its correspondence [us ,vs ] in the source

image. Since [us ,vs ] may not be an exact pixel coordinate, we use

bilinear interpolation among the 4-grid neighbors to obtain the

resampled values (following [Jaderberg et al. 2015; Zhou et al. 2016]).

Alpha compositing. After applying the planar transformation

to each MPI plane, we then obtain the predicted target view by

alpha compositing the color images in back-to-front order using the

standard over operation [Porter and Duff 1984].

3.4 Objective
Given the MPI inference and rendering pipeline, we can train a

network to predict MPIs satisfying our view synthesis objective.

Formally, for a training set of ⟨I1, I2, It , c1, c2, ct ⟩ tuples, we optimize

the network parameters by:

min

θ

∑
⟨I1, I2, It ,c1,c2,ct ⟩

L(R(fθ (I1, I2, c1, c2), ct ), It ) , (3)

where R(·) denotes the rendering pipeline described in Section 3.3

that synthesizes a novel view from the target camera ct using the
inferred MPI fθ (I1, I2, c1, c2), and L(·) is the loss function between

the synthesized view and the ground-truth. In this work, we use

a deep feature matching loss (also referred to as the “perceptual

loss” [Dosovitskiy and Brox 2016; Johnson et al. 2016; Zhang et al.

2018]), and specifically use the normalized VGG-19 [Simonyan and

Zisserman 2014] layer matching from [Chen and Koltun 2017]:

L(Ît , It ) =
∑
l

λl ∥ϕl (Ît ) − ϕl (It )∥1 , (4)

where {ϕl } is a set of layers in VGG-19 (conv1_2, conv2_2, conv3_2,
conv4_2, and conv5_2) and the weight hyperparameters {λl } are
set to the inverse of the number of neurons in each layer.

Table 1. Our network architecture, where k is the kernel size, s the stride,
d kernel dilation, chns the number of input and output channels for each
layer, in and out are the accumulated stride for the input and output of each
layer, and input denotes the input source of each layer with + meaning
concatenation. See Section 3.5 for more details.

Layer k s d chns in out input

conv1_1 3 1 1 99/64 1 1 I1 + Î2
conv1_2 3 2 1 64/128 1 2 conv1_1

conv2_1 3 1 1 128/128 2 2 conv1_2

conv2_2 3 2 1 128/256 2 4 conv2_1

conv3_1 3 1 1 256/256 4 4 conv2_2

conv3_2 3 1 1 256/256 4 4 conv3_1

conv3_3 3 2 1 256/512 4 8 conv3_2

conv4_1 3 1 2 512/512 8 8 conv3_3

conv4_2 3 1 2 512/512 8 8 conv4_1

conv4_3 3 1 2 512/512 8 8 conv4_2

conv5_1 4 .5 1 1024/256 8 4 conv4_3 + conv3_3

conv5_2 3 1 1 256/256 4 4 conv5_1

conv5_3 3 1 1 256/256 4 4 conv5_2

conv6_1 4 .5 1 512/128 4 2 conv5_3 + conv2_2

conv6_2 3 1 1 128/128 2 2 conv6_1

conv7_1 4 .5 1 256/64 2 1 conv6_2 + conv1_2

conv7_2 3 1 1 64/64 1 1 conv7_1

conv7_3 1 1 1 64/67 1 1 conv7_2

3.5 Implementation details
Unless specified otherwise, we use D = 32 planes set at equidistant

disparity (inverse depth) with the near and far planes at 1m and

100m, respectively.

Network architecture. Weuse a fully-convolutional encoder-decoder

architecture (see Table 1 for detailed specification). The encoder

pathway follows similar design as VGG-19 [Simonyan and Zisser-

man 2014], while the decoder consists of deconvolution (fractionally-

strided convolution) layers with skip-connections from lower layers

to capture fine texture details. Dilated convolutions [Chen et al.

2018; Yu and Koltun 2016] are also used in intermediate layers

conv4_1,2,3 to model larger scene context while maintaining the

spatial resolution of the feature maps. Each layer is followed by a

ReLU nonlinearity and layer normalization [Ba et al. 2016] except

for the last layer, where tanh is used and no layer normalization is

applied. Each of the last layer outputs (32 alpha images, 32 blending

weight images, and 1 background RGB image) is further scaled to

match the corresponding valid range (e.g. [0, 1] for alpha images).

Training details. We implement our system in TensorFlow [Abadi

et al. 2016]. We train the network using the ADAM solver [Kingma

and Ba 2014] for 600K iterations with learning rate 0.0002, β1 =
0.9, β2 = 0.999, and batch size 1. During training, the images and

MPI have a spatial resolution of 1024 × 576, but the model can be

applied to arbitrary resolution at test time in a fully-convolutional

manner. Training takes about one week on a Tesla P100 GPU.

ACM Trans. Graph., Vol. 37, No. 4, Article 65. Publication date: August 2018.



65:6 • Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely

4 DATA
For training we require triplets of images together with their relative

camera poses and intrinsics. Creating such a dataset from scratch

would require carefully capturing simultaneous photos of a variety

of scenes from three or more appropriate viewpoints per scene.

Instead, we identified an existing source of massive amounts of

such data: video clips on YouTube shot from a moving camera. By

sampling frames from such videos, we can obtain very large amounts

of data comprising multiple views of the same scene shot from a

variety of baselines. For this approach to work, we need to be able

to identify suitable video clips, i.e., clips shot from a moving camera

but with a static scene, with minimal artifacts such as motion blur

or rolling-shutter distortion, and without other editing effects such

as titles and overlays. Finally, given a suitable clip, we must estimate

the camera parameters for each frame.

While many videos on YouTube are not useful for our purposes,

we found a surprisingly large amount of suitable content, across

several categories of video. One such category is real estate footage.

Typical real estate videos feature a series of shots of indoor and

outdoor scenes (the interior of a room or stairway, exterior views

of a house, footage of the surrounding area, etc). Shots typically

feature smooth camera movement and little or no scene movement.

Hence, we decided to build a dataset from real estate videos as a

large and diverse source of multi-view training imagery.

Accordingly, the rest of this section describes the dataset we

collected, consisting of over 7,000 video clips from 1 to 10 seconds

in length, together with the camera position, orientation and field of

view for each frame in the sequence. To build this dataset, we devised

a pipeline for mining suitable clips from YouTube. This pipeline

consists of four main steps: 1) identifying a set of candidate videos

to download, 2) running a camera tracker on each video to both

estimate an initial camera pose for each frame and to subdivide the

video into distinct shots/clips, 3) performing a full bundle adjustment

to derive high-quality poses for each clip, and 4) filtering to remove

any remaining unsuitable clips.

4.1 Identifying videos
We manually found a number of YouTube channels that published

real estate videos exclusively or almost exclusively, and used the

YouTube API to retrieve videos IDs listed under each channel. This

yielded a set of approximately 1,500 candidate videos.

4.2 Identifying and tracking clips with SLAM
We wish to subdivide each video into individual clips, and identify

clips that have significant camera motion. We found few readily

available tools for performing camera tracking on arbitrary videos

in the wild. Initially, we tried to use structure-from-motion methods

developed in computer vision, such as Colmap [Schönberger and

Frahm 2016]. These methods are optimized for photo collections,

and we found them to be slow and prone to failure when applied to

video sequences. Instead, we found that for our purposes we could

adapt modern algorithms for SLAM (Simultaneous Localization and

Mapping) developed in the robotics community.

Visual SLAM methods take as input a series of frames, and build

and maintain a sparse or semi-dense 3D reconstruction of the scene

while estimating the viewpoint of the current frame in a way consis-

tent with this reconstruction. We use the ORB-SLAM2 system [Mur-

Artal and Tardós 2015], though other methods could also apply [En-

gel et al. 2018; Forster et al. 2014].

SLAM algorithms are not designed to process videos containing

multiple shots with cuts and dissolves between them, and they

typically care only about the accuracy of the current frame’s pose—

in particular, as the scene is refined over time, earlier frames are not

updated and may become inconsistent with the current state of the

world. To deal with these issues, our approach is as follows: 1. Feed
successive frames of the video to ORB-SLAM2 as normal. 2. When

the algorithm reports that it has begun to track the camera, mark the

start of a clip. 3. When ORB-SLAM2 fails to track K = 6 consecutive

frames, or when we reach a maximum sequence length L, consider
the clip to have ended. 4. Keeping the final scene model constant,

reprocess all frames in the clip so as to estimate a consistent pose

for each camera. 5. Re-initialize ORB-SLAM2 so it is ready to start

tracking a new clip on subsequent frames. In this way, we use ORB-

SLAM2 not just to track frames, but also to divide a video into clips

using tracking failure as a way to detect shot boundaries.

Since SLAM methods, including ORB-SLAM2, require known

camera intrinsics such as field of view (which are unknown for

arbitrary online videos), we simply assume a field of view of 90

degrees. This assumption worked surprisingly well for the purposes

of identifying good clips. Finally, for the sake of speed, at this stage

we process a lower resolution version of the video. The result of the

above processing is a set of clips or sequences for each video, along

with a preliminary set of camera parameters.

4.3 Refining poses with bundle adjustment
We next process each sequence at higher resolution, using a stan-

dard structure-from-motion pipeline to extract features from each

frame, match these features across frames, and perform a global

bundle adjustment using the Ceres non-linear least squares opti-

mizer [Agarwal et al. 2016]. We initialize the cameras using the

poses found by ORB-SLAM2, and add a weak penalty to the opti-

mization that encourages the parameters not to stray too far from

their initial values. The output for each sequence is a set of adjusted

camera poses, an estimated field of view, and a sparse point cloud

representing the scene. An example output is illustrated in Figure 4.

One difficulty with this process is that there is no way to deter-

mine global scene scale, so our reconstructed camera poses are up

to an arbitrary scale per clip. This ambiguity will become important

when we represent scenes with MPIs, because our representation is

based on layers at specific depths, as described in Section 3.5. Hence,

we “scale-normalize” each sequence using the estimated 3D point

cloud, scaling it so that the nearest scene geometry is approximately

a fixed distance from the cameras. In particular, for each frame we

compute the 5th percentile depth among all point depths from that

frame’s camera. Computing this depth across all cameras in a se-

quence gives us a set of “near plane” depths. We scale the sequence

so that the 10th percentile of this set of depths is 1.25m. (Recall that

our MPI representation uses a near plane of 1m.)

ACM Trans. Graph., Vol. 37, No. 4, Article 65. Publication date: August 2018.



Stereo Magnification: Learning view synthesis using multiplane images • 65:7

[c]

[a] [b]

[d]
[e]

[f]

[g]

Input video frames
Sparse point cloud
Camera positions
Selected subsequence
Source frames
Target (extrapolation)
Target (interpolation)

a:
b:
c:
d:
e:
f:
g:

Fig. 4. Dataset output and frame selection, showing estimated camera
trajectory and sparse point cloud. See section 4.5 for a detailed description.

4.4 Filtering and clipping
If the source video contains cross-fades, some frames may show a

blend of two scenes. We discard ten frames from the beginning and

end of each clip, which eliminates most such frames.

Occasionally the estimated camera poses for a sequence do not

form a smooth track, which can indicate that wewere unable to track

the camera accurately. We define a frame to be smooth if its camera

position pi is sufficiently close to the average of the two adjacent

camera positions, specifically if ∥pi − (pi+1 + pi−1)/2∥ < 0.2 ×

∥pi+1 − pi−1∥. For each sequence, we find the longest consecutive

subsequence in which all frames are smooth, and discard the rest.

Finally we discard all remaining sequences of fewer than 30

frames. From an input set of approximately 1500 videos, this pipeline

produces a set of ∼7,000 sequences with a total of ∼750K frames.

4.5 Choosing training triplets
Figure 4 shows an example of the result of this processing, includ-

ing input video frames [a] (just two frames are shown here), and

the sparse point cloud [b] and camera track [c] resulting from the

structure from motion pipeline. As described in Section 3.2, for our

application we require tuples ⟨I1, I2, It , c1, c2, ct ⟩, including cases

where It is an extrapolation from I1 and I2. We sample tuples from

our dataset by first selecting from each sequence a random subse-

quence [d] of length 10, with stride (gap between selected frames)

chosen randomly from 1 to 10. From this subsequence we then ran-

domly choose two different frames and their poses to be the inputs

I1, I2, c1, and c2 [e], and a third frame to be the target It , ct .
Depending on which frames are chosen, the target frame may

require extrapolation [f] (of up to a factor of nine times the distance

between I1 and I2, assuming a linearly moving camera) or interpo-

lation [g] from the inputs. We chose to learn to predict views from

a variety of positions relative to the source imagery so as not to

overfit to generating images at a particular distance during training.

5 EXPERIMENTS AND RESULTS
In this section we evaluate the performance of our method, and

compare it with several view synthesis baselines. Our test set con-

sists of 1,329 sequences that did not overlap with the training set.

Table 2. Quantitative comparison between our model and variants of the
baseline Kalantari model [2016]. Higher SSIM/PSNR mean and lower rank
are better. See Section 5.2 for more details.

Method Network Loss SSIM PSNR

Mean Rank Mean Rank

Kalantari Kalantari pixel 0.696 4.0 31.41 3.7

Kalantari Ours VGG 0.822 2.1 32.93 2.0

Ours Ours Pixel 0.812 2.6 32.42 2.8

Ours Ours VGG 0.835 1.4 33.10 1.5

For each sequence we randomly sample a triplet (two source frames

and one target frame) for evaluation. We first visualize the MPI

representation inferred by our model, and then provide detailed

comparison with other recent view synthesis methods. We further

validate our model design with various ablation studies, and finally

highlight the utility of our method through several applications.

For quantitative evaluation, we use the standard SSIM [Wang et al.

2004] and PSNR metrics.

5.1 Visualizing the multiplane images
We visualize examples of the MPI representation inferred by our

network in Figure 5. Despite having no direct color or alpha ground-

truth for each MPI plane during training, the inferred MPI is able to

capture the scene appearance in a layer-wise manner (near to far)

respecting the scene geometry, which allows realistic rendering of

novel views from the representation.

We also demonstrate view extrapolation capability of the MPI

representation in Figure 6, where we use the central two frames of a

registered video sequence as input, and synthesize the previous and

future frames with the inferred MPI. Please see the supplemental

video for animations of these rendered sequences.

5.2 Comparison with Kalantari et al.
We compare our model with Kalantari et al. [2016], a state-of-the-art

learning-based view synthesis method. A critical difference com-

pared to our method is that Kalantari et al. has an independent
rendering process for each novel view of the scene, and needs to re-

run the entire inference pipeline every time a new view is queried,

which is computationally prohibitive for real-time applications. In

contrast, our method predicts a scene-level MPI representation that

can render any novel viewpoint in real-time with minimal compu-

tation (inverse homography + alpha compositing).

We train and test two variants of their method on our data: 1)

same network architecture (4 convolution layers) and pixel recon-

struction loss from the original paper; 2) our network architecture

(which is deeper with skip connections) with perceptual loss. For

fair comparison, we use the same number of input planes as ours for

constructing the plane sweep volume in their input. See Section 5.4

for discussion on the effect of varying the number of depth planes.

Table 2 shows mean SSIM and PSNR similarity metrics for each

method across our test set. To measure if one method is consistently

better than another, we also rank the methods on each test triplet

and compute the average rank for each method. An average rank

ACM Trans. Graph., Vol. 37, No. 4, Article 65. Publication date: August 2018.



65:8 • Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely

Input	images Inferred	MPI	Representation A	novel	view	synthesized	from	MPI

Fig. 5. Sample visualization of the input image pair (left), our inferred MPI representation (middle), where we show the alpha-multiplied color image at a
subset of the depth planes from near to far (top to bottom, left to right), and novel views rendered from the MPI (right). The predicted MPI is able to capture
the scene appearance in a layer-wise manner (near to far) respecting the scene geometry.

of 1.0 for PSNR, for example, would mean that this method always

had the highest PSNR score.

We find that 1) our network architecture is significantly more ef-

fective than the simple 4-layer network used in the original Kalantari

paper; 2) the VGG perceptual loss helps improve the performance

over the pixel reconstruction loss (see Section 5.4 for discussion);

3) our model outperforms the better of the two Kalantari variants

(VGG with our network architecture), indicating the high-quality

of novel views rendered from the MPI representation.

We also observe that when rendering continuous view sequences

of the same scene, our results tend to be more spatially coherent

than Kalantari, and produce fewer frame-to-frame artifacts. We hy-

pothesize that this is because, unlike the Kalantari model, we infer

a single scene-level MPI representation that is shared for render-

ing all target views, which implicitly imposes a smoothness prior

when rendering nearby views. Please see the video for qualitative

comparisons of our method to Kalantari on rendered sequences.

ACM Trans. Graph., Vol. 37, No. 4, Article 65. Publication date: August 2018.



Stereo Magnification: Learning view synthesis using multiplane images • 65:9

Input	viewsSynthesized	views Synthesized	views

Fig. 6. Sample view extrapolation results using multiplane images. The central two frames (green) are the input to our network, and the inferred MPI is used
to render both past and future frames in the same video sequence.

Zhang	et	al. Ours Ground-truth

Our	synthesized	view

Zhang	et	al. Ours Ground-truth

Our	synthesized	view

Fig. 7. Comparison with Zhang et al. [2015] on the HCI light field
dataset [Wanner et al. 2013]. Note the differences around object boundaries.

5.3 Comparison with extrapolation methods
We compare with a non-learning view extrapolation approach by

Zhang et al. [2015], which reconstructs a 4D light field from micro-

baseline stereo pairs using disparity-assisted phase based synthesis

(DAPS). For fair comparison, we directly apply our model trained on

the real estate data to the HCI light field dataset [Wanner et al. 2013].

As shown in Figure 7, our model generalizes well on the HCI dataset

without any fine-tuning, and compares favorably with Zhang et

al. around depth boundaries, where our method introduces fewer

distortion artifacts. We find that the method of Zhang et al. performs

well for small view extrapolations, but breaks down more quickly

around object boundaries with increasing extrapolation distance.

We also trained appearance flow [Zhou et al. 2016] on our dataset,

but found rendered views exhibited significant artifacts, such as

straight lines becoming distorted. This method appears more suited

to object-centric synthesis than to scene rendering, and it is not

able to fully exploit correlations between views since the trained

network operates on each input image separately.

5.4 Ablation studies
Perceptual loss. To illustrate the effect of the perceptual loss, we

compare our final model with a baseline model trained using L1

loss in the RGB pixel space. As shown in Figure 8, our final model

trained using the perceptual loss better preserves object structure

and texture details in the synthesized results than the baseline.

The benefit of training with perceptual loss is further verified with

quantitative evaluation in Table 2.

Color layer prediction. In Section 3.2, we propose that our network

create the color values for each MPI plane as a weighted average of

a network predicted “background” image and the reference source

image. Here we compare several variants of the color prediction

format (ordered by increasing level of representation flexibility):

(1) None. No color image or blending weights are predicted by

the network. The reference source image is used as the color

image at each MPI plane.

(2) Single image. The network predicts a single color image

shared for all MPI planes.

(3) Background + blending weights (our preferred format). The

network predicts a background image and blending weights.

The reference source is used as the foreground image.

(4) Foreground + background + blending weights. In contrast to

the previous variant, instead of using the reference source

as the foreground image, the network predicts an extra fore-

ground image for blending with the background.

(5) All images. The network directly outputs the color image at

each MPI plane.

We compare the performance of these variants in Table 3 and show

a qualitative example in Figure 9. Although “BG+blending weights”

slightly outperforms the other variants, all the variants (other than

“FG+BG+blendingweights") produce competitive results. The “None”

and “Single image” variants suffer in areas where the target view

contains details that are occluded in the reference image but visible

in the second input image. The “BG+blending weights” format can

represent these areas better since not all MPI planes need to have the

same color data. The “FG+BG+blending weights” variant is slightly

more powerful as the foreground image is not restricted, and the “All

images” variant, with a separate color image for each plane, is the

only variant that can fully represent a scene with depth complexity

ACM Trans. Graph., Vol. 37, No. 4, Article 65. Publication date: August 2018.



65:10 • Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely

Our	synthesized	view	with	VGG	loss w/	pixel	loss w/	VGG	loss Ground-truth

Fig. 8. Comparison between the models trained using pixel reconstruction
loss and VGG perceptual loss. The latter better preserves object structure,
and tends to produce sharper synthesized views.

Table 3. Quantitative evaluation of variants of network color output, ordered
by increasing degree of flexibility (top to bottom). Higher SSIM/PSNR mean
and lower rank are better.

Color layer prediction SSIM PSNR

Mean Rank Mean Rank

None 0.833 2.3 33.06 2.1

Single image 0.822 3.9 32.51 3.9

BG + Blend weights 0.835 1.6 33.09 1.6
FG + BG + Blend weights 0.819 4.1 32.50 3.7

All images 0.825 3.2 32.53 3.8

Table 4. Evaluating the effect of varying the number of depth planes for the
MPI representation. Higher SSIM/PSNR mean and lower rank are better.

MPI depth planes SSIM PSNR

Mean Rank Mean Rank

D = 8 0.766 2.99 32.12 2.96

D = 16 0.812 1.98 32.73 1.97

D = 32 0.835 1.03 33.09 1.07

greater than 2. However, in our experiments these last two variants

both performed slightly worse than “None”. We hypothesize that the

larger output space and less utilization of the reference image makes

the learning harder with these output formats, and that the relatively

small camera movement limits the depth complexity required.

Number of depth planes. As shown in Table 4, our model per-

formance improves as more depth planes are used in the inferred

MPI representation. We are currently limited to 32 planes due to

memory constraints, but could overcome this with future hardware

or alternative networks. As seen in Figure 10, the greater the offset

between the reference view and the rendered view, the more planes

are needed to render the scene accurately.

None Single image BG+blend FG+BG+blend All images Ground-truth

Fig. 9. Comparison between different color prediction formats. Note in
particular the rendering of disoccluded background details, such as the rear
wall (red), its reflection in the table surface (green), cupboard door (yellow)
and corner of vase (blue). All the variants (except “FG+BG+blend") produce
competitive results with slight differences. See Section 5.4 for more details.

Fig. 10. Effect of varying the number of depth planes at different view
offsets. For two regions of the top image, we show view extrapolations from
MPIs with varying numbers of planes. The number of pixels shown is the
disparity between front and back planes relative to the reference view. The
larger the number of planes, the farther the view can be extrapolated before
introducing artifacts. Note the edge of the counter in the first example, and
the edges of objects in the second example. (Best viewed zoomed in.)

5.5 Applications
In this section we describe two applications of our trained model: 1)

taking a narrow-baseline stereo pair from a cell phone camera and

extrapolating to an average human interpupillary-distance (IPD)-

spaced stereo pair, and 2) taking an image pair from a large-baseline

stereo camera and extrapolating a “1D lightfield” of views between

and beyond the source images.

ACM Trans. Graph., Vol. 37, No. 4, Article 65. Publication date: August 2018.



Stereo Magnification: Learning view synthesis using multiplane images • 65:11

Original baseline Magnified baseline

Fig. 11. Example stereo magnifications for dual-lens camera. Left: raw stereo
pairs captured by an iPhone X, displayed as red-cyan anaglyph images, with
a baseline of ∼1.4cm. Right: the same images but with baseline synthetically
magnified to ∼6.3cm. Note the significantly enhanced stereo effect. (Best
viewed zoomed in and with 3D glasses.)

Cell phone image pairs → IPD stereo pair. We captured a set of

image pairs with an iPhone X, a recent dual-lens camera phone with

a baseline of ∼1.4cm, using an app that saves both captured views.

Because the focal lengths of the two cameras are different, the app

crops the wider-angle image to match the narrower field-of-view

image. For each image pair, we ran a calibration procedure to refine

the camera intrinsics using their nominal values as initialization. We

then applied our model (trained on real estate data) to magnify the

baseline to ∼6.3cm (a magnification factor of 4.5x). Several results

are shown in Figure 11 as anaglyph images, and in the supplemental

video as sway animation. Figure 11 highlights how the extrapolated

images provide a more compelling sense of 3D, and illustrates how

our model can generalize to new scenarios that are atypical of

real estate scenes (such as the sculpture of Mark Twain in the first

example). Finally, notice that our method can handle interesting

materials (e.g. the reflective glass and glossy floor in the first scene).

Stereo pairs to extended 1D lightfield. We also demonstrate tak-

ing a large-baseline stereo pair and synthesizing a continuous “1D

lightfield”—i.e., a set of views along a line passing through the source

views. For this application, we downloaded stereo pairs shot by a

Fujifilm FinePix Real 3D W1 stereo point-and-shoot camera with

a baseline of 7.7cm, and extrapolated to a continuous set of views

with a baseline of 26.7cm (a magnification factor of ∼3.5x). Fig-

ure 12 shows an example input and output as anaglyphs; see the

supplemental video for animations of the resulting sequences. This

input baseline, magnification factor, and scene content represent

a challenging case for our model, and artifacts such as stretching

in the background can be observed. Nonetheless, the results show

plausible interpolations and extrapolations of the source imagery.

Original baseline Magnified baseline

Fig. 12. Example stereo magnifications for Fujifilm Real 3D stereo camera.
Left: a raw stereo pair from the camera, displayed as red-cyan anaglyph
images, with a baseline of ∼7.7cm. Right: the same images but with baseline
synthetically magnified to ∼26.7cm. (Best viewed zoomed in and with 3D
glasses.) (Photo used under CC license from Flickr user heiwa4126.)

6 DISCUSSION
Having trained on a large and varied dataset, our view synthesis

system based on multiplane images is able to handle both indoor

and outdoor scenes. We successfully applied it to scenes which are

quite different from those in our training dataset. The learned MPIs

are effective at representing surfaces which are partially reflective

or transparent. Figure 13 (a) and (b) show two examples of such

surfaces, rendered as anaglyphs with stereo-magnification.

Our method has certain limitations. When fine detail appears in

front of a complex background, our model can struggle to place it at

the correct depth. Figure 13 (c) shows a case where overhead cables

appear to jump between two different depths. This may suggest that

depth decisions are being made too locally. Figure 13 (d) shows the

result of extrapolating beyond the limits of the MPI representation.

When the disparity between adjacent layers exceeds one pixel we

may see duplicated edges, producing a “stack of cards” effect.

In conclusion, we presented a new representation, training setup,

and approach to learning view extrapolation from video data. We

believe this framework can also generalize to a variety of different

tasks, including extrapolating from more than two input images or

from only one, and generating lightfields allowing view movement

in multiple dimensions.

REFERENCES
Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. 2016.

TensorFlow: A System for Large-Scale Machine Learning. In OSDI.
Sameer Agarwal, Keir Mierle, and Others. 2016. Ceres Solver. http://ceres-solver.org.

(2016).

Apple. 2016. Portrait mode now available on iPhone 7 Plus

with iOS 10.1. https://www.apple.com/newsroom/2016/10/

portrait-mode-now-available-on-iphone-7-plus-with-ios-101/. (2016).

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normalization.

arXiv preprint arXiv:1607.06450 (2016).
Alexandre Chapiro, Simon Heinzle, Tunç Ozan Aydın, Steven Poulakos, Matthias

Zwicker, Aljosa Smolic, and Markus Gross. 2014. Optimizing stereo-to-multiview

conversion for autostereoscopic displays. In Computer graphics forum.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L

Yuille. 2018. Deeplab: Semantic image segmentation with deep convolutional nets,

atrous convolution, and fully connected crfs. IEEE Trans. on Pattern Analysis and
Machine Intelligence 40, 4 (2018).

Qifeng Chen and Vladlen Koltun. 2017. Photographic image synthesis with cascaded

refinement networks. In ICCV.
Shenchang Eric Chen and LanceWilliams. 1993. View Interpolation for Image Synthesis.

In Proc. SIGGRAPH.

ACM Trans. Graph., Vol. 37, No. 4, Article 65. Publication date: August 2018.

http://ceres-solver.org
https://www.apple.com/newsroom/2016/10/portrait-mode-now-available-on-iphone-7-plus-with-ios-101/
https://www.apple.com/newsroom/2016/10/portrait-mode-now-available-on-iphone-7-plus-with-ios-101/


65:12 • Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely

ba dc

Fig. 13. Challenging cases. Reference images at top, rendered anaglyph details at bottom: (a) glass table with reflection and transparency, (b) reflection in a
dusty curved mirror, (c) fine wires are confused with background, (d) extrapolation beyond the limits of the representation gives a ‘stack of cards’ effect.

Paul E Debevec, Camillo J Taylor, and Jitendra Malik. 1996. Modeling and rendering

architecture from photographs: A hybrid geometry-and image-based approach. In

Proc. SIGGRAPH.
Piotr Didyk, Pitchaya Sitthi-Amorn, William Freeman, Frédo Durand, and Wojciech

Matusik. 2013. Joint view expansion and filtering for automultiscopic 3D displays.

In Proc. SIGGRAPH.
Alexey Dosovitskiy and Thomas Brox. 2016. Generating images with perceptual

similarity metrics based on deep networks. In NIPS.
Jakob Engel, Vladlen Koltun, and Daniel Cremers. 2018. Direct sparse odometry. IEEE

Trans. on Pattern Analysis and Machine Intelligence 40, 3 (2018).
John Flynn, Ivan Neulander, James Philbin, and Noah Snavely. 2016. DeepStereo:

Learning to Predict New Views From the World’s Imagery. In CVPR.
Christian Forster, Matia Pizzoli, and Davide Scaramuzza. 2014. SVO: Fast Semi-Direct

Monocular Visual Odometry. In ICRA.
Ravi Garg and Ian Reid. 2016. Unsupervised CNN for Single View Depth Estimation:

Geometry to the Rescue. In ECCV.
Clément Godard, Oisin Mac Aodha, and Gabriel J. Brostow. 2017. Unsupervised Monoc-

ular Depth Estimation with Left-Right Consistency. In CVPR.
Google. 2017a. Introducing VR180 cameras. https://vr.google.com/vr180/. (2017).

Google. 2017b. Portrait mode on the Pixel 2 and Pixel 2 XL smartphones. https://research.

googleblog.com/2017/10/portrait-mode-on-pixel-2-and-pixel-2-xl.html. (2017).

Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen. 1996. The

Lumigraph. In Proc. SIGGRAPH.
Hyowon Ha, Sunghoon Im, Jaesik Park, Hae-Gon Jeon, and In So Kweon. 2016. High-

quality Depth from Uncalibrated Small Motion Clip. In CVPR.
Richard Hartley and Andrew Zisserman. 2003. Multiple View Geometry in Computer

Vision. Cambridge University Press.

Samuel W. Hasinoff, Dillon Sharlet, Ryan Geiss, Andrew Adams, Jonathan T. Barron,

Florian Kainz, Jiawen Chen, and Marc Levoy. 2016. Burst photography for high

dynamic range and low-light imaging on mobile cameras. In Proc. SIGGRAPH Asia.
Peter Hedman, Suhib Alsisan, Richard Szeliski, and Johannes Kopf. 2017. Casual 3D

Photography. In Proc. SIGGRAPH Asia.
Michael Holroyd, Ilya Baran, Jason Lawrence, and Wojciech Matusik. 2011. Computing

and fabricating multilayer models. In Proc. SIGGRAPH Asia.
Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray Kavukcuoglu. 2015.

Spatial transformer networks. In NIPS.
Justin Johnson, Alexandre Alahi, and Li Fei-Fei. 2016. Perceptual losses for real-time

style transfer and super-resolution. In ECCV.
Nima Khademi Kalantari, Ting-Chun Wang, and Ravi Ramamoorthi. 2016. Learning-

Based View Synthesis for Light Field Cameras. In Proc. SIGGRAPH Asia.
Petr Kellnhofer, Piotr Didyk, Szu-Po Wang, Pitchaya Sitthi-Amorn, William Freeman,

Fredo Durand, and Wojciech Matusik. 2017. 3DTV at Home: Eulerian-Lagrangian

Stereo-to-Multiview Conversion. In Proc. SIGGRAPH.
Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980 (2014).
Marc Levoy and Pat Hanrahan. 1996. Light Field Rendering. In Proc. SIGGRAPH.
Ziwei Liu, Raymond Yeh, Xiaoou Tang, Yiming Liu, and Aseem Agarwala. 2017. Video

Frame Synthesis Using Deep Voxel Flow. In ICCV.
Lytro. 2018. Lytro. https://www.lytro.com/. (2018).

Montiel J. M. M. Mur-Artal, Raúl and Juan D. Tardós. 2015. ORB-SLAM: a Versatile and

Accurate Monocular SLAM System. IEEE Trans. on Robotics 31, 5 (2015).
Eric Penner and Li Zhang. 2017. Soft 3D Reconstruction for View Synthesis. In Proc.

SIGGRAPH Asia.
Thomas Porter and Tom Duff. 1984. Compositing Digital Images. In Proc. SIGGRAPH.
Christian Riechert, Frederik Zilly, Peter Kauff, Jens Güther, and Ralf Schäfer. 2012. Fully

automatic stereo-to-multiview conversion in autostereoscopic displays. The Best of
IET and IBC 4 (09 2012).

Johannes Lutz Schönberger and Jan-Michael Frahm. 2016. Structure-from-Motion

Revisited. In CVPR.
Jonathan Shade, Steven Gortler, Li-wei He, and Richard Szeliski. 1998. Layered depth

images. In Proc. SIGGRAPH.
Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
Pratul P. Srinivasan, Tongzhou Wang, Ashwin Sreelal, Ravi Ramamoorthi, and Ren Ng.

2017. Learning to Synthesize a 4D RGBD Light Field from a Single Image. In ICCV.
Shubham Tulsiani, Tinghui Zhou, Alexei A. Efros, and Jitendra Malik. 2017. Multi-view

Supervision for Single-view Reconstruction via Differentiable Ray Consistency. In

CVPR.
Sudheendra Vijayanarasimhan, Susanna Ricco, Cordelia Schmid, Rahul Sukthankar,

and Katerina Fragkiadaki. 2017. Sfm-net: Learning of structure and motion from

video. arXiv preprint arXiv:1704.07804 (2017).
John YA Wang and Edward H Adelson. 1994. Representing moving images with layers.

IEEE Trans. on Image Processing 3, 5 (1994).

Zhou Wang, Alan Bovik, Hamid Sheikh, and Eero Simoncelli. 2004. Image quality

assessment: from error visibility to structural similarity. IEEE Trans. on Image
Processing 13, 4 (2004).

SvenWanner, Stephan Meister, and Bastian Goldluecke. 2013. Datasets and benchmarks

for densely sampled 4d light fields. In VMV.
G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar. 2011. Layered 3D: Tomographic

Image Synthesis for Attenuation-based Light Field and High Dynamic Range Dis-

plays. In Proc. SIGGRAPH.
Wikipedia. 2017. Multiplane camera. https://en.wikipedia.org/wiki/Multiplane_camera.

(2017).

Junyuan Xie, Ross B. Girshick, and Ali Farhadi. 2016. Deep3D: Fully Automatic 2D-to-3D

Video Conversion with Deep Convolutional Neural Networks. In ECCV.
Fisher Yu and David Gallup. 2014. 3D Reconstruction from Accidental Motion. In CVPR.
Fisher Yu and Vladlen Koltun. 2016. Multi-Scale Context Aggregation by Dilated

Convolutions. In ICLR.
Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. 2018.

The Unreasonable Effectiveness of Deep Networks as a Perceptual Metric. In CVPR.
Zhoutong Zhang, Yebin Liu, and Qionghai Dai. 2015. Light field from micro-baseline

image pair. In CVPR.
Tinghui Zhou, Matthew Brown, Noah Snavely, and David Lowe. 2017. Unsupervised

learning of depth and ego-motion from video. In CVPR.
Tinghui Zhou, Shubham Tulsiani, Weilun Sun, Jitendra Malik, and Alexei A Efros. 2016.

View synthesis by appearance flow. In ECCV.
C. Lawrence Zitnick, Sing Bing Kang, Matthew Uyttendaele, SimonWinder, and Richard

Szeliski. 2004. High-quality Video View Interpolation Using a Layered Representa-

tion. In Proc. SIGGRAPH.

ACM Trans. Graph., Vol. 37, No. 4, Article 65. Publication date: August 2018.

https://vr.google.com/vr180/
https://research.googleblog.com/2017/10/portrait-mode-on-pixel-2-and-pixel-2-xl.html
https://research.googleblog.com/2017/10/portrait-mode-on-pixel-2-and-pixel-2-xl.html
https://www.lytro.com/
https://en.wikipedia.org/wiki/Multiplane_camera

	Abstract
	1 Introduction
	2 Related work
	3 Approach
	3.1 Multiplane image representation
	3.2 Learning from stereo pairs
	3.3 Differentiable view synthesis using MPIs
	3.4 Objective
	3.5 Implementation details

	4 Data
	4.1 Identifying videos
	4.2 Identifying and tracking clips with SLAM
	4.3 Refining poses with bundle adjustment
	4.4 Filtering and clipping
	4.5 Choosing training triplets

	5 Experiments and results
	5.1 Visualizing the multiplane images
	5.2 Comparison with Kalantari et al.
	5.3 Comparison with extrapolation methods
	5.4 Ablation studies
	5.5 Applications

	6 Discussion
	References

