MAPP: The Berkeley Model and Algorithm Prototyping Platform

Tianshi Wang, A. Gokcen Mahmutoglu, Archit Gupta, Aadithya V. Karthik*, Jaijeet Roychowdhury

EECS Department University of California, Berkeley

*Sandia National Laboratories Albuquerque, NM

Compact Modelling

EDA: Electronic Design Automation

- Provides detailed information about device operation & characteristics
- <u>Computationally intensive</u>
 - » EM simulation, drift-diffusion eqns., numerical solution of PDEs, etc.

- incorporated in circuit simulators
- Accurate enough to have predictive value for circuits
- Terminal behaviour important » internal details less important
- Purpose: use in circuit design » via circuit simulation

Compact Modelling

Simulation Algorithms

- DC operating point and DC sweep
- small-signal AC
- transient: FE, BE, TRAP, LMS, GEAR, ...
- PSS (periodic steady-state): HB, shooting
- noise analyses
- sensitivity analyses
- distortion analyses
- stochastic and statistical methods
- macro-modelling, MOR, "analog verification", ...

Modelling and Simulation Today

• motivation for MAPP

Why not use SPICE?

- SPICE: the original open-source simulator
 - » de-facto standard
 - » structure: all analyses in all models
 - » prototyping models & algorithms: takes months to years
 - » pain to write (even for those who can)
 - -e.g., shooting method (S-SPICE)
- To be useful: modular, well-structured, flexible
 - » separated models, algorithms, numerics, I/Os
 - » simple, clean interfaces
 - » short, easy to read, easy to modify

Excerpt from *dioload.c* (SPICE3)

Glimpse: Diode Model in MAPP

MOD.terminals MOD.parms MOD.explicit_outs MOD.f: function handle MOD.q: function handle

- executable (in Matlab)
- takes 10min to write
- works in all analyses

. . .

Glimpse: Shooting Method in MAPP

Code Structuring of MAPP

MAPP: Compact Model Prototyping

Slide 11

T. Wang, UC Berkeley

MAPP: Multiphysics Support

Optical System Modelling/Simulation Example

Multiphysics Systems

potential/flow systems:

kinematic NIL: "flow": force "potential": position

magnetic NIL: "flow": magnetic flux "potential": magnetomotive force

thermal NIL: "flow": power flow "potential": temperature

Spintronic systems:

vectorized spin currents vectorized spin voltages

Kerem Yunus Camsari; Samiran Ganguly; Supriyo Datta (2013), "Modular Spintronics Library," https://nanohub.org/resources/17831.

Chemical reaction networks

rates and concentrations

"KCLs" at nodes have d/dt terms

T. Wang, UC Berkeley

LTI MOR Example in MAPP

T. Wang, UC Berkeley

Homotopy Analysis on Goto Pair

Finding Folds with Homotopy

Slide 22

Phase-macromodel Simulation in MAPP

Simulation Algorithms in MAPP: More Examples

Distortion Contribution Analysis on Gilbert cell

details: Wu/Roychowdhury, "Efficient per-element distortion contribution analysis via Harmonic Balance adjoints". Proc. CICC 2014.

3D phase plane plot of RRE for A + B \rightarrow 2B; B + C \rightarrow 2C; C + A \rightarrow 2A

MAPP: Public Release

Open Source download: <u>https://github.com/jaijeet/MAPP</u>

• License

- » primary: GPL-v3
- » alternative licensing available

-eg, SRC contract terms apply for SRC company use

» contributors can specify their own alternative licensing terms for their contributions

MAPP: Features

- Works entirely in MATLAB/Octave
 - » C++ version to be released
 - » mex interfaces to link C++ devices and circuit DAEs into MATLAB
- Help system (start with help MAPP)
 - » quick start walk-through
- Automatic differentiation (vecvalder)
 - » help MAPPautodiff
- Executable multiphysics device specification (ModSpec)
 - » examples, tutorial: part of help
- DC, AC, transient analyses
 - » also noise, homotopy, HB, shooting, PPV, MOR, etc. (initial version released at PHLOGON.eecs.berkeley.edu)
- Automated testing system exercising suite of tests

MAPP: Intended Uses

- Developing simulation-ready device models
 » including multiphysics devices, network connectivity
- Quickly prototyping new simulation algorithms
 - » hours/days to implement a new analysis
 - assess strengths/limitations before investing resources to implement in "real simulators"
- Learning or teaching modelling/simulation
 - » MATLAB \rightarrow broadly accessible
 - » help system, tutorials, supporting resources

Summary

Network Interface electric fields, polarizations, wave continuity,... Mechanical NIL Spintronic NIL NIL NIL NIL NIL Spintronic Spintronic NIL Spintronic S AC analysis: RC line with 20 segments: line end voltages with and without MOR

https://github.com/jaijeet/MAPP