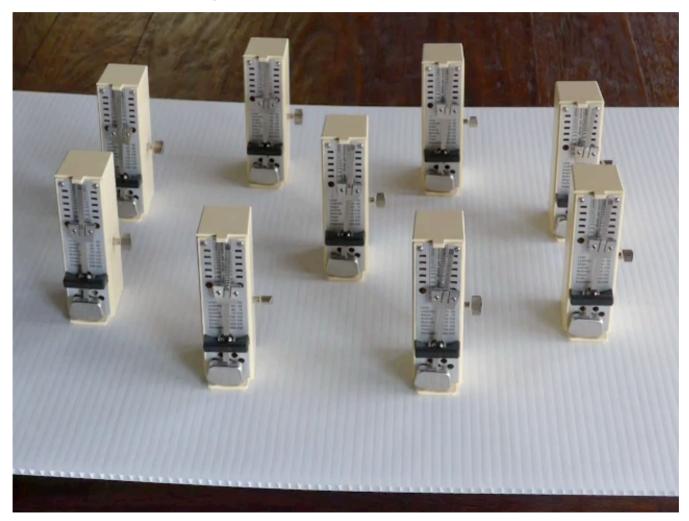
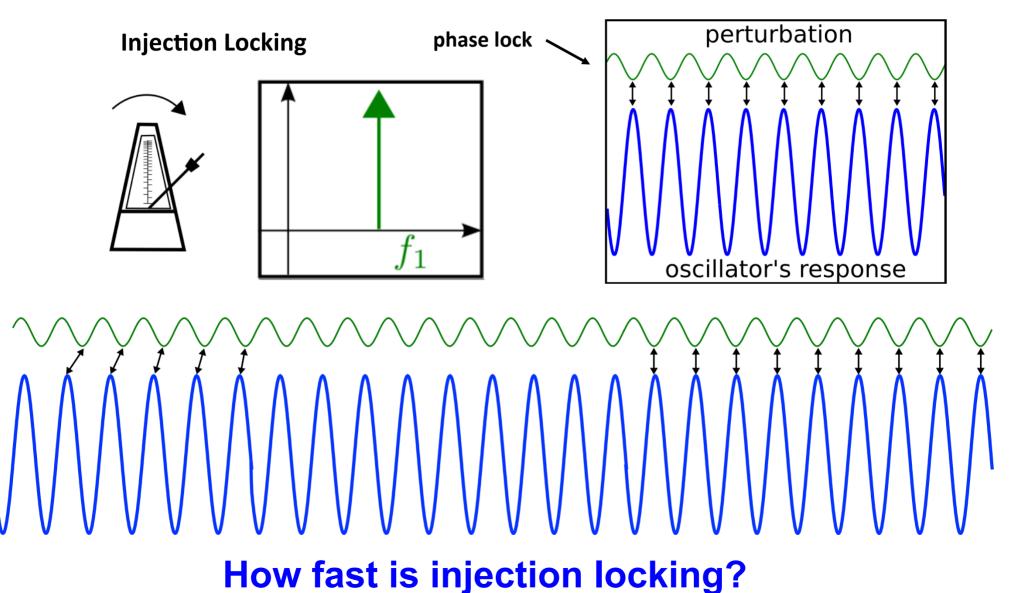
Tianshi Wang and Jaijeet Roychowdhury University of California, Berkeley

Injection Locking

• Oscillators can synchronize in phase/frequency

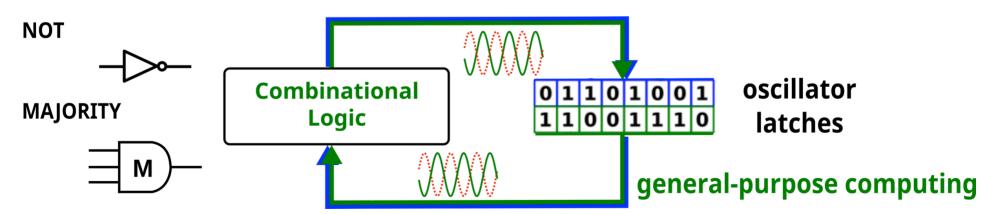


Injection Locking



T. Wang University of California, Berkeley FAC

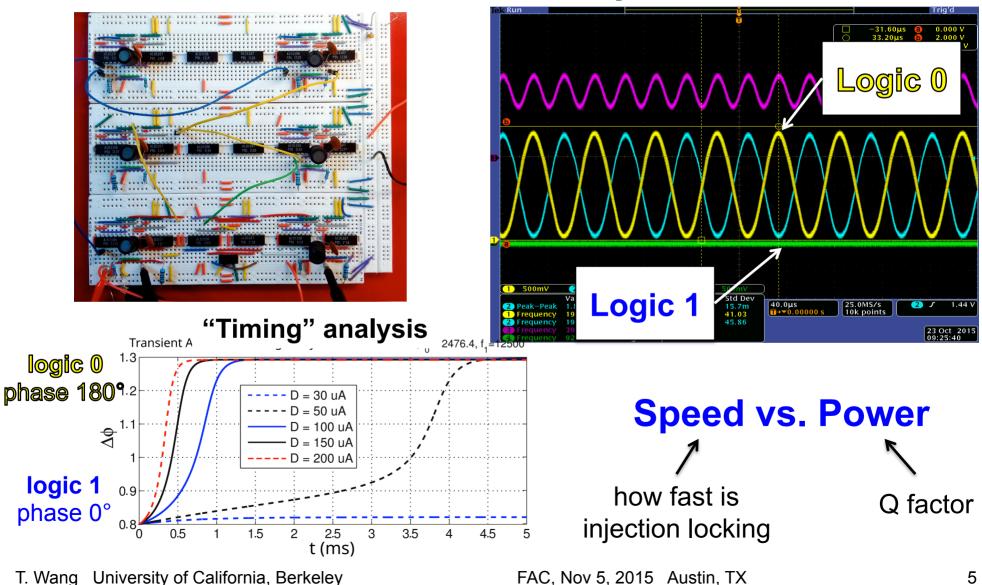
- Why do we ask?
 - Applications of IL:
 - quadrature oscillators
 - injection-locked PLLs
 - frequency dividers
 - optical lasers
 - Oscillator-based Boolean Computation



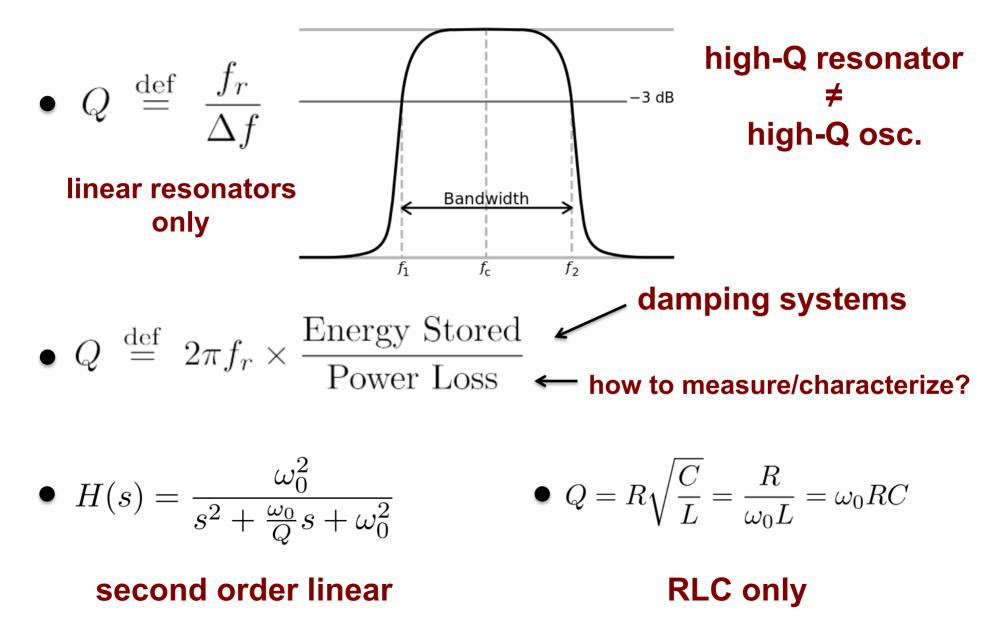
details: T. Wang, J. Roychowdhury, "PHLOGON: Phase-based LOGic using Oscillatory Nano-systems". Unconventional Computation & Natural Computation, 2014.

T. Wang University of California, Berkeley

Oscillator-based Boolean Computation

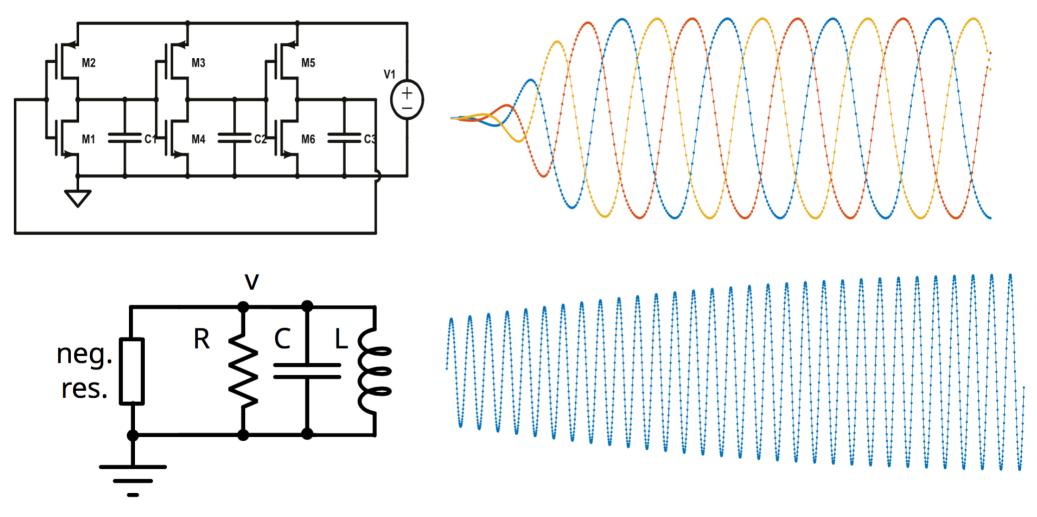


Q factor of an osc.: Definitions & Confusions



T. Wang University of California, Berkeley

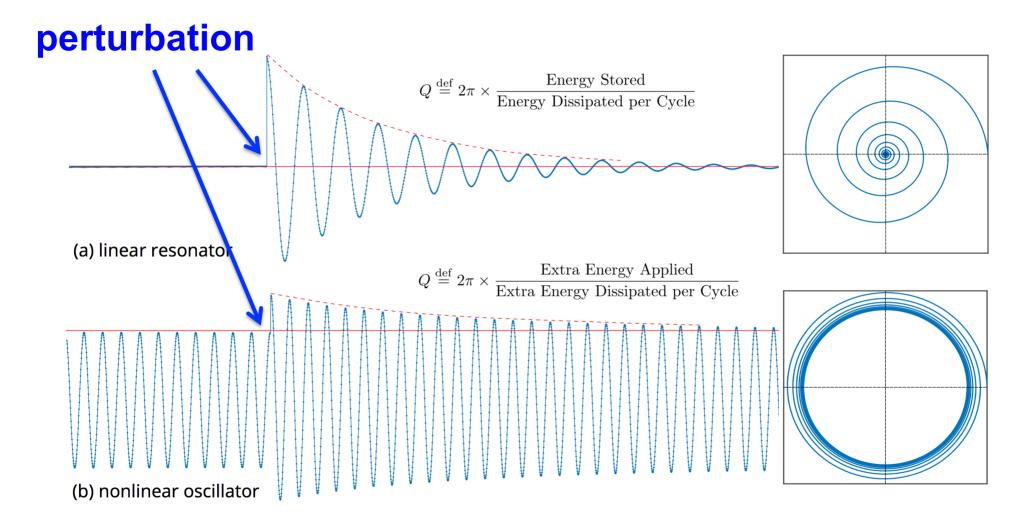
Q factor of an oscillator: Intuition



high-Q oscillators settle more slowly (in amplitude)

T. Wang University of California, Berkeley

Q factor of an oscillator: Our Definition



can be measured

not specific to osc. types

T. Wang University of California, Berkeley

Q factor: Mathematical Characterization

osc. DAE:

$$\frac{d}{dt}\vec{q}(\vec{x}(t)) + \vec{f}(\vec{x}(t)) + \vec{b}(t) = \vec{0}$$

Periodic Steady State (PSS)

$$\vec{x}_s(t) \qquad \qquad \vec{x}_s(t) = \vec{x}_s(t+T)$$

apply perturbation:

$$\vec{x}(t) = \vec{x}_s(t) + \Delta \vec{x}(t)$$
$$\frac{d}{dt}\vec{q}(\vec{x}_s(t) + \Delta \vec{x}(t)) + \vec{f}(\vec{x}_s(t) + \Delta \vec{x}(t)) = \vec{0}$$

Linear Periodically Time-Varying (LPTV) system:

$$\frac{d}{dt}\mathbf{C}(t)\cdot\Delta\vec{x}(t) + \mathbf{G}(t)\cdot\Delta\vec{x}(t) = \vec{0} \qquad \mathbf{C}(t) = \frac{d\vec{q}}{d\vec{x}}\Big|_{\vec{x}_s(t)} \quad \mathbf{G}(t) = \frac{d\vec{f}}{d\vec{x}}\Big|_{\vec{x}_s(t)}$$

T. Wang University of California, Berkeley

FAC, Nov 5, 2015 Austin, TX

9

Q factor: Mathematical Characterization

Linear Periodically Time-Varying (LPTV) system:

$$\frac{d}{dt}\mathbf{C}(t)\cdot\Delta\vec{x}(t) + \mathbf{G}(t)\cdot\Delta\vec{x}(t) = \vec{0}$$

Fundamental Matrix of LPTV: $\mathbf{X}(t)$

$$\frac{d}{dt}\mathbf{C}(t) \cdot \mathbf{X}(t) + \mathbf{G}(t) \cdot \mathbf{X}(t) = \vec{0}$$
$$\mathbf{X}(0) = \mathbf{I_n}$$

 $\Delta \vec{x}(T) = \mathbf{X}(T) \cdot \Delta \vec{x}(0) \longleftarrow \mathbf{X}(T) \text{ determines } \Delta \vec{x}(0) \rightarrow \Delta \vec{x}(T)$

Eigenanalysis on $\mathbf{X}(T)$

•
$$\lambda_{\max} = \lambda_1 = 1$$

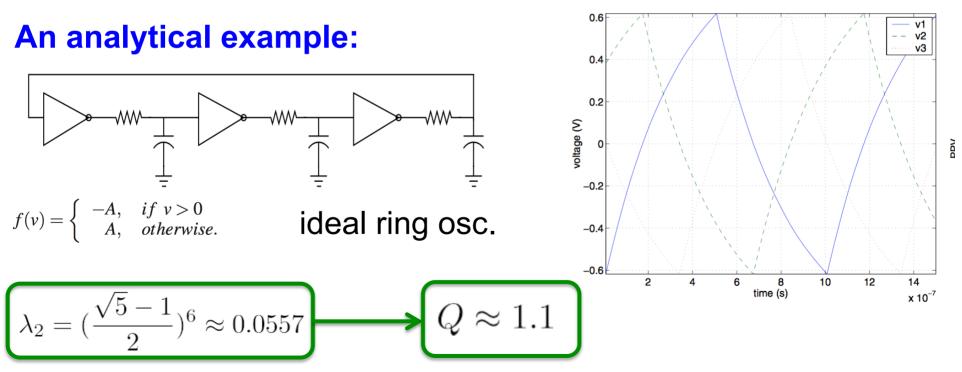
• λ_2 characterizes the decay of amplitude!

Q factor: Mathematical Characterization

Eigenanalysis on $\mathbf{X}(T)$

- $\lambda_{\max} = \lambda_1 = 1$
- λ_2 characterizes the decay of amplitude!

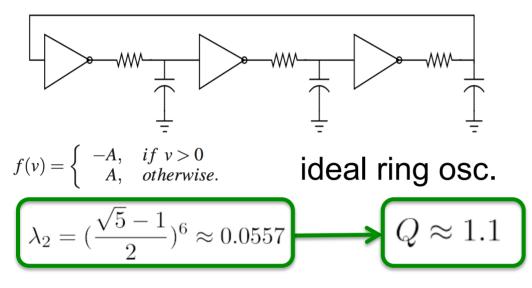
 $\lambda_2^Q < 0.05$ means: after Q cycles, magnitude drops below 5%



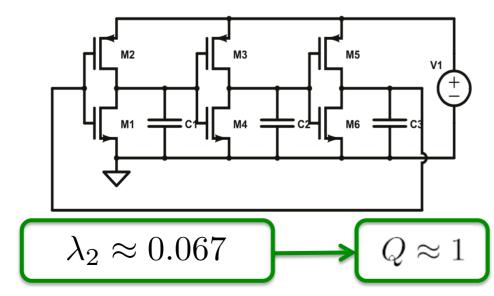
details: Srivastava/Roychowdhury, "Analytical Equations for Nonlinear Phase Errors and Jitter in Ring Oscillators", TCAS I, 2007.

T. Wang University of California, Berkeley

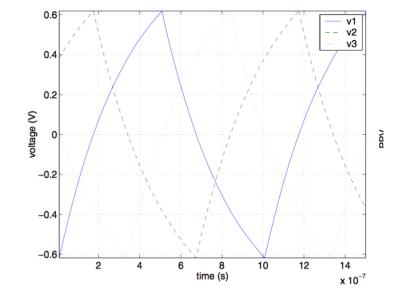
Q factor: Numerical Results

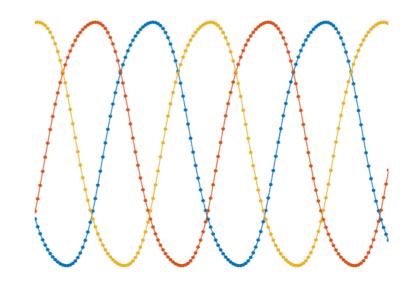


"realistic" ring osc.

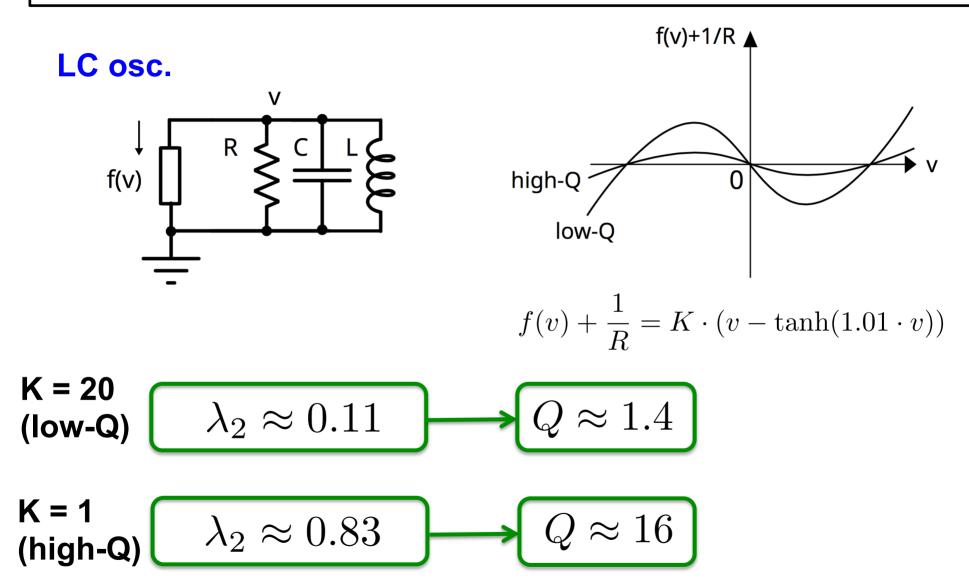


T. Wang University of California, Berkeley

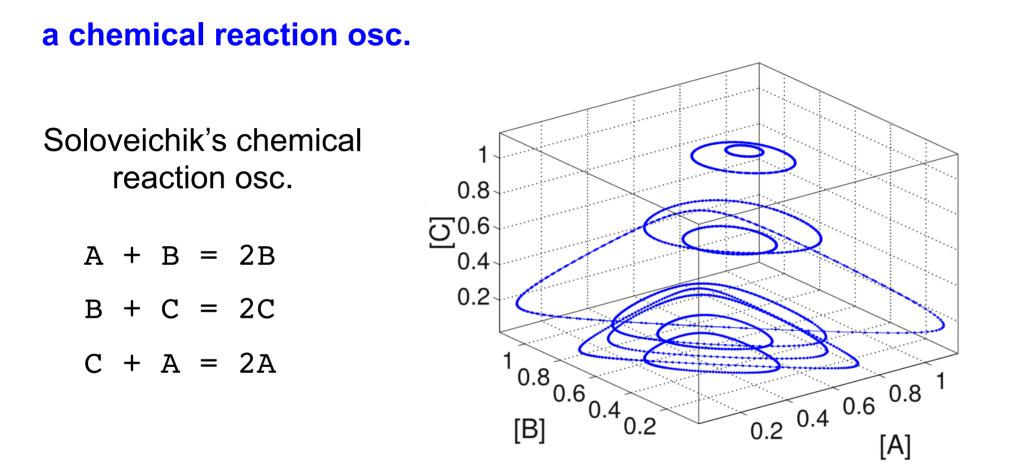




Q factor: Numerical Results

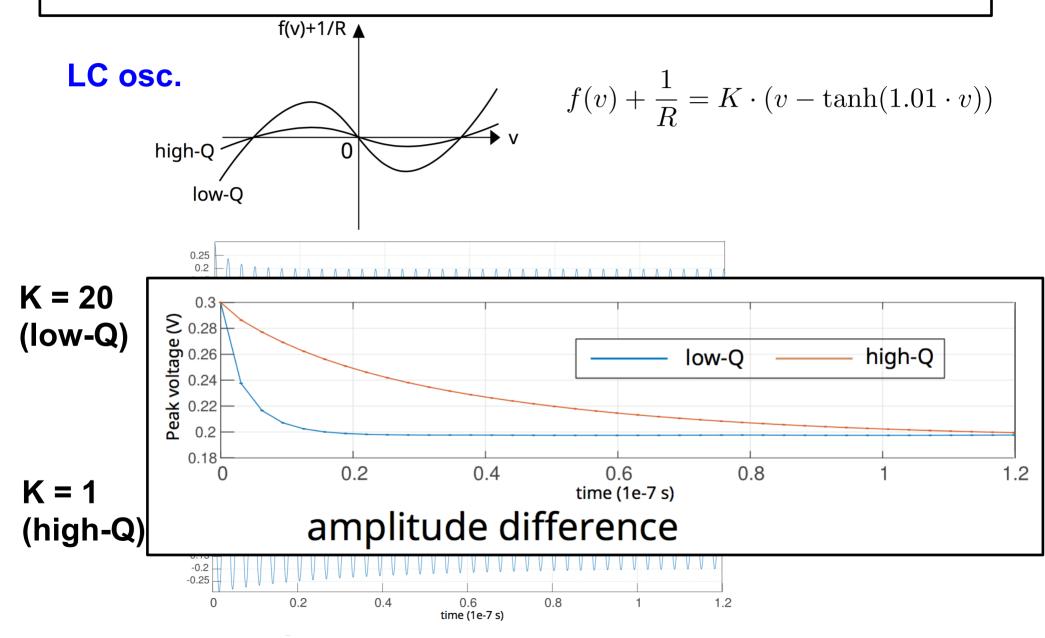


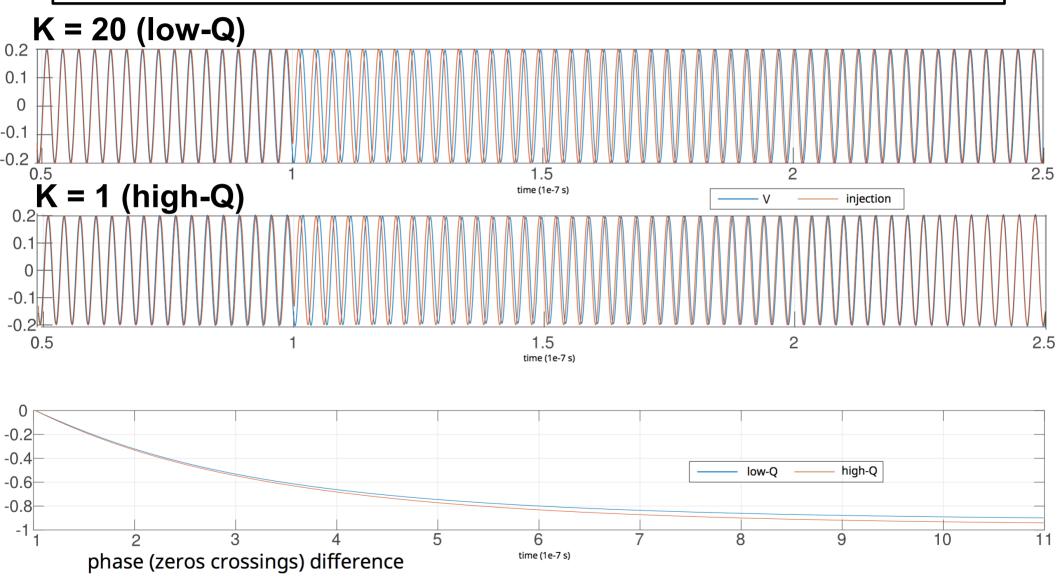
Q factor: Numerical Results

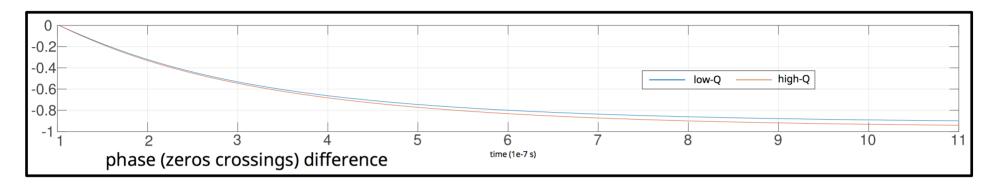


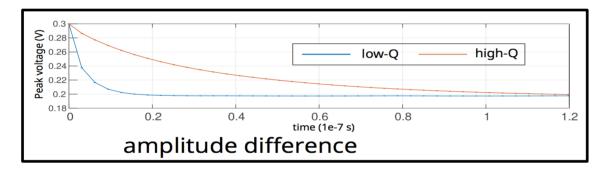
T. Wang University of California, Berkeley

High-Q oscillators settle more slowly in amplitude









"decoupled" phase and amplitude settling behaviours

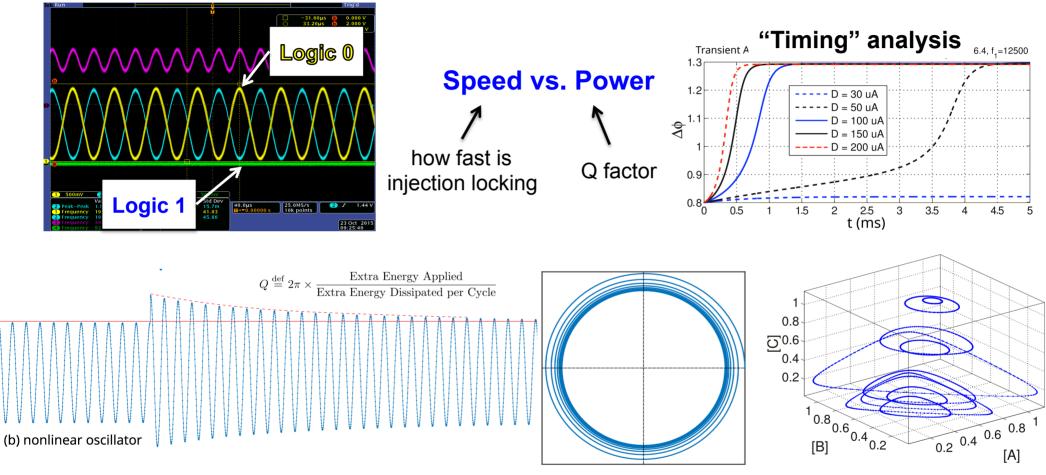
loose explanation:

phase-macromodel $\Leftrightarrow \vec{v}_1(t)$ corresponding to λ_1 of $\mathbf{X}(T)$

T. Wang University of California, Berkeley

 $Q \Leftrightarrow \lambda_2 \text{ of } \mathbf{X}(T)$

Summary



LPTV analysis

 $Q \Leftrightarrow \lambda_2 \text{ of } \mathbf{X}(T)$

Does it take longer to injection lock a high-Q oscillator?

T. Wang University of California, Berkeley